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Abstract: In the proposed article, we present a nature-inspired optimization algorithm, which we
called Polar Bear Optimization Algorithm (PBO). The inspiration to develop the algorithm comes
from the way polar bears hunt to survive in harsh arctic conditions. These carnivorous mammals are
active all year round. Frosty climate, unfavorable to other animals, has made polar bears adapt to the
specific mode of exploration and hunting in large areas, not only over ice but also water. The proposed
novel mathematical model of the way polar bears move in the search for food and hunt can be a
valuable method of optimization for various theoretical and practical problems. Optimization is
very similar to nature, similarly to search for optimal solutions for mathematical models animals
search for optimal conditions to develop in their natural environments. In this method. we have
used a model of polar bear behaviors as a search engine for optimal solutions. Proposed simulated
adaptation to harsh winter conditions is an advantage for local and global search, while birth and
death mechanism controls the population. Proposed PBO was evaluated and compared to other
meta-heuristic algorithms using sample test functions and some classical engineering problems.
Experimental research results were compared to other algorithms and analyzed using various
parameters. The analysis allowed us to identify the leading advantages which are rapid recognition
of the area by the relevant population and efficient birth and death mechanism to improve global and
local search within the solution space.

Keywords: optimization; meta-heuristic; constrained optimization

MSC Classification: 80M50; 90C59; 70H45

1. Introduction

Increasing technological development makes the accuracy becoming the most desirable element
in applied modeling. It is essential, so that the cost of the product or the amount of work will be as
small as possible. Moreover exactly calculated dimensions, volume, or any other parameter can make
our lives and our work more effective, simpler and enjoyable. The problem of accuracy comes to
finding optimal solutions for given problems from engineering, architecture, medicine, etc. Through
these areas, a heuristic approach to solving problems turned out to be a successful tool. It becomes
more and more popular due to numerous features, such as speed of finding optimal solutions and low
computational complexity.

One of very good examples for heuristic implementations is environmental engineering.
Increasing pressure to reduce pollutants produced during production of heat, car engines, etc.
motivates scientists to seek alternative methods of treatment. An alternative to existing fuel industry
is biofuel that is biomass produced by living organisms. The use of heuristics in this topic makes it

Symmetry 2017, 9, 203; doi:10.3390/sym9100203 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-1972-5979
https://orcid.org/0000-0002-9073-5347
http://dx.doi.org/10.3390/sym9100203
http://www.mdpi.com/journal/symmetry


Symmetry 2017, 9, 203 2 of 20

possible to estimate potential outcome of the region for possible variety of liquid biofuels as shown
by [1]. Diesel engines operating on oil, even when using a particulate filter, produce large quantities
of harmful vapors. Application of heuristics in diagnosis and analysis of these engines is shown
by [2]. Interesting aspect of energy production was presented by [3]. In the research, optimization of
components for PV-wind-diesel-battery was done by the use of stochastic and meta–heuristic methods.
Problems with pollution and numerous threats of earthquakes cause the location of homes on affected
areas to be of a paramount importance. [4] presented positioning of networking systems by nature
based optimization methodology. [5] presented that a model of a real-time seismic monitoring and
early warning system for earthquakes can be based on devoted heuristic optimizer. [6] presented that
heuristic algorithms can be applied in the design of steel structured houses that have been built in
areas affected by seismic movements.

Related Works

Methods for solving optimization problems like heuristics do not guarantee obtaining the result
identical with analytical solution. Depending on the initial population, we might expect faster or
slower convergence to analytical solutions. However as the research show these methods give very
precise results. Therefore it is important to constantly work on new efficient algorithms. Heuristics
simulate phenomena that occur in nature into optimization algorithms. Different approaches make use
of various selective strategies implemented into optimization algorithms. There are many propositions
to simulate the way animals hunt and breed. Selecting a right place to settle is also a very important
strategy, in which an animal adapts to environmental conditions to achieve the best possible result.
Hunting is inevitably linked to the prey and local environment. Different conditions involve a lonely
hunting behavior or hunting in a herd. In the first, an animal uses various aspects of smell, hearing,
sight which are altogether combined into efficient actions for optimal hunting strategy. On the other
hand, while hunting in a group the animals depend on other members of the herd, which all cooperate
to corner the prey. Similarly other phenomena from the nature can inspire optimization methods.
Water running on the surface of the ocean is adapting to weather conditions in which a cylindrical
shape gives to the waves optimal strength of action. These are very similar to optimization, where the
algorithm must adapt to given criterion for the best possible solution. We can find many models based
on animals strategies and nature phenomena composed into optimization strategies.

Simulated Annealing (SA) is one of the first proposed meta-heuristics [7]. In this method annealing
process is simulated in the search space to find the optimum for modeled functions. In [8] was presented
an idea of Genetic Algorithm (GA), which is simulating processes of genetic evolution into optimization
purposes. Particle Swarm Optimization (PSO) was presented in [9]. This method is based on a model
of the swarm of individuals that cooperate together to optimize the strategy for development. Another
interesting example of the swarm intelligence is Artificial Bee Colony Algorithm (ABCA) presented in
[10]. This method simulates the behavior of ants while traversing the habitat in search for food. One of
heuristics based on stochastic theory is Cuckoo Search Optimization Algorithm (CSA) described by
[11]. Proposed model simulates behavior of cuckoos while tossing their eggs into nests of other birds.
The movement of individuals in the search for the optimal location is described using Lévy flight
approach. The phenomenon of echolocation used by bats have been modeled in Bat Algorithm (BA)
by [12]. This algorithm simulates hunting bats, which are using natural radar to trace the prey. Firefly
Algorithm (FA) was introduced in [13], where the author presented an idea to model relations between
individuals in a swarm of fireflies. In that heuristic a model of communication between bugs searching
for an optimal partner is implemented into optimization algorithm. Not only behavior of animals has
been subjected to mathematical analysis, but also phenomenon of plants growth. Flowers Pollination
Algorithm (FPA) presented by [14] brings a model of flower pollen raised by the wind. Recent years
brought other models sourced in nature phenomena. In [15] was shown a model of breaking sea waves
called Water Wave Optimization Algorithm (WWO). The particles of the wave inspired optimization
strategy, which simulates the cylindrical movements of the water on the surface of the ocean. In [16]
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was proposed the model of moths movements to the light based on spiral trajectory formulated in
Moth-Flame Optimization Algorithm (MFO). Predation of dragonflies was formulated in Dragon-Fly
Algorithm (DA) in [17].

These algorithms have presented a dedicated modeling of various aspects taken from the nature
of living species and weather phenomena. Some of the strategies present a swarm communication
models, the other use single individual actions to simulate optimization. Among them we have models
of organisms on various levels of evolution and also various families of fauna and flora. We have
models of birds, models of bugs, models of cell evolutions but at the same time we have models of
flowers and water waves. Some of these methods have clearly visible two stages of modeling: global
and local search. Depending on the proposed model the algorithms can have fast convergence to the
optimum. However still important aspect is the location of the initial population. The starting points
may influence the final results. Therefore the best option to compose a meta-heuristic algorithm is
to define a composition of efficient approaches that will support the highest performance for each of
the optimization stages. The algorithm shall be efficient in the global search, since this phase makes
it possible to search the entire model space. A precision of the results depends on the local search,
in which the algorithm is correcting the final values in the local sub domain. Each of the methods must
be possibly low complex for fast computations. Therefore one of the possible aspects is to efficiently
control the number of individuals in the population.

In this article, we propose to model behavior of polar bears while searching for food over
frosty arctic land and sea into optimization strategy, see Figure 1. Polar bears have a very difficult
environment for their development, yet these animals achieved optimal results becoming rulers of
the arctic. This gave us an inspiration for the research on possible modeling of their behavior into
heuristic algorithm. In the model we assume that the domain for the optimization is very similar to
arctic conditions. We do not know where the optimums are. Similarly polar bears do not know where
to find seals or other food. In the search we can be trapped in local optima, what can prevent us from
global optimization. Moreover the nature of optimized objects and functions can be difficult and so
the optimization needs some specific strategies to avoid mistakes. Polar bears search for food but the
arctic conditions can make them trapped and even die, so they developed very efficient mechanisms
that help them to succeed. We have distinguished two phases of the hunting strategy. One we simulate
for a global search, the other for a local search. A model of searching for food through the arctic
lands and waters gave a very promising global search. We adopted travel through the arctic for a
search of sub domains with possible optimum. While in each iteration of the algorithm local search is
simulated using model of specific hunting. Additionally the proposed model introduces a mechanism
to control birth and death processes, which stimulates the number of individuals similarly to the
nature conditions.

The novelty of the proposed method is in the efficient composition of these three nature-inspired
mechanisms into one heuristic algorithm. Each of them represents some important aspect of the
adaptation of polar bears to the arctic conditions that help them to succeed. Proposed model makes
use of these actions implemented into optimization strategy, in which we can efficiently search through
the entire domain. The model prevents blocking in the sub spaces of the local minima. While proposed
birth and death strategy enables dynamic adaptation to the optimized model, without using large
population of individuals in each iteration.
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Figure 1. Sample presentation of the behavior that we modeled into optimization strategy. Polar bear
in his domain starts to search for possible seals colonies. To reach them polar bear must come across an
arctic sea and land. He uses drifting ice floes to get to remote locations. When he finally spots the seals
he tries to get closer without notice and surrounds the colony to choose the optimal prey.
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2. Polar Bear Optimization Algorithm (PBO)

Polar bears are mammals inhabiting icy territories of the Arctic, where they are the biggest
predators (see [18]). This privilege is caused by their adaptation to the environment and the special
hunting behaviors. Their external adaptation to the environment plays a minor role, although very
useful. A thick layer of fat prevents polar bears from cooling their organisms and white fur enables a
camouflaged appearance amongst the ice and snow. The other factors play a major role in survival of
polar bears in harsh arctic climate. Behavioral factors made polar bears able to hunt and survive.

The advantage comes with the speed of attack and the way of movement, even on long distances
over cold waters. Polar bear jumps on ice floe and drifts on it to places where better feeding occasions
may occur. Proposed model of displacement of the polar bear on an ice floe is illustrated in Figure 2.
After reaching destination hunting is done by surrounding the victim in search for the best position
to attack. This behavior can be modeled using proposed trifolium equation. Figure 3 shows the
movement of the polar bear before the attack. Although polar bears prefer to consume seals, they also
eat fish and other animals that come within their reach. During one meal adult polar bear eats nearly
60 kg of raw flesh, so he needs to hunt often. We propose mathematical model of these behaviors to be
used as optimization strategy.

2.1. Basic Premise

In the proposed algorithm we assume that population of hunting polar bears is composed of a
certain number of k individuals. Each individual (polar bear) is represented as a point of multiple n
coordinates described as x = (x0, x1, . . . , xn−1). In order to distinguish each polar bear xi in a whole

population in a given iteration t, we introduce the following definition of the individual:
(

xi
j

)t
, where i

is the number of polar bear and j is given coordinate. The natural habitat of these mammals (the Arctic)
will be interpreted as a solution space for a given optimization problem. The population of polar bears
will move over the solution space to find the optimum values according to the initial criteria.

Definition of the Optimization Problem

Let f ∈ Rn be the function of n variables, and i-th point in the solution space 〈a, b〉n for a, b ∈ R
will be defined as (x)(i) =

[
(x0)

(i), (x1)
(i), . . . , (xn−1)

(i)
]
. Then if the value of the function f

(
(x)(i)

)
is

global minimum or maximum on 〈a, b〉, then (x)(i) is the optimal solution.

2.2. Global Move Using Ice Floes

If a hungry polar bear does not find anything to eat in his nearest area then he enters a large and
stable ice floe which does not break under his weight for a long period. He uses it to drift toward
remote locations with possible habitats of seals. Drifting may take several days during which he looks
for food in the surrounding lands and waters.
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Figure 2. PBO global search: Possible positions of polar bear while global movement on the ice floe
in the search of seal habitats for hunting. Each individual moves toward the best position in the
population by the use of proposed model.

Figure 3. PBO local search: Visualization of polar bear hunting movement in search for the best position
to attack the seal on a 2D plane. The movement is modeled using modified single leaf of trifolium.
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The displacement of the individual over a large distance with the constant analysis while passing
through the area is hard to implement due to the large number of possible calculations. For this reason,
the phenomenon of the movement on the ice floe was interpreted as the movement of the polar bear
(xt)(1) toward one of the fittest individuals (xt)(*) in the whole population in t-th iteration as

(xt
j)
(i) = (xt−1

j )(i) + sign (ω) α + γ, (1)

where α is a random number in interval (0, 1〉, ω is the distance between two spatial coordinates and
γ is a random value in the range of 〈0, ω〉. The distance is understood as Euclidean metric between
points (x)(i) and (x)(j), and it is defined as

d
(
(x)(i), (x)(j)

)
=

√√√√n−1

∑
k=0

(
(xk)

(i) − (xk)
(j)
)2

. (2)

The presented motion model represents global search and it is performed for each individual
in the iteration, however positions are changed only in case of finding better locations. We modeled
the global movement toward the fittest individual since we assume that all the bears are hunting.
Therefore if any of them is closer to the possible habitat of seals his position appears to be promising
for further search for the optimum. Illustration of this process is shown in Figure 2.

2.3. Local Search While Hunting Seals

During hunting polar bears slowly roam arctic lands in order to detect potential prey. Not only
the land surface is observed, but also sea waters. In case of spotting prey, the bear quietly moves closer
to find the optimal position. When he approaches close enough to attack or he is noticed by the animal,
he moves as fast as he can to catch the prey. Seals most often like to stay on the ice, however they jump
into the water when they feel any danger. The hunting polar bear without hesitation jumps after the
seal into the water. Swimming and diving are additional advantages of polar bears, which allow them
to become one of the largest predators in arctic areas. Polar bear moves very quickly under the water
and reach the victim by stabbing teeth into the body of a seal then pulls it out of the water onto the floe
surface where he eats it.

We have modeled a specific movement while hunting seals as the local search. Movement of
each individual was visualized as a movement along modified excerpt from the trifolium equation
starting from the current position of the polar bear. The radius of the view of a polar bear can be
represented by two parameters: a ∈ 〈0, 0.3〉 which regulates the distance in which polar bear can see
the seal, and φ0 ∈ (0, π

2 〉 the angle of the tumbling around the victim. These parameters are used to
define vision radius as

r = 4a cos(φ0) sin(φ0). (3)

The radius is used in description of movements of individuals in the population by the following
system of equations for each spatial coordinate

xnew
0 = xactual

0 ± r cos(φ1)

xnew
1 = xactual

1 ± [r sin(φ1) + r cos(φ2)]

xnew
2 = xactual

2 ± [r sin(φ1) + r sin(φ2) + r cos(φ3)]

...

xnew
n−2 = xactual

n−2 ±
[

n−2

∑
k=1

r sin(φk) + r cos(φn−1)

]

xnew
n−1 = xactual

n−1 ±
[

n−2

∑
k=1

r sin(φk) + r sin(φn−1)

]
, (4)
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where each of the angular values is selected at random for each point in accordance with
φ1, φ2, . . . φn−1 ∈ 〈0, 2π). In the course of looking around for food, polar bear verifies position in
the front (then mark ± is replaced by +). If the new position is worse than current, the bear looks
around on the other side (in this situation ± is replaced by −). Equation (4) simplified to simulate
the movement on two–dimensional plane is reduced to motion along modified equation of the single
trifolium’s leaf. Sample of this movement is shown in Figure 3. Polar bear starts to move and staggers
back looking for food to take better position to attack. In PBO algorithm, this situation is illustrated by
selecting a random position on the leaf which corresponds to the local search optimization phase.

2.4. Dynamic Population Control by the Reproduction and Extinction by Starvation

At the beginning of the algorithm the population of polar bears consists only of 75% of created
individuals. The remaining 25% depends on population growth and represent reproduction of the best
individuals or starvation of the worst.

In each iteration of the algorithm, individual can die due to the arctic conditions or reproduce
after successful hunting. This operation represents the influence of the arctic weather and harsh
environment, which in the PBO algorithm introduce necessary randomness to the optimization strategy.
We introduce κ ∈ 〈0, 1〉 chosen at random in each iteration. Depending on this value, the operation is
performed in accordance with {

Death if κ < 0.25

Reproduction if κ > 0.75
. (5)

The death of the weakest individuals in the population is performed under condition that the
population size will not be lower than 50% of the given number. Reproduction of two individuals
(xt)(best) and (xt)(i) (from the top rated 10% among all in t-th iteration except the best one) into a new
individual (xt

j)
(reproduced) is

(xt
j)
(reproduced) =

(xt
j)
(best) + (xt

j)
(i)

2
. (6)

These operations give the dynamic control over the population of polar bears. The maximum
and the minimum numbers of individuals are not exceeded since the reproduction and extinction
are performed only to keep the number of bears in the population at the same level. In this way, we
model the polar bear behaviors due to his way of hunting in arctic environment. Complete algorithm
is shown in Algorithm 1.
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Algorithm 1: Polar Bear Optimization Algorithm
1: Start,

2: Define parameters of the algorithm: fitness function f , size of space solution 〈a, b〉,
the number of iterations t, the maximum size of the population n, the maximum distance
of vision θ,

3: Generate a population consisting of 75%n bears at random,

4: i := 0,

5: while i ≤ T do
6: for each polar bear (xt)actual in population do
7: Find all the angle values φ at random,

8: Calculate the radius r using (3) and the new position (xt)new by (4) using the sign
of plus,

9: if f
(
(xt)new) < f

(
(xt)actual

)
then

10: Move the bear (xt)actual = (xt)new,

11: else
12: Calculate new position of the bear (xt)new by using the sign of minus in Equation (4),

13: if f
(
(xt)new) < f

(
(xt)actual

)
then

14: Move the bear (xt)actual = (xt)new,
15: end if
16: end if
17: end for

18: Randomly select one of the top 10% of bears,

19: Calculate the new position in accordance with (1),
20: if f

(
(xt)new) < f

(
(xt)actual

)
then

21: Move the bear (xt)actual = (xt)new,
22: end if
23: Sort population according to the fitness function,

24: Choose value κ ∈ 〈0, 1〉,
25: if i < t− 1 and κ > 0.75 then
26: Choose two of the top 10% of polar bears in the population and add a

reproduced one using (6),
27: else if the number of bears > 0.5n and κ < 0.25 then
28: Remove the worst individual in the population,
29: end if
30: i ++,
31: end while
32: Return the fittest polar bear (x)best in the whole population,
33: Stop.
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3. Experimental Results for Classic Test Functions

In the benchmark tests to evaluate performance of the PBO algorithm we have used 13 sample
functions presented in Table 1. These test functions are often called artificial landscapes. Some of
these functions are smooth surfaces for which there is no local minimum that can make the algorithm
stuck. Smooth functions are mainly spherical shapes (Nos. 6, 9 and 10), flat (No. 13), or valley shaped
(Nos. 1 and 5). The other are rough landscapes representing mountain terrain, e.g., areas with many
local minima and only one global minimum (see functions Nos. 2− 4, 7− 8, 11− 12).

Table 1. Benchmark test functions used in experimental verification.

Function Name Function f Range fmin Solution x

Dixon-Price f1(x) = (x1 − 1)2 +
n

∑
i=1

i(2x2
i − xi−1)

2 〈−10, 10〉 0
(

2−
21−2

21 , . . . , 2−
2n−2

2n

)
Griewank f2(x) =

n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(
xi√
(i)

)
+ 1 〈−10, 10〉 0 (0,. . . ,0)

Powell f3(x) =
n/4

∑
i=1

((x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i)

2 〈−100, 100〉 0 (0,. . . ,0)

+(x4i−2 − 2x4i−1)
4 + 10(x4i−3 − x4i)

4)

Rastragin f4(x) = 10n +
n

∑
i=1

[x2
i − 10 cos(2πxi)] 〈−10, 10〉 0 (0,. . . ,0)

Rosenbrock f5(x) =
n−1

∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
〈−100, 100〉 0 (1,. . . ,1)

Hyper–Ellipsoid f6(x) =
n

∑
i=1

i

∑
j=1

x2
j 〈−100, 100〉 0 (0,. . . ,0)

Schwefel f7(x) = 418.9829n−
n

∑
i=1

xi sin(
√
|xi|) 〈−500, 500〉 0 (420.97,. . . ,420.97)

Shubert f8(x) =
n

∏
j=1

(
5

∑
i=1

i cos((i + 1)xj)

)
〈−10, 10〉 −186.7 (0,. . . ,0)

Sphere f9(x) =
n

∑
i=1

x2
i 〈−10, 10〉 0 (0,. . . ,0)

Sum squares f10(x) =
n

∑
i=1

ix2
i 〈−10, 10〉 0 (0,. . . ,0)

Styblinski-Tang f11(x) = 1
2

n

∑
i=1

(
x4

i − 16x2
i + 5xi

)
〈−10, 10〉 −39.2n (-2.9,. . . ,-2.9)

Weierstrass f12(x) =
n

∑
i=1

([xi + 0.5])2 〈−30, 30〉 0 (− 1
2 , . . . ,− 1

2 )

Zakharov f13(x) =
n

∑
i=1

x2
i + (0.5ixi)

2 +

 n

∑
j=1

0.5jxj

4

〈−10, 10〉 0 (0,. . . ,0)

These functions were used in benchmark tests to compare found optimal solutions by proposed
method and 11 other meta-heuristic algorithms. All results were compared regard to the accuracy and
the average speed of finding solutions. In addition, proposed PBO was examined for the efficiency of
the proposed dynamic population control. We have calculated the change in the number of individuals
in the population, the average adaptation of the whole population and convergence during following
iterations. The results are presented in Figure 4. Each test function was optimized 100 times by each of
the algorithms: BA ([12]), CSA ([11]), DA [17]), FA ([13]), FPA [14]), MFO ([16]), WWO ([15]), SA ([7]),
GA ([8]), PSO ([9]), AACA ([10]) and proposed in this article PBO.
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Table 2. Obtained optimal solutions for applied benchmark test functions, averaged for 100 results from performed benchmark tests.

Function BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

f1 0.00832 0.007718 0.007801 0.009989 0.008947 0.007517 0.007512 0.009713 0.007113 0.007621 0.007501 0.007613
f2 0.001837 0.000893 0.001092 0.002813 0.003815 0.000986 0.000052 0.000681 0.000102 0.000041 0.000052 0.000097
f3 0.001241 0.000874 0.00983 0.000873 0.000781 0.000208 0.000189 0.000198 0.000174 0.000321 0.000193 0.000202
f4 0.004602 0.004592 0.00513 0.005397 0.005284 0.004503 0.004483 0.003976 0.005612 0.004387 0.00404 0.005238
f5 0.030147 0.030281 0.029999 0.037326 0.033059 0.029193 0.027936 0.009826 0.008427 0.04356 0.02134 0.03243
f6 0.000981 0.000109 0.000087 0.000109 0.000054 0.000041 0.000039 0.007298 0.0002312 0.000074 0.000038 0.0003145
f7 0.04618 0.045801 0.041982 0.04784 0.046871 0.039982 0.04352 0.043891 0.0446127 0.0424365 0.038932 0.041324
f8 −187.387 −186.981 −186.789 −186.837 −186.811 −187.705 −187.702 −187.703 −186.942 −187.361 −186.924 −186.931
f9 0.001026 0.000866 0.000986 0.000872 0.000201 0.000132 0.000064 0.000127 0.000243 0.001103 0.000059 0.000124
f10 0.008765 0.002942 0.003856 0.004857 0.003927 0.000535 0.000289 0.008986 0.002476 0.003101 0.0004251 0.001621
f11 −784.205 −783.804 −784.198 −784.301 −783.989 −784.098 −783.992 −784.102 −784.031 −783.994 −783.089 −783.995
f12 −0.50968 −0.50991 −0.51012 −0.51830 −0.52380 −0.50910 −0.50901 −0.50992 −0.59851 −0.5312 −0.50941 −0.50993
f13 0.004972 0.00478 0.005629 0.007615 0.002371 0.000689 0.000683 0.000983 0.004351 0.006254 0.0006831 0.0007452

Table 3. Standard deviation for obtained results for applied benchmark test functions.

Function BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

f1 0.400682 0.312220 0.280424 0.386053 0.189451 0.224049 0.216292 0.230397 0.233152 0.235467 0.253251 0.257632
f2 0.000442 0.000442 0.000403 0.000406 0.000567 0.000386 0.000382 0.000389 0.000371 0.000384 0.000392 0.000432
f3 0.299515 0.271036 0.214116 0.234468 0.247951 0.212719 0.211968 0.288523 0.217631 0.224521 0.235621 0.249893
f4 0.261550 0.348611 0.29821 0.342901 0.389093 0.24046 0.240397 0.240378 0.213452 0.224213 0.231273 0.245694
f5 0.304536 0.320787 0.342946 0.388872 0.324894 0.316903 0.311527 0.329623 0.317235 0.331231 0.334572 0.364121
f6 0.004838 0.003263 0.003032 0.004378 0.004008 0.003106 0.003240 0.003697 0.003123 0.003215 0.003521 0.004121
f7 0.290749 0.381693 0.341592 0.444689 0.374533 0.268699 0.295528 0.310741 0.283124 0.279523 0.283210 0.423187
f8 0.482759 0.455528 0.402704 0.44001 0.467686 0.413571 0.40463 0.485864 0.423981 0.445692 0.453982 0.473213
f9 0.002201 0.002041 0.002219 0.002166 0.002159 0.001971 0.001936 0.001825 0.002131 0.002201 0.002133 0.002213
f10 0.453699 0.485568 0.114836 0.540067 0.478353 0.442032 0.43376 0.440208 0.344561 0.413125 0.413241 0.512341
f11 0.00322 0.003358 0.003624 0.002953 0.002498 0.002730 0.002532 0.003324 0.002731 0.002745 0.002589 0.003421
f12 0.348204 0.391397 0.330937 0.420113 0.372893 0.313924 0.322731 0.357778 0.341831 0.328234 0.332198 0.375265
f13 0.004743 0.005072 0.005393 0.004565 0.003950 0.003657 0.003657 0.003771 0.003842 0.003642 0.004115 0.004932
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Table 4. p-values of the Wilcoxon rank-sum test for examined methods (p ≥ 0.05 have been underlined).

Function BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

f1 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
f2 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172
f3 0.00286 0.00286 0.00286 0.00286 N/A N/A N/A 0.00286 0.00286 0.00286 N/A N/A
f4 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
f5 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
f6 0.00286 0.00286 0.00364 0.00286 0.00286 N/A N/A 0.00341 0.00286 0.00286 N/A N/A
f7 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
f8 0.00345 0.00345 0.00331 0.00345 0.00501 0.00339 0.00503 0.00328 0.00341 0.00345 0.00340 0.00345
f9 0.00286 0.00286 N/A 0.00286 0.00286 N/A N/A 0.00286 0.00286 0.00286 N/A N/A
f10 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
f11 0.0039 0.0039 0.004 0.0039 0.0039 0.0023 0.0031 0.0047 0.0039 0.0039 0.0031 0.0039
f12 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
f13 0.00286 0.00286 0.00286 0.00286 0.00286 N/A N/A 0.00286 0.00286 0.00286 N/A N/A
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Figure 4. Sample benchmark tests results for selected test functions from Table 1: Griewank, Rastragin,
Rotated Hyper-Ellipsoid, Sphere, Sum squares, Zakharov, Schwefel : we can see a chart presenting
each function in 2D, changes in the number of polar bears during optimization process, trajectory of
the optimization representing average movement of individuals in the population, average fitness in
the population, and convergence rate in the population.

In each benchmark test the same parameters have been set: population composed of
100 individuals and 100 iterations. Average values of the best individuals from 100 runs are shown in
Table 2. Comparison of presented experimental results show that PBO is a good alternative to other
meta-heuristics. Resulted optimal solutions for most of test functions are very precise. The results
of PBO turned out to be the most accurate next to MFO and PSO algorithms. MFO proved to be
more accurate primarily for Schwefel’s function which has many local minima, while PBO for Sphere
function. In Table 3 are presented standard deviations of optimization results. PBO values for functions
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Nos. 2, 6, 9, 11 and 12 are very low. If compared to other methods, PBO values are the lowest in
many cases. Standard deviations are always less than 0.5 what means that obtained solutions are
not significantly scattered. Wilcoxon rank-sum test was performed for all the solutions and resulted
p-values are shown in Table 4. Only two methods gave p-value higher that 0.005. These were FPA and
PBO for Shubert’s function, what shows that statistically these are the best methods.

In Figure 4 were plotted measurements of various parameters for selected test functions:

• average number of individuals in the population according to their fertility and mortality,
• average trajectory with respect to the ideal solution,
• average adaptation of the population,
• rate of convergence.

The initial state of the population was set to 75 individuals with an upper limit of 100 individuals.
During 100 iterations, the average number of individuals never reached 90% at maximum. Only in
rare cases, PBO achieved a number higher than 80% for functions Nos. 4 and 5 (Rastragin and
Rosenbrock). Modeled technique of dynamic birth and death control of polar bears indicates reduction
in the number of calculations by removing the worst individual. Moreover it enables to gain better
solution by combining two among the best individuals. For all meta-heuristics, to have more accurate
optimization results it is necessary to increase the number of individuals or iterations. For proposed
PBO this can also help what can be seen in a chart showing change in positions of points according
to the Euclidean metric described by Equation (2). We see small and medium value changes from
iteration to iteration. Fastest changes take place on the interval 80–100 iterations for each test function.
The most interesting case for this analysis is Schwefel’s function. The changes are minimal, and above
40 iterations they are almost unnoticeable. The reason for this situation are landscape features. Many
local minima do not allow to exit points, what results in no change in the trajectory. Medium changes
in adaptation to applied test functions are heading to exact solution with each iteration. It can be
seen in examples, where the curve is heading quickly to 0. It is similar with ratio of convergence,
where the curves are heading quickly to the exact solution. Only for Schwefel’s function, the rate of
convergence stuck between 20 and 80 iterations what may be caused by decreasing amount of polar
bears in this period. Along with increased number of bears, rapid minimization of this rate occurred.
For most functions proposed control procedure has proven to be an effective solution. Schwefel’s
function has contributed to a large number of stops in the algorithm. The reason may be not perfect
choice of parameters, especially the number of subjects or distance vision of individuals with such a
large number of local minima.

4. Application of PBO in Engineering Problems

Engineering problems involve positioning systems to balance operation characteristics of selected
elements to work at minimal cost in certain purposes. In this section we would like to present
classic problems solved by applied heuristics in order to show efficiency of the proposed method in
engineering applications. Each of analyzed problems has been subjected to comparative analysis.

4.1. Pressure Vessel Design Problem

Compressed air tank is a gas storage container (for instance liquid air) that under a certain
pressure keeps the content using pressure compressor or accumulator to control interior atmosphere.
The problem lies in the design of a tank with the maximum pressure of 1000 [psi] and the minimum
volume of 750 [ft3]. Let’s assume that it will be a specific type of a tank called cylindrical pressure
vessel (presented in Figure 5) with hemispherical cylinders at both ends.

Physically, the vector of the entire construction ~x can be represented by four variables

• x1 — the coating thickness of cylinder,
• x2 — the coating thickness of hemispherical cylinders,
• x3 — the radius of the cylinder without it’s shell,
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• x4 — the length of the cylinder.

Figure 5. Scheme of pressure vessel model used to solve optimal design problem.

The designing problem is to minimize the cost of production. Minimizing production cost means
minimizing the weight of the tank what may be represented by the following function

g1(~x) = 0.6224x1x3x4 + 1.7781x2
3x2 + 3.1661x4x2

1 + 19.84x3x2
1 , (7)

where x1, x2 ∈ 〈0, 99〉 and x3, x4 ∈ 〈10, 200〉. In addition, the following conditions c1–c4 should be
taken into consideration 

c1(~x) = x4 ≥ 0.0193

c2(~x) = 0.00953x1 − x3 ≤ 0

c3(~x) = x2 − 240 ≤ 0

c4(~x) = 750× 1728− 4
3 πx3

1 − πx2
1x2 ≤ 0.4

. (8)

Similarly to the results of benchmark test functions optimization presented in Section 3,
other meta-heuristic methods were compared to the proposed BPO. All algorithms were executed with
100 individuals in the population and 100 iterations. Each test was performed 100 times, the average
values are presented in Table 5. The results show that proposed PBO method along with MFO and
PSO are the most accurate for this problem.

4.2. Gear Train Problem

The gear train includes four round gear wheels with straight teeth. The problem is to minimize
the gear ratio specified as follows

g2(~x) =
(

1
6.931

− x2x3

x1x4

)2
, (9)

where x1, x2, x3, x4 ∈ 〈12, 60〉 represent following gears in accordance with the scheme in Figure 6.

Figure 6. Scheme of gear train model used to solve optimal design problem.

Averaged results of minimal gear ratio are shown in Table 6. PBO algorithm proved to be the best
solution for obtaining better solution from the MFO algorithm.
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4.3. Welded Beam Design Problem

Welded beam is composed of two components – beam and weld. The problem of construction
design is to minimize the cost of the weld and material of the beam with condition of deflection of the
beam. The design model illustrated in Figure 7 can be described by the following equation

g3(~x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2), (10)

where x1, x4 ∈ 〈0.1, 2〉 and x2, x3 ∈ 〈0.1, 10〉 and x1, . . . , x4 mean physical quantities like height of
x, length of x, height of the beam and width of the beam, respectively. In addition, the following
conditions d1–d7 should be taken into account

d1(~x) = τ(~x)− τmax ≤ 0

d2(~x) = σ(~x)− σmax ≤ 0

d3(~x) = γ(~x)− γmax

d4(~x) = x1 − x4 ≤ 0

d5(~x) = P− Pc(~x) ≤ 0

d6(~x) = 0.125− x1 ≤ 0

d7(~x) = 1.1047x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0

, (11)

which are modeled using following equations

τ(~x) =
√

τ2
1 + 2τ1τ2

x2

2R
+ τ2

2

τ1 =
P√

2x1x2

τ2 =

P
(

L + x2
2
)√ x2

2 + (x1 + x3)2

4

2
√

2x1x2

[
22

2
12 + (x1+x3)2

4

]
σ(~x) =

6PL
x4x2

3

γ(~x) =
4PL3

Ex3
3x4

Pc(~x) =

4.013

√
E
(

x2
3x6

4
36

)
L2

1−
x3

√
E

4G

2L



. (12)

The following values were selected as parameters to analyze the problem: P = 6000 [lb],
L = 14 [in.], E = 30× 106 [psi], G = 12× 106 [psi], τmax = 13, 600 [psi], σmax = 30, 000 [psi] and
γmax = 0.25 [in.]. Obtained results from different algorithms are presented in Table 7. PSO and MFO
algorithms turned out to be the most accurate methods for this problem. Slightly worse result returned
PBO algorithm, but it is still one of the best in comparison to other methods.
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Figure 7. Scheme of welded beam model used to solve optimal design problem.

4.4. Compression Spring Design Problem

A spring is in action with a mounted load, where we have tension/compression reactions as
presented in Figure 8. The problem of construction design is to minimize the spring volume during
tension/compression reaction to the mounted load. The design model for active spring coils x1,
winding diameter x2, and wire diameter x3 can be described by the following equation

fv(x) = (x3 + 2)x2x2
1, (13)

where we calculate the elements for the minimal volume of the spring by assumptions: x3 ∈ 〈0.05, 2〉,
x2 ∈ 〈0.25, 1.3〉, x1 ∈ 〈2, 15〉, for which the stress constraints are

g1(x) = 1−
x3

2x3

71785x4
1
≤ 0

g2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1
5108x2

1
≤ 0

g3(x) = 1− 140.45x1

x2
2x3

≤ 0

g4(x) =
x1 + x2

3/2
− 1 ≤ 0

. (14)

Obtained results from different algorithms are presented in Table 8. PSO with PBO were the best
in this optimization problem, however all other tested heuristic algorithms achieved results very close
to them.

Figure 8. Scheme of compression spring model used to solve optimal design problem.
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Table 5. Optimal construction variables for the pressure vessel design problem.

BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

x1 0.81064 0.81958 0.81683 0.81082 0.82531 0.81738 0.81327 0.81038 0.81612 0.82034 0.81421 0.82313
x2 0.44675 0.44468 0.44721 0.49577 0.44466 0.43488 0.43702 0.43629 0.44115 0.44014 0.43611 0.44537
x3 42.15769 42.23808 42.14122 42.01106 42.15095 42.0162 42.04601 42.12014 42.10029 42.32500 42.13451 42.92300
x4 176.7288 176.87528 177.12321 177.69137 178.23268 176.9014 176.75597 177.96564 176.72880 176.43206 176.65122 176.73561

g1(x) 6088.18314 6160.6034 6138.89315 6241.23766 6217.80235 6077.53166 6057.54657 6075.94324 6098.67000 6155.74048 6073.52853 6301.56641

Table 6. Optimal variables for the gear train design problem.

BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

x1 57.4517 55.62869 52.44017 50.05234 51.15054 48.22301 50.04797 55.27473 51.34512 52.57125 51.32931 51.41824
x2 19.48176 16.71727 17.00267 24.38656 22.45769 18.77492 23.32433 24.3159 21.32743 23.19834 21.02347 21.35921
x3 18.58749 21.27387 22.99426 14.02798 17.97921 21.13716 14.82582 15.03104 14.98321 16.93254 14.79391 15.83209
x4 43.68715 44.31047 51.67159 46.3547 55.90958 57.03833 47.88919 45.82914 47.43271 48.24512 47.82131 47.34128

g2(x) 1.53 × 10−11 3.09 × 10−13 3.02 × 10−11 6.52 × 10−13 4.83 × 10−11 1.44 × 10−14 1.37 × 10−15 5.67 × 10−12 1.71 × 10−4 1.13 × 10−4 3.08 × 10−4 2.87 × 10−5

Table 7. Optimal variables for the welded beam design problem.

BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

x1 0.23848 0.22635 0.24685 0.25043 0.30209 0.21356 0.23258 0.25009 0.22413 0.22451 0.22131 0.22416
x2 3.48082 3.47836 3.477 3.69551 3.48829 3.49944 3.49706 3.7379 3.51812 3.49359 3.47241 3.51512
x3 8.71677 8.79874 8.56445 8.54958 8.98766 8.80996 8.91026 8.9735 8.64167 8.72150 8.65325 8.71412
x4 0.22242 0.21859 0.24589 0.2787 0.24566 0.21283 0.21194 0.22149 0.25139 0.22451 0.21312 0.23151

g3(x) 1.84923 1.81413 2.00481 2.28456 2.20932 1.7549 1.79863 1.95437 2.02615 1.84247 1.73809 1.89509

Table 8. Optimal variables for the compression spring design problem.

BA CSA DA FA FPA MFO PBO WWO SA GA PSO AACA

x1 0.05205 0.05251 0.05241 0.05093 0.05193 0.0529 0.05102 0.05257 0.05231 0.05242 0.05214 0.05253
x2 0.35145 0.35869 0.34079 0.35121 0.3487 0.35118 0.35756 0.33994 0.34412 0.35325 0.34346 0.34512
x3 11.86055 10.9627 11.85907 11.58599 11.81457 11.74167 11.6994 11.37447 11.62350 11.68242 11.62233 11.63542

fv(x) 0.0132 0.01282 0.01297 0.01238 0.01299 0.0135 0.01275 0.01256 0.01283 0.01328 0.01272 0.01299
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5. Discussion

In the examinations we have verified the efficiency of the newly proposed heuristic method.
Defined in this article, the Polar Bear Optimization Algorithm was tested using 13 classic test functions
and examined as an optimization procedure for 4 designed problems: pressure vessel, gear train,
welded beam and compression spring.

As a conclusion from the research we can say that proposed PBO is a valuable optimization
method, which can be used to solve both theoretical and practical problems. The results for classic test
functions have showed that PBO is reaching optimum values with good precision. The optimization
process is smooth and the convergence to the optimum values is good. From the results for engineering
problems we also conclude a good efficiency of the proposed PBO. Comparing to other examined
heuristics the results of PBO were the best in some cases and in other experiments MFO and PSO
received better results. Nevertheless proposed PBO was always one of the best algorithms.

The model of the BPO simulates two phases of the polar bears hunting defined as global and
local searches. Additionally to these we have modeled efficient birth and death mechanism that is
controlling the number of individuals in the population. Therefore using all these three in a one
heuristic algorithm we have composed an efficient optimization algorithm. In the tests we have
defined κ < 0.25 and κ > 0.75 as the most efficient level of κ coefficient used to control the population.
Similarly the best results for the local search phase were achieved for 0 < a < 0.3. The coefficients
used for model of the global search are selected at random therefore they do not influence the model
and also enable better search in the whole domain. Since the control of the population makes the
method use only the necessary number of individuals the computational complexity is lower. During
iterations we perform only the necessary calculations. The number of individuals is not constant as for
other heuristic methods but change in accordance to performance of the algorithm. In Figure 4 we
can see how the number adopts to calculations during iterations of the algorithm. The PBO model is
presented in a form usable for multidimensional search spaces. The coefficients used to compose the
global search model are mostly selected at random, therefore PBO is able to search for optimums in
various spaces where different constraints make the domain narrow.

For future research we think of some possible applications of devoted versions of this method.
We think that potential application to some complex engineering problems will be possible due to the
nature of the multidimensional composition of the algorithm. Probably some adjustments in the model
coefficients will be necessary to exactly fit the model. In the research we have examined PBO in some
classic engineering problems of low dimensions, the results were good and further developments of
this method may benefit e.g. from fuzzification of some parts to flexibly fit all the optimized variables.

6. Final Remarks

In this article we proposed a novel heuristic paradigm that models the behavior of polar bears.
The Polar Bear Optimization Algorithm models a global and local search with efficient model of
motion and dynamic mechanism of births and deaths of individuals in the population. These aspects
contributed to obtain competitive results in benchmark tests. Proposed dynamic mechanism reduces
computational complexity by reducing the number of operations. The proposed algorithm has been
tested not only for test functions but also for real design engineering problems. The experimental
research showed that proposed algorithm proved to be one of the best in these calculations showing
highest precision in optimization of modeled variables. Comparisons have shown high potential of
the proposed algorithm for various applications but also for future development.
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