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Abstract: Aristotelian diagrams visualize the logical relations among a finite set of objects.
These diagrams originated in philosophy, but recently, they have also been used extensively in
artificial intelligence, in order to study (connections between) various knowledge representation
formalisms. In this paper, we develop the idea that Aristotelian diagrams can be fruitfully studied
as geometrical entities. In particular, we focus on four polyhedral Aristotelian diagrams for the
Boolean algebra B4, viz. the rhombic dodecahedron, the tetrakis hexahedron, the tetraicosahedron
and the nested tetrahedron. After an in-depth investigation of the geometrical properties and
interrelationships of these polyhedral diagrams, we analyze the correlation (or lack thereof) between
logical (Hamming) and geometrical (Euclidean) distance in each of these diagrams. The outcome
of this analysis is that the Aristotelian rhombic dodecahedron and tetrakis hexahedron exhibit
the strongest degree of correlation between logical and geometrical distance; the tetraicosahedron
performs worse; and the nested tetrahedron has the lowest degree of correlation. Finally, these results
are used to shed new light on the relative strengths and weaknesses of these polyhedral Aristotelian
diagrams, by appealing to the congruence principle from cognitive research on diagram design.

Keywords: logical geometry; Boolean algebra; knowledge representation; bitstrings; rhombic
dodecahedron; tetrakis hexahedron; tetraicosahedron; nested tetrahedron; Hamming distance;
Euclidean distance; congruence principle

1. Introduction

Aristotelian diagrams visualize the logical relations among a finite set of elements from some
logical, lexical or conceptual system. The historical origins of these diagrams can ultimately be traced
back to the logical works of Aristotle and his commentators [1]. The oldest and most widely-known
example is the so-called ‘square of opposition’ for the categorical statements from Aristotle’s logical
system of syllogistics; cf. Figure 1. Throughout history, distinguished philosophers such as John
Buridan, Gottfried Leibniz and Gottlob Frege have made use of squares, but also larger, more complex
Aristotelian diagrams to illustrate and explain their theorizing [2–4]. However, because of the ubiquity
of the logical relations that they visualize, Aristotelian diagrams are now also used in other scientific and
engineering disciplines, such as cognitive science [5,6], neuroscience [7], natural language processing [8],
law [9–11], linguistics [12–15] and artificial intelligence. Within the latter field, Aristotelian diagrams
have been used to study various logic-based approaches to knowledge representation, including fuzzy
logic [16–20], modal-epistemic logic [21–25] and probabilistic logic [26–28]. Furthermore, Aristotelian
diagrams are also used extensively to study (the connections between) other types of knowledge
representation formalisms, such as formal argumentation theory [29–32], fuzzy set theory [33–36],
formal concept analysis and possibility theory [37–39], rough set theory [37,40,41], multiple-criteria
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decision-making [42–44] and the theory of logical and analogical proportions [45–49]. In sum,
then, Aristotelian diagrams have come to serve as visual tools that greatly facilitate communication,
research and teaching in a wide variety of disciplines that deal with logical reasoning in all its facets.

Figure 1. Square of opposition for the categorical statements from syllogistics.

In the research program of logical geometry (see www.logicalgeometry.org), we study
Aristotelian diagrams as objects of independent mathematical interest, i.e., regardless of any of
their specific applications. We focus on logical issues such as informativity, Boolean complexity
and logic-sensitivity [50–52], but also on more visual/diagrammatic aspects, such as informational
vs. computational equivalence of Aristotelian diagrams [53–55]. One of the crucial insights in this area is
that Aristotelian diagrams can also be fruitfully seen as truly geometrical entities and studied by means
of tools and techniques such as projection matrices, Euclidean distance, symmetry groups, etc. [54–57].
(This hybrid perspective on diagrams, treating them simultaneously as diagrammatic visualizations
of an underlying abstract structure and as geometrical entities by themselves, can also be found in
crystallography [58,59].) The importance of this geometrical approach is further highlighted by the
following observation: although most Aristotelian diagrams that have been used in the literature so
far are based on fairly simple, two-dimensional polygons such as squares (cf. Figure 1) and regular
hexagons and octagons, in recent years, various researchers have also started using more visually
complex, three-dimensional Aristotelian diagrams, based on polyhedra such as cubes, cuboctahedra
and rhombic dodecahedra [38,60,61].

The present paper further develops and refines this geometrical perspective on Aristotelian
diagrams. In particular, we will consider four three-dimensional, polyhedral Aristotelian diagrams
that have recently been used to visualize the Boolean algebra B4, viz. the rhombic dodecahedron,
the tetrakis hexahedron, the tetraicosahedron, and the nested tetrahedron. (In his research on
paraconsistent logic, Béziau [62] has used various other Aristotelian diagrams, such as hexagons
and octagons, but also another polyhedron, viz. a stellar rhombic dodecahedron. The precise logical
and geometrical relationship between Béziau’s polyhedral Aristotelian diagram and the ones discussed
in this paper is discussed in more detail in [63].) This case study is especially relevant in the context
of artificial intelligence, since each of these four visualizations has recently been used in AI-related
research. In particular, the rhombic dodecahedron has been used in research on modal logic and
dynamic epistemic logic [22,61], the tetrakis hexahedron and tetraicosahedron have been used to
investigate modal logic [25,60,64,65], and the nested tetrahedron has been used to study (connections
between) the knowledge representation formalisms of rough set theory, formal concept analysis and
possibility theory [38,40]. (However, it should also be noted that our focus on B4 precludes us from
studying Aristotelian diagrams for knowledge representation formalisms that go beyond a Boolean
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setup, such as fuzzy logic and set theory [16–20,33–36]. The systematic (logical and diagrammatic)
investigation of such non-classical Aristotelian diagrams is a matter of ongoing research.)

The paper makes two crucial new contributions to this line of research. First of all, it offers
a detailed investigation of the geometrical properties of, and interrelationships between, these four
polyhedral Aristotelian diagrams. Some of these geometrical properties/interrelationships are
immediately clear from the visual features of the polyhedra, but some of them are more abstract in
nature (e.g., in the case of two polyhedra that, despite their clear visual differences, can be obtained by
means of two different types of projections of one and the same higher-dimensional polytope). Secondly,
it analyzes the correspondence (or lack thereof) between the logical and geometrical notions of distance
in each of these four polyhedral Aristotelian diagrams. Logical distance is defined in terms of the
Hamming distance between the bitstring representations of the elements of B4, whereas geometrical
distance is identified with the Euclidean distance between each polyhedron’s vertices corresponding to
those bitstring representations. The results of this comparative analysis will then be used to shed new
light on the relative strengths and weaknesses of these polyhedral Aristotelian diagrams, by appealing
to the congruence principle from diagram design [66,67].

As will be indicated throughout the remainder of the paper, there exists some earlier work
on polyhedral Aristotelian diagrams for B4. For example, Moretti [68] sketches the outlines of a
comparison between the Aristotelian tetraicosahedron and nested tetrahedron, but it goes into far
less geometrical detail than the present paper, and does not deal with the Aristotelian rhombic
dodecahedron and tetrakis hexahedron. Similarly, Smessaert et al. [63,69] compare the Aristotelian
rhombic dodecahedron, tetrakis hexahedron and tetraicosahedron, but these studies again go into far
less geometrical detail than the present paper and do not address the Aristotelian nested tetrahedron.
Finally, Smessaert et al. [55,57] offer an in-depth geometrical comparison of the Aristotelian rhombic
dodecahedron and nested tetrahedron for B4, but these papers do not deal with the Aristotelian tetrakis
hexahedron and tetraicosahedron.

The paper is organized as follows. Section 2 briefly presents the Boolean algebra B4, its bitstring
representation and its polyhedral Hasse diagram. Section 3, then provides a detailed overview of the
four polyhedral Aristotelian diagrams for B4 that have been proposed in the literature, focusing on their
geometrical properties and interrelations, as well as on their logical applications. Section 4 introduces
the notions of logical (Hamming) distance and geometrical (Euclidean) distance and analyzes how
closely these two notions of distance are correlated in each of the four polyhedral Aristotelian diagrams
for B4. Furthermore, the results of this comparative analysis are interpreted in light of the congruence
principle from cognitive studies on diagram design. Finally, Section 5 briefly summarizes the results
obtained in this paper and offers some questions for further research.

2. The Boolean Algebra B4 and Its Polyhedral Hasse Diagram

The notion of a Boolean algebra B = 〈B,∧,∨,¬,⊥,>〉 is well-known in abstract algebra [70].
As a special case of the Stone representation theorem, every finite Boolean algebra is isomorphic to the
powerset of some finite set. In particular, the Boolean algebra B4 is isomorphic to ℘({x1, x2, x3, x4}),
and elements of B4 can be represented as subsets of {x1, x2, x3, x4} (the identity of the elements xi
is irrelevant here). However, in logical geometry it is more customary to represent finite Boolean
algebras by means of bitstrings [71]. In particular, the Boolean algebra B4 is represented by means of
bitstrings of length 4, i.e., B4

∼= {0, 1}4 (obviously, every bitstring of length 4 uniquely corresponds
to (the characteristic function of) a subset of {x1, x2, x3, x4}; for example, the bitstring 1010 corresponds
to the subset {x1, x3}.) These bitstrings can be used to provide a coarse-grained semantics for fragments
of a wide variety of logical systems; see [51] for the mathematical details of this technique.

In a Boolean algebra B, the notion of level is inductively defined as follows: L0 := {⊥} and
Ln+1 := {b ∈ B | ∃a ∈ Ln : a < b and ¬∃c ∈ B : a < c < b}. In the bitstring representation of B4,
the level of a bitstring simply corresponds to its number of 1-bits; for example 0100 ∈ L1 and 1011 ∈ L3.
The Aristotelian relations are usually defined for formulas of some given logical system [50], but this
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can easily be generalized to arbitrary Boolean algebras [72,73]. In the specific case of the bitstring
representation of B4, we say that two bitstrings b1, b2 ∈ {0, 1}4 are:

contradictory (CD) iff b1 ∧ b2 = 0000 and b1 ∨ b2 = 1111,
contrary (C) iff b1 ∧ b2 = 0000 and b1 ∨ b2 6= 1111,
subcontrary (SC) iff b1 ∧ b2 6= 0000 and b1 ∨ b2 = 1111,
in subalternation (SA) iff b1 ∧ b2 = b1 and b1 ∨ b2 6= b1.

In the definition of CD, the condition that b1 ∧ b2 = 0000 captures the informal idea that
contradictories ‘cannot be true together’, while the condition that b1 ∨ b2 = 1111 captures the informal
idea that they ‘cannot be false together’ [72,73]. In the definitions of C and SC, one of the two identity
conditions of CD is negated: contraries can be false together, while subcontraries can be true together.
The set of Aristotelian relations is fundamentally hybrid in nature: the opposition relations CD, C and
SC are defined using the top and bottom elements of B4, while the implication relation SA is defined
in terms of the bitstrings b1 and b2 themselves [50].

Since Boolean algebras are a particular kind of partially ordered sets, they can be visualized
by means of Hasse diagrams [74]. The standard, two-dimensional Hasse diagram for (the bitstring
representation of) B4 is shown in Figure 2a. This diagram visualizes negation by means of central
symmetry: contradictory bitstrings are located at diametrically opposed vertices of the diagram.
Furthermore, in this Hasse diagram, the logical ordering of levels corresponds to the vertical
geometrical ordering of lines, from L0 at the bottom of the diagram up to L4 at the top. However,
several authors have also made use of polyhedra to provide alternative, three-dimensional Hasse
diagrams for B4 [75,76]. In particular, Figure 2b shows a Hasse diagram for B4 based on a rhombic
dodecahedron. Just like its two-dimensional counterpart, this polyhedral Hasse diagram also visualizes
negation by means of central symmetry, whereas the logical ordering of levels now corresponds to the
vertical geometrical ordering of planes, from L0 at the bottom of the diagram up to L4 at the top.

Figure 2. (a) Two-dimensional Hasse diagram for B4; (b) Three-dimensional Hasse diagram for B4,
based on a rhombic dodecahedron (with the planes corresponding to the logical levels shown in gray).

The geometrical properties of the rhombic dodecahedron will be discussed in more detail in the
next section. (This geometrical information will play an important role in our discussion of the
(dis)similarities between the rhombic dodecahedron and the other polyhedra that are introduced
in Section 3, and is thus most naturally at home in that section.) For now, it suffices to emphasize
that the rhombic dodecahedron is a very natural choice for a polyhedral Hasse diagram for B4,
because of a specific combination of logical and geometrical considerations. On the one hand,
the (bitstring representation of the) Boolean algebra Bn can always be represented by means of an
n-dimensional hypercube, with the logical bit values 1/0 corresponding to the Euclidean coordinates
+1/−1 [77] (for example, the bitstring 10101 in B5 corresponds to the vertex (1,−1, 1,−1, 1) in R5).
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In particular, the Boolean algebra B4 can thus be represented by means of a four-dimensional hypercube,
i.e., a tesseract. On the other hand, it is well-known that the vertex-first parallel projection of a tesseract
from four-space into three-space is exactly a rhombic dodecahedron [56]. In particular, the rhombic
dodecahedron in Figure 2b can be seen as the vertex-first parallel projection of a tesseract along the
projection axis defined by (the vertices corresponding to) the bitstrings 1001 and 0110, because those
are precisely the two bitstrings that end up in the center of polyhedron, rather than on its exterior
surface. Actually, in order to avoid that 1001 and 0110 entirely coincide with each other in the center
of the polyhedron, a slight distortion in the projection axis has been introduced; this procedure is
standard [78], and the Hasse rhombic dodecahedron can therefore be said to be a ‘quasi-vertex-first
projection’ of a tesseract [56].

3. Polyhedral Aristotelian Diagrams for B4

In the previous section, we have introduced the Boolean algebra B4 and a specific polyhedral
Hasse diagram for it. In the remainder of this paper, however, we will rather focus on polyhedral
Aristotelian diagrams for B4. The latter emphasize different logical aspects of B4; in particular,
they focus on clearly visualizing the Aristotelian relations holding among the elements of B4. In order
to achieve this goal, other logical information is distorted or left out altogether; for example, the top
and bottom elements of B4, i.e., the non-contingent bitstrings 1111 and 0000, are not shown at all in an
Aristotelian diagram (because they enter into abundantly many ‘vacuous’ Aristotelian relations [50]),
and the logical ordering of levels is no longer reflected in a vertical ordering of planes.

At least four different polyhedral Aristotelian diagrams for B4 have been proposed in the literature.
These diagrams all represent the same logical structure (viz. B4), but they achieve this by means of
very different visual means. In Larkin and Simon’s terminology [79], these Aristotelian diagrams
are informationally equivalent, but they need not be computationally equivalent, in the sense that
the visual differences between them may significantly influence user comprehension. In this section,
we will provide an in-depth comparative overview of these four polyhedral Aristotelian diagrams
for B4.

3.1. The Aristotelian Rhombic Dodecahedron for B4

We start our overview by considering the Aristotelian rhombic dodecahedron (RDH) for B4,
as shown in Figure 3a. This Aristotelian diagram was first proposed by Smessaert [61] in the context
of his research on generalized quantifiers and modal logic and later adopted by Demey [22] in his
work on public announcement logic. The Hasse diagram discussed in Section 2 and the Aristotelian
diagram considered here are both based on a rhombic dodecahedron; the only difference between
these diagrams concerns how the bitstrings of B4 are mapped onto the vertices of these rhombic
dodecahedra; compare Figures 2b and 3a.
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Figure 3. (a) Aristotelian rhombic dodecahedron for B4; (b) The rhombic dodecahedron as a cube with
pyramids put onto each of its six faces.

The rhombic dodecahedron has 14 vertices, 24 edges and 12 (rhombic) faces; being a convex
polyhedron, it has Euler characteristic χ = 2, i.e., V − E + F = 2. Note that the number of vertices
(V = 14) corresponds exactly to the number of contingent bitstrings of B4: this Boolean algebra has
24 = 16 bitstrings in total, so after discarding 1111 and 0000, we are left with 14 contingent bitstrings.
The rhombic dodecahedron is a Catalan solid [80], and has as its symmetry group the octahedral group
Oh (of order 48), which it shares with its dual polyhedron, the cuboctahedron [63,81,82]. The latter
is itself an Archimedean solid and has also been used as a polyhedral Aristotelian diagram [60].
Furthermore, the rhombic dodecahedron is closely related to both the cube and the octahedron (which
are themselves dual to each other), as shown in Figure 4 [63,69,83].

Figure 4. The rhombic dodecahedron as the compound of a cube and an octahedron.

Just like the Hasse rhombic dodecahedron for B4 discussed in the previous section, the Aristotelian
rhombic dodecahedron for B4 is also the vertex-first parallel projection of a tesseract, but now
along the projection axis defined by (the vertices corresponding to) the bitstrings 1111 and 0000.
Furthermore, since the non-contingent bitstrings 1111 and 0000 are irrelevant in Aristotelian diagrams,
it is unproblematic that they exactly coincide with each other in the center of the polyhedron, and hence,
there is no need to invoke a quasi-vertex-first projection. By viewing the Hasse and Aristotelian rhombic
dodecahedra as two vertex-first parallel projections of a tesseract, albeit along different projection axes,
we also obtain a unified geometrical explanation of their fundamental diagrammatic differences [56].
In particular, in the tesseract, the logical levels are ordered by means of hyperplanes going from
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(the vertex corresponding to) 0000 to (the vertex corresponding to) 1111; however, if the projection
is precisely along the 1111/0000 axis, then this ordering is completely annihilated, so that the resulting
Aristotelian rhombic dodecahedron no longer visually represents this ordering of levels: the L1-, L2-
and L3-bitstrings are scattered throughout the polyhedron [55,57].

As is illustrated in Figure 3b, the rhombic dodecahedron can be seen as the result of putting
a square pyramid onto each of the faces of a cube [84]. The height of these six pyramids should be
such that the lateral, triangular faces of adjacent pyramids lie in the same plane and together form
a single, rhombic face of the rhombic dodecahedron. It is easy to show that if the cube has edge length
`, this can be achieved by using pyramids of height `

2 . In these pyramids, the base is a square of edge
length ` (viz. one of the faces of the cube), and the lateral faces are isosceles triangles (with one edge
of length ` and two of length

√
3

2 `); the lateral faces are at an angle of 45◦ to the base. This perspective
on the rhombic dodecahedron will be useful later on, when we are comparing it with other polyhedra.

It will be convenient to fix a set of standard coordinates for the vertices of the Aristotelian rhombic
dodecahedron. The coordinate function cRDH : B4 → R3 shown in Table 1 at the end of this section
maps the bitstrings of B4 onto the vertices of the Aristotelian rhombic dodecahedron [55,57]. Note that
cRDH(1111) = cRDH(0000) = (0, 0, 0) and cRDH(¬b) = −cRDH(b) for all bitstrings b, i.e., the top and
bottom elements of B4 coincide with each other in the center of the Aristotelian rhombic dodecahedron,
and logical negation is visualized by means of central symmetry. The L1- and L3-bitstrings are mapped
onto the vertices (±1,±1,±1) and constitute two equal-sized tetrahedra that ‘interlock’ with each
other to yield a cube, whereas the L2-bitstrings are mapped onto the vertices (±2, 0, 0), (0,±2, 0)
and (0, 0,±2), which constitute an octahedron; cf. Figure 5. (Of course, the vertices (±2, 0, 0), (0,±2, 0)
and (0, 0,±2) can also be seen as the tops of the pyramids that have been put on each of the cube’s six
faces; cf. Figure 3b.) Note that the cube has edge length two, and hence the pyramids that are put on
top of the cube’s faces have height one; for example, the top face of the cube lies in the plane y = 1;
the apex of the pyramid that is put on top of this face, lies at (0, 2, 0).

Table 1. Coordinate functions for the four polyhedral Aristotelian diagrams for B4.

b ∈ B4 cRDH(b) cTHH(b) cTIH(b) cNTH(b)

0000 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

1000 (−1, 1,−1) (−1, 1,−1) (−1, 1,−1) (−1, 1,−1)

0100 (−1,−1, 1) (−1,−1, 1) (−1,−1, 1) (−1,−1, 1)

0010 (1,−1,−1) (1,−1,−1) (1,−1,−1) (1,−1,−1)

0001 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

1100 (−2, 0, 0) (− 3
2 , 0, 0) (−1−

√
2, 0, 0) (−1, 0, 0)

1010 (0, 0,−2) (0, 0,− 3
2 ) (0, 0,−1−

√
2) (0, 0,−1)

1001 (0, 2, 0) (0, 3
2 , 0) (0, 1 +

√
2, 0) (0, 1, 0)

0110 (0,−2, 0) (0,− 3
2 , 0) (0,−1−

√
2, 0) (0,−1, 0)

0101 (0, 0, 2) (0, 0, 3
2 ) (0, 0, 1 +

√
2) (0, 0, 1)

0011 (2, 0, 0) ( 3
2 , 0, 0) (1 +

√
2, 0, 0) (1, 0, 0)

1110 (−1,−1,−1) (−1,−1,−1) (−1,−1,−1) (− 1
3 ,− 1

3 ,− 1
3 )

1101 (−1, 1, 1) (−1, 1, 1) (−1, 1, 1) (− 1
3 , 1

3 , 1
3 )

1011 (1, 1,−1) (1, 1,−1) (1, 1,−1) ( 1
3 , 1

3 ,− 1
3 )

0111 (1,−1, 1) (1,−1, 1) (1,−1, 1) ( 1
3 ,− 1

3 , 1
3 )

1111 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
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Figure 5. (a) Tetrahedron for the L1-bitstrings; (b) octahedron for the L2-bitstrings and (c) tetrahedron
for the L3-bitstrings inside the Aristotelian rhombic dodecahedron for B4.

3.2. The Aristotelian Tetrakis Hexahedron for B4

We now turn to the Aristotelian tetrakis hexahedron (THH) (or simply: tetrahexahedron) for
B4, which is shown in Figure 6a. This diagram was first used by Sauriol [85] in his research on the
logical geometry of the propositional connectives and was later also adopted by Luzeaux et al. [25]
and Pellissier [64] in their research on modal logic. (Although these latter authors [25,64] erroneously
call their diagram a ‘tetraicosahedron’; cf. infra.) The tetrakis hexahedron has 14 vertices, 36 edges
and 24 faces; being a convex polyhedron, it satisfies the Euler formula V − E + F = 2. Note that the
number of vertices (V = 14) again corresponds exactly to the number of contingent bitstrings of B4

(cf. supra). The tetrakis hexahedron is again a Catalan solid; it is dual to the truncated octahedron,
which is itself again an Archimedean solid; the symmetry group of both these polyhedra is again the
octahedral group Oh [80–82].

Figure 6. (a) Aristotelian tetrakis hexahedron for B4; (b) The tetrakis hexahedron as a cube with
pyramids put onto each of its six faces.

Just like the rhombic dodecahedron, the tetrakis hexahedron can be seen as the result of
putting a square pyramid onto each of the faces of a cube; cf. Figure 6b (this was also noted by
Sauriol [85], pp. 384–385). If the cube has edge length `, the pyramids have height `

4 . In these pyramids,
the base is a square of edge length ` (viz. one of the faces of the cube), and the lateral faces are isosceles
triangles (with one edge of length ` and two of length 3

4 `). Comparing the rhombic dodecahedron in
Figure 3a and the tetrakis hexahedron in Figure 6a, we find that these two Aristotelian diagrams are
very similar to each other. The crucial difference concerns the height of the six pyramids, which is
much smaller in the latter than in the former ( `4 in the pyramids of the tetrakis hexahedron versus
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`
2 in those of the rhombic dodecahedron). Consequently, in the tetrakis hexahedron, the pyramids’
lateral faces are at an angle of strictly less than 45◦ to the base, and hence the lateral faces of adjacent
pyramids no longer lie in the same plane, and thus no longer form a single, rhombic face. Taking the
rhombic dodecahedron as our starting point, each of the 12 rhombic faces is thus broken into two
triangular faces, which explains why the tetrakis hexahedron has twice as many faces as the rhombic
dodecahedron (24 versus 12) and has 12 additional edges (36 versus 24).

We again fix a set of standard coordinates for the vertices of the Aristotelian tetrakis hexahedron.
The coordinate function cTHH : B4 → R3 shown in Table 1 at the end of this section maps the bitstrings
of B4 onto the vertices of the Aristotelian tetrakis hexahedron. This coordinate function reveals
the strong similarities between the Aristotelian rhombic dodecahedron and tetrakis hexahedron.
First of all, note that we again have cTHH(1111) = cTHH(0000) = (0, 0, 0) and cTHH(¬b) = −cTHH(b)
for all bitstrings b, i.e., the top and bottom elements of B4 coincide with each other in the center
of the Aristotelian tetrakis hexahedron, and logical negation is visualized by means of central symmetry.
Furthermore, the L1- and L3-bitstrings are once again mapped onto the vertices (±1,±1,±1) of the
cube. The only difference between cRDH and cTHH concerns the coordinates for the L2-bitstrings,
i.e., the height of the six pyramids that are put on top of the cube’s faces. Since the cube has edge
length two, the pyramids that yield the tetrakis hexahedron have height 1

4 × 2 = 1
2 ; for example,

the top face of the cube lies in the plane y = 1; the apex of the pyramid that is put on top of this face,
lies at (0, 1+ 1

2 , 0) = (0, 3
2 , 0). In general, it holds that cTHH(b) = 3

4 cRDH(b) for all b ∈ L2, which reflects
the fact that in the tetrakis hexahedron, the pyramids’ apices are closer to the cube’s faces than was the
case in the rhombic dodecahedron.

3.3. The Aristotelian Tetraicosahedron for B4

The next polyhedron to be considered, is the Aristotelian tetraicosahedron (TIH) for B4, which is
shown in Figure 7a, and which was first used by Moretti [60,65] in his research on n-opposition theory
and modal logic. (As far as we know, this polyhedron is not systematically studied in the geometrical
literature on polyhedra; the term ‘tetraicosahedron’ only seems to occur in the logic-oriented research
of Moretti, Pellissier and Luzeaux et al. Furthermore, this term has not been used entirely consistently
in the literature; for example, Pellissier [64] and Luzeaux et al. [25] draw a tetrakis hexahedron,
but call it a ‘tetraicosahedron’, while Moretti [68], conversely, draws a tetraicosahedron, but calls it
a ‘tetrahexahedron’.) Just like the tetrakis hexahedron, the tetraicosahedron has 14 vertices, 36 edges
and 24 faces; even though this polyhedron is not convex, it thus still satisfies the Euler formula
V − E + F = 2. The tetraicosahedron does not belong to any of the well-studied families of polyhedra
(cf. supra). It is easy to see, however, that its symmetry group is, once again, the octahedral group Oh.
Furthermore, the number of vertices (V = 14) again corresponds exactly to the number of contingent
bitstrings of B4 (cf. supra).

Once again, the tetraicosahedron can be seen as the result of putting a square pyramid onto each
of the faces of a cube; cf. Figure 7b. However, the idea is now that the lateral faces of these pyramids
should be equilateral (rather than merely isosceles) triangles. It is easy to show that if the cube has
edge length `, this can be achieved by using pyramids of height √̀

2
. In such pyramids, the base is a

square of edge length `, and the lateral faces are equilateral triangles of edge length `; these pyramids
are Johnson solids [86]. Comparing the rhombic dodecahedron in Figure 3a and the tetraicosahedron
in Figure 7a, we find that these two Aristotelian diagrams are, once again, very similar to each other.
The crucial difference concerns the height of the six pyramids, which is much greater in the latter
than in the former ( √̀

2
in the pyramids of the tetraicosahedron versus `

2 in those of the rhombic
dodecahedron). Consequently, in the tetraicosahedron, the pyramids’ lateral faces are at an angle of
strictly more than 45◦ to the base, and hence the lateral faces of adjacent pyramids no longer lie in the
same plane, and thus no longer form a single, rhombic face. Taking the rhombic dodecahedron as our
starting point, each of the 12 rhombic faces is thus broken into two triangular faces, which explains
why the tetraicosahedron has twice as many faces as the rhombic dodecahedron (24 versus 12), and has
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12 additional edges (36 versus 24). Finally, another consequence of the pyramids’ greater heights is
that the tetraicosahedron is not convex; for example, the bitstrings 1100 and 1001 are on two vertices of
the tetraicosahedron, but the line segment between these two vertices clearly lies entirely outside this
polyhedron; cf. Figure 7a.

Figure 7. (a) Aristotelian tetraicosahedron for B4; (b) The tetraicosahedron as a cube with pyramids
put onto each of its six faces.

It will again be convenient to fix a set of standard coordinates for the vertices of the Aristotelian
tetraicosahedron. The coordinate function cTIH : B4 → R3 shown in Table 1 at the end of this section
maps the bitstrings of B4 onto the vertices of the Aristotelian tetraicosahedron. This coordinate function
reveals the strong similarities between the Aristotelian rhombic dodecahedron and tetraicosahedron.
First of all, note that we again have cTIH(1111) = cTIH(0000) = (0, 0, 0) and cTIH(¬b) = −cTIH(b)
for all bitstrings b, i.e., the top and bottom elements of B4 coincide with each other in the center
of the Aristotelian tetraicosahedron, and logical negation is visualized by means of central symmetry.
Furthermore, the L1- and L3-bitstrings are once again mapped onto the vertices (±1,±1,±1) of the
cube. The only difference between cRDH and cTIH concerns the coordinates for the L2-bitstrings,
i.e., the height of the six pyramids that are put on top of the cube’s faces. Since the cube has edge
length two, the pyramids that yield the tetraicosahedron have height 1√

2
× 2 =

√
2; for example,

the top face of the cube lies in the plane y = 1; the apex of the pyramid that is put on top of this face,
lies at (0, 1 +

√
2, 0). In general, it holds that cTIH(b) = 1+

√
2

2 cRDH(b) for all b ∈ L2, which reflects the
fact that in the tetraicosahedron, the pyramids’ apices are farther removed from the cube’s faces than
was the case in the rhombic dodecahedron.

3.4. The Aristotelian Nested Tetrahedron for B4

The final polyhedron to be considered, is the Aristotelian nested tetrahedron (NTH) for B4,
as shown in Figure 8. Ciucci, Dubois and Prade have recently made use of this Aristotelian diagram in
their comparative research on the logical geometry of rough set theory, formal concept analysis and
possibility theory [38,40]. Furthermore, recent historical research has shown that a predecessor of this
diagram was already used by the 19th-century logician (and novelist) Lewis Carroll [68,87].
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Figure 8. (a) Aristotelian nested tetrahedron for B4, sitting on one of its faces; (b) Aristotelian nested
tetrahedron for B4, sitting on one of its edges.

The tetrahedron is a Platonic solid with 4 vertices, 6 edges and 4 faces [80–82]. As a convex
polyhedron, it satisfies the Euler formula V− E+ F = 2; its symmetry group is the tetrahedral group Td
(of order 24) [78,80]. It is well-known that the tetrahedron is its own dual polyhedron (and consequently,
V = F); the nested tetrahedron is thus obtained by dually embedding one tetrahedron into another.
Note that the number of vertices (V = 4) does not straightforwardly correspond to the number
of contingent bitstrings of B4. The reason for this is that the nested tetrahedron not only assigns
bitstrings to its vertices, but also to (the centers of) its edges and faces; the total number of vertices,
edges and faces combined does indeed correspond to the number of contingent bitstrings of B4,
viz. 4 + 6 + 4 = 14.

Upon visual inspection of Figure 8, it should immediately be clear that the nested tetrahedron
is fundamentally different from the three polyhedra that have been discussed thus far; in particular,
it cannot be seen as the result of adding pyramids onto the faces of a cube. Despite these clear
visual differences, there is still a deep geometrical connection between the nested tetrahedron and the
rhombic dodecahedron. We have seen in Section 3.1 that the Aristotelian rhombic dodecahedron for
B4 is the vertex-first parallel projection of a tesseract, along the projection axis defined by (the vertices
corresponding to) the bitstrings 1111 and 0000. Completely analogously, the Aristotelian nested
tetrahedron for B4 is also the vertex-first projection of a tesseract, along the same projection axis;
the only difference is that we now use a perspective projection instead of a parallel projection [55,57].
In the rhombic dodecahedron, the four L1-bitstrings and the four L3-bitstrings constitute two tetrahedra,
which are of equal size (because they are the parallel projections of the L1- and L3-hyperplanes in the
tesseract) and ‘interlock’ with each other to constitute the cube inside the rhombic dodecahedron
(cf. Figure 5). By contrast, in the nested tetrahedron, the four L1-bitstrings and the four L3-bitstrings
again constitute two tetrahedra, but these are no longer of equal size (because they are the perspective
projections of the L1- and L3-hyperplanes in the tesseract). In particular, the perspective projection can
be defined in such a way that the L3-tetrahedron is exactly 3 times smaller than, and nested as the dual
polyhedron inside, the L1-tetrahedron (thereby also illustrating the self-dual nature of the tetrahedron).

To visually emphasize this similarity between the Aristotelian rhombic dodecahedron and the
Aristotelian nested tetrahedron, the latter will henceforth not be visualized as sitting on one of its faces
(cf. Figure 8a), but rather as sitting on one of its edges; cf. Figure 8b [55,57]. Comparing Figure 8b
with Figure 5, we clearly see how the L1- and L3-tetrahedra can be found in the Aristotelian rhombic
dodecahedron (where they are equally large and interlock to yield a cube) as well as in the Aristotelian
nested tetrahedron (where the L3-tetrahedron is dually embedded inside the L1-tetrahedron).

We once again fix a set of standard coordinates for the vertices of the Aristotelian nested
tetrahedron. The coordinate function cNTH : B4 → R3 shown in Table 1 at the end of this section maps
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the bitstrings of B4 onto the vertices of the Aristotelian nested tetrahedron, and onto the centers of its
edges and faces. Note that we still have cNTH(1111) = cNTH(0000) = (0, 0, 0) i.e., the top and bottom
elements of B4 coincide with each other in the center of the Aristotelian nested tetrahedron. However,
it is not the case that cNTH(¬b) = −cNTH(b) for all b ∈ B4, i.e., logical negation is not visualized by
means of central symmetry; this is a major difference with respect to the first three polyhedra. (However,
it should be noted that a weaker version of this principle does hold, even in the case of the nested
tetrahedron. In particular, we have (i) cNTH(¬b) = − 1

3 cNTH(b) for all b ∈ L1, cNTH(¬b) = −3cNTH(b)
for all b ∈ L3, and finally, (iii) simply cNTH(¬b) = −cNTH(b) for all b ∈ L2.) Furthermore, note that
the L1-bitstrings are mapped onto exactly the same tetrahedron as that in the Aristotelian rhombic
dodecahedron, i.e., cNTH(b) = cRDH(b) for all b ∈ L1. By contrast, the L3-bitstrings are mapped
onto a tetrahedron that is three times smaller than that in the Aristotelian rhombic dodecahedron,
i.e., cNTH(b) = 1

3 cRDH(b) for all b ∈ L3; furthermore, the L2-bitstrings are mapped onto an octahedron
that is two times smaller than that in the Aristotelian rhombic dodecahedron, i.e., cNTH(b) = 1

2 cRDH(b)
for all b ∈ L2. Finally, it should be noted that the join of two or three L1-bitstrings is mapped onto the
center of the edge or face defined by the vertices corresponding to those L1-bitstrings. For example,
we have 1010 = 1000∨ 0010, and hence cNTH(1010) = 1

2 (cNTH(1000) + cNTH(0010)); similarly, we have
1011 = 1000∨ 0010∨ 0001, and hence cNTH(1011) = 1

3 (cNTH(1000) + cNTH(0010) + cNTH(0001)).

3.5. Summary

In this section we have surveyed four polyhedral Aristotelian diagrams for the Boolean algebra
B4, viz. the rhombic dodecahedron, the tetrakis hexahedron, the tetraicosahedron and the nested
tetrahedron. Table 2 summarizes the numbers of vertices, edges and faces of each of these polyhedra,
while Table 1 provides canonical coordinate functions. Both tables show that the first three polyhedra
are most clearly visually related to each other. Nevertheless, the nested tetrahedron is also closely
geometrically related to the rhombic dodecahedron, since both polyhedra are (perspective/parallel)
vertex-first projections of a tesseract.

Table 2. Vertices, edges and faces of the four polyhedral Aristotelian diagrams studied in this paper.

Elements Rhombic Dodecahedron Tetrakis Hexahedron Tetraicosahedron Nested Tetrahedron
(RDH) (THH) (TIH) (NTH)

vertices 14 14 14 4
edges 24 36 36 6
faces 12 24 24 4

4. A Comparative Analysis of Logical and Geometrical Distance

In the previous section we have discussed four polyhedral Aristotelian diagrams for the Boolean
algebra B4, and provided canonical coordinate functions for each of them (cf. Table 1). In this section
we will make use of these coordinate functions to analyze the correlation (or lack thereof) between
the logical distance and the geometrical distance between the elements of B4 in each of these four
polyhedral Aristotelian diagrams.

Since the elements of the Boolean algebra B4 are represented by means of bitstrings of length 4,
the logical distance between these elements can naturally be captured by means of the Hamming
distance (dH) between their bitstring representations. The notion of Hamming distance comes from
coding theory [88], and simply counts the number of bits that need to be flipped to transform one
bitstring into the other. For example, we have dH(1000, 1110) = 2, and dH(1000, 0111) = 4. For all
bitstrings b, b′ of length 4, it trivially holds that 0 ≤ dH(b, b′) ≤ 4, and dH(b, b′) = 0 iff b = b′.

There also exist other ways to formalize the informal idea of ‘logical distance’. For example,
if one is working with formulas from some propositional language, it might make sense to measure
the logical distance between two formulas by counting the number of propositional atoms that
they share (e.g., the distance between p ∧ q ∧ r and p ∧ q ∧ s is then 2). Although such alternative,
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more syntactically oriented notions of distance can be useful for certain applications, we believe
that the notion of Hamming distance is by far the most suitable for the purposes of this paper. First
and foremost, Hamming distance is effectively a distance measure, in the technical sense of the
word [89]. Furthermore, by appealing to the bitstring representations, it goes beyond superficial
syntactic similarities, while remaining very simple to measure. On a more abstract level, Hamming
distance also has a natural relationship with the notion of geometrical distance that will be introduced
later (cf. infra). Finally, Hamming distance exhibits some very intuitive properties, such as the
connection between negation and maximal distance (cf. Equation (3)). (Thanks to an anonymous
reviewer for some useful discussion about this.)

In total, there are 14×13
2 = 91 pairs of distinct contingent elements of B4. However, since the

Hamming distance between two bitstrings b and b′ is uniquely determined by the levels of these
bitstrings and the Aristotelian relation holding between them, these 91 pairs can be partitioned
into 10 clusters. Table 3 lists these clusters in order of ascending Hamming distance. Each row
specifies a specific Hamming distance dH(b, b′), the logical levels L(b) and L(b′) (i.e., the numbers
i, j such that b ∈ Li and b′ ∈ Lj), the Aristotelian relation R holding between b and b′, and a concrete
pair of bitstrings exemplifying that cluster. (The other columns of Table 3 will be described below.)
For example, the first row states that if we have a subalternation from an L1-bitstring to an L2-bitstring,
the Hamming distance between these two bitstrings is always one; a typical example would be
1000-1100. Similarly, the sixth row states that if we have two L2-bitstrings that are unconnected
(abbreviated as Un)—i.e., that do not stand in any Aristotelian relation whatsoever [50]—the Hamming
distance between these two bitstrings is always 2; a typical example would be 1100-0110.

Table 3. Logical and geometrical distance in the four polyhedral Aristotelian diagrams for B4.

dH(b, b′) L(b) L(b′) R(b, b′) Example dRDH(b, b′) dTHH(b, b′) dTIH(b, b′) dNTH(b, b′)

1 1 2 SA 1000-1100 1.73 1.5 2 1.41
1 2 3 SA 1100-1110 1.73 1.5 2 0.82

2 1 3 SA 1000-1110 2 2 2 1.63
2 1 1 C 1000-0001 2.83 2.83 2.83 2.83
2 3 3 SC 1110-0111 2.83 2.83 2.83 0.94
2 2 2 Un 1100-0110 2.83 2.12 3.41 1.41

3 1 2 C 1000-0110 3.32 2.87 3.70 2.45
3 2 3 SC 1100-0111 3.32 2.87 3.70 1.41

4 1 3 CD 1000-0111 3.46 3.46 3.46 2.31
4 2 2 CD 1100-0011 4 3 4.83 2

Next to the logical distance between two bitstrings, we can also consider the geometrical distance
between them, in each of the four polyhedral Aristotelian diagrams described in the previous section.
The geometrical distance between two bitstrings in a given polyhedron can straightforwardly be
calculated as the ordinary Euclidean distance (dE) between the polyhedron’s vertices that correspond
to those bitstrings. (Note that the logical distance dH can alternatively also be thought of as the
Manhattan distance on {0, 1}4 ⊆ R4, i.e. dH(b, b′) = ∑4

i=1 |bi − b′i |. From this perspective, logical
distance (dH) and geometrical distance (dE) both turn out to be special cases of Minkowski distance
(∑4

i=1 |bi − b′i |p)1/p, by taking p = 1 and p = 2, respectively [89].) Making use of the canonical
coordinate functions introduced in Table 1, we thus define:

dRDH(b, b′) := dE(cRDH(b), cRDH(b′)),

dTHH(b, b′) := dE(cTHH(b), cTHH(b′)),

dTIH(b, b′) := dE(cTIH(b) , cTIH(b′)),

dNTH(b, b′) := dE(cNTH(b), cNTH(b′)),
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where dE is the usual Euclidean distance function on R3, i.e., dE((x1, y1, z1), (x2, y2, z2)) :=√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

It is easy to verify that the polyhedral Aristotelian diagrams studied in this paper ‘respect’
the clusters of bitstring pairs that are listed in Table 3; in other words, the Aristotelian relation
holding between two bitstrings together with the logical levels of those bitstrings not only uniquely
determine the logical distance between these two bitstrings, but also their geometrical distance
(in each of the four polyhedral Aristotelian diagrams). Consequently, Table 3 can be extended to
incorporate this information on geometrical distances. (All geometrical distances shown in Table 3 are
written in (approximate) decimal expansion; for example, dNTH(1000, 1100) =

√
2 ≈ 1.41. This will

facilitate the numerical comparisons later in this section.) For example, the first row states that if
we have b ∈ L1, b′ ∈ L2, and SA(b1, b2), then dRDH(b, b′) = 1.73, dTHH(b, b′) = 1.5, dTIH(b, b′) = 2
and dNTH(b, b′) = 1.41. Similarly, the sixth row states that if we have b, b′ ∈ L2 that do not stand in any
Aristotelian relation whatsoever, then then dRDH(b, b′) = 2.83, dTHH(b, b′) = 2.12, dTIH(b, b′) = 3.41
and dNTH(b, b′) = 1.41.

Having discussed the details of the logical distance function dH and the geometrical distance
functions dRDH, dTHH, dTIH and dNTH, we are now in a position to carry out a comparative analysis of
the correlation between these logical and geometrical distance functions.

4.1. Logical and Geometrical Distance in the Aristotelian Rhombic Dodecahedron for B4

Table 3 shows that the Aristotelian rhombic dodecahedron exhibits a clear ordinal correlation
between logical and geometrical distance; in particular, increasing Hamming distances systematically
correspond to increasing Euclidean distances in the rhombic dodecahedron. More formally, for all
bitstrings b1, b2, b3, b4 ∈ B4, we have:

dH(b1, b2) < dH(b3, b4) =⇒ dRDH(b1, b2) < dRDH(b3, b4). (1)

The corresponding ⇐=-claim does not hold; for example, we have dRDH(1000, 1110) = 2 <

2.83 = dRDH(1000, 0001), and yet dH(1000, 1110) = 2 = dH(1000, 0001). Nevertheless, a slightly
weaker version of the⇐=-claim does hold: for all bitstrings b1, b2, b3, b4 ∈ B4, we have:

dH(b1, b2) ≤ dH(b3, b4) ⇐= dRDH(b1, b2) < dRDH(b3, b4). (2)

A special case of this correlation, which was first studied in [55], is concerned with maximal
logical and geometrical distance. Logically speaking, one can argue that contradiction is the ‘strongest’
Aristotelian relation, since it is the only relation that involves not one, but two identity conditions
(cf. the discussion in Section 2) [73,90,91]. Consequently, every bitstring b ∈ B4 has exactly one
contradictory, ¬b, whereas it has multiple contraries and/or subcontraries [50,71]. In terms of
Hamming distances, turning a bitstring b into its contradictory, ¬b, involves switching the values in all
of its bit positions. It thus follows that for all bitstrings b ∈ B4, we have:

¬b = arg max
x∈B4

dH(b, x). (3)

As can be seen in the last two rows of Table 3, the maximal Hamming distance (viz. four) indeed
occurs with the contradictions. Additionally, these rows show that for all bitstrings b ∈ B4, we have:

¬b = arg max
x∈B4

dRDH(b, x). (4)

(Note that the geometrical distance in the rhombic dodecahedron is different for the L1-L3 and
L2-L2 contradictions, viz. 3.46 and 4, respectively. Nevertheless, both types of contradictions give
rise to one and the same Hamming distance, viz. 4 — recall that the⇐=-version of (1) does not hold,
but that (2) does hold.)
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Putting (3) and (4) together, we obtain the following restricted version of the correlation between
logical and geometrical distances, which states that in the Aristotelian rhombic dodecahedron for
B4, maximal logical distance directly corresponds to maximal geometrical distance: for all b ∈ B4

it holds that:
arg max

x∈B4
dH(b, x) = arg max

x∈B4
dRDH(b, x). (5)

In sum, then, the Aristotelian rhombic dodecahedron for B4 exhibits a strong correlation between
logical distance (dH) and geometrical distance (dRDH). In light of the congruence principle, which is one
of the cognitive principles for designing effective visualizations [66,67], and which states that
“the structure and content of the visualization should correspond to the desired mental structure
and content” ([66], p. 37), this logico-geometrical correlation should count as a strong argument in
favor of the rhombic dodecahedron as a polyhedral Aristotelian diagram for B4.

4.2. Logical and Geometrical Distance in the Aristotelian Tetrakis Hexahedron for B4

Moving on to the next polyhedral Aristotelian diagram for B4, we observe that the
geometrical similarities between the Aristotelian rhombic dodecahedron and tetrakis hexahedron
are also manifested in the geometrical distances that these polyhedra give rise to. In particular,
since cTHH(b) = cRDH(b) for all b ∈ L1 ∪ L3, it immediately follows that dTHH(b, b′) = dRDH(b, b′)
for all b, b′ ∈ L1 ∪ L3. Furthermore, since cTHH(b) = 3

4 cRDH(b) for all b ∈ L2, it also follows that
dTHH(b, b′) < dRDH(b, b′) if b ∈ L2 or b′ ∈ L2. In sum, we thus find that dTHH(b, b′) ≤ dRDH(b, b′)
for all b, b′ ∈ B4. Informally: the tetrakis hexahedron is essentially a ‘smaller’ polyhedron than the
rhombic dodecahedron (the six pyramids of the former are lower than those of the latter), and hence
never gives rise to greater geometrical distances among its vertices.

Looking at Table 3, we observe that the geometrical differences between the rhombic
dodecahedron and the tetrakis hexahedron are insufficient to lead to any fundamental differences
between these two polyhedral Aristotelian diagrams with respect to the correlation between
logical and geometrical distance. In particular, it again holds that increasing Hamming distances
systematically correspond to increasing Euclidean distances in the tetrakis hexahedron: for all bitstrings
b1, b2, b3, b4 ∈ B4, we have:

dH(b1, b2) < dH(b3, b4) =⇒ dTHH(b1, b2) < dTHH(b3, b4). (6)

The corresponding⇐=-claim again fails to hold (with the same counterexample, based on the
pairs (1000, 1110) and (1000, 0001)), but the weaker version of the⇐=-claim again does hold: for all
bitstrings b1, b2, b3, b4 ∈ B4, we have:

dH(b1, b2) ≤ dH(b3, b4) ⇐= dTHH(b1, b2) < dTHH(b3, b4). (7)

Finally, if we focus on maximal logical and geometrical distance, then we see in Table 3 that for all
bitstrings b ∈ B4, it holds that:

¬b = arg max
x∈B4

dTHH(b, x). (8)

Putting (3) and (8) together, we again obtain a restricted version of the correlation between logical
and geometrical distances, stating that in the Aristotelian tetrakis hexahedron for B4, maximal logical
distance directly corresponds to maximal geometrical distance: for all b ∈ B4, it holds that:

arg max
x∈B4

dH(b, x) = arg max
x∈B4

dTHH(b, x). (9)

In sum, then, the correlation between logical distance (dH) and geometrical distance (dTHH)
exhibited by the tetrakis hexahedron for B4 is equally strong as that exhibited by the rhombic
dodecahedron. If we focus exclusively on this type of logico-geometrical distance correlation, the
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congruence principle from diagram design thus does not give us any reason for preferring either of
these two polyhedra over the other one as an Aristotelian diagram for B4.

4.3. Logical and Geometrical Distance in the Aristotelian Tetraicosahedron for B4

Taking the Aristotelian rhombic dodecahedron as a common starting point, the tetraicosahedron
is essentially the inverse of the tetrakis hexahedron: while the latter moves the pyramids’ apices closer
to the cube’s faces, the former moves these apices farther away. The geometrical similarities between
the Aristotelian rhombic dodecahedron and tetraicosahedron are thus again clearly manifested in
the geometrical distances that these polyhedra give rise to. In particular, since cTIH(b) = cRDH(b)
for all b ∈ L1 ∪ L3, it immediately follows that dTIH(b, b′) = dRDH(b, b′) for all b, b′ ∈ L1 ∪ L3.
Furthermore, since cTIH(b) = 1+

√
2

2 cRDH(b) for all b ∈ L2, it also follows that dTIH(b, b′) > dRDH(b, b′)
if b ∈ L2 or b′ ∈ L2. In sum, we thus find that dTIH(b, b′) ≥ dRDH(b, b′) for all b, b′ ∈ B4. Informally:
the tetraicosahedron is essentially a ‘larger’ polyhedron than the rhombic dodecahedron (the six
pyramids of the former are higher than those of the latter), and hence never gives rise to smaller
geometrical distances among its vertices.

Although the geometrical differences between the tetraicosahedron and the rhombic
dodecahedron are not more fundamental than those between the tetrakis hexahedron and the rhombic
dodecahedron, the former do have drastic consequences with respect to the correlation between
logical and geometrical distance. In particular, a quick glance at Table 3 suffices to see that increasing
Hamming distances do not correspond to increasing Euclidean distances in the tetraicosahedron:
there exist multiple cases of bitstrings b1, b2, b3, b4 ∈ B4 such that:

dH(b1, b2) < dH(b3, b4) and yet dTIH(b1, b2) ≥ dTIH(b3, b4). (10)

More specifically, there are four types of such cases:

• if b1 ∈ L1, b2 ∈ L2, SA(b1, b2), b3 ∈ L1, b4 ∈ L3 and SA(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 1 < 2 = dH(b3, b4) and yet dTIH(b1, b2) = 2 = dTIH(b3, b4),

• if b1 ∈ L2, b2 ∈ L3, SA(b1, b2), b3 ∈ L1, b4 ∈ L3 and SA(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 1 < 2 = dH(b3, b4) and yet dTIH(b1, b2) = 2 = dTIH(b3, b4),

• if b1 ∈ L1, b2 ∈ L2, C(b1, b2), b3 ∈ L1, b4 ∈ L3 and CD(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 3 < 4 = dH(b3, b4) and yet dTIH(b1, b2) = 3.70 > 3.46 = dTIH(b3, b4),

• if b1 ∈ L2, b3 ∈ L3, SC(b1, b2), b3 ∈ L1, b4 ∈ L3 and CD(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 3 < 4 = dH(b3, b4) and yet dTIH(b1, b2) = 3.70 > 3.46 = dTIH(b3, b4).

Finally, if we focus on maximal logical and geometrical distance, then we see in Table 3 that for all
bitstrings b ∈ L2, it holds that:

¬b = arg max
x∈B4

dTIH(b, x), (11)

and hence:
arg max

x∈B4
dH(b, x) = arg max

x∈B4
dTIH(b, x). (12)

In the Aristotelian tetraicosahedron for B4, maximal logical distance thus directly corresponds to
maximal geometrical distance, at least in the case of L2-bitstrings. However, for L1- and L3-bitstrings,
even this restricted principle of correlation between logical and geometrical distance no longer holds;
for example:

• dTIH(1000, 0110) = 3.70 > 3.46 = dTIH(1000, 0111) = dTIH(1000,¬1000),

so ¬1000 6= arg maxx∈B4 dTIH(1000, x),

• dTIH(0111, 1100) = 3.70 > 3.46 = dTIH(0111, 1000) = dTIH(0111,¬0111),

so ¬0111 6= arg maxx∈B4 dTIH(0111, x).
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In sum, then, the correlation between logical distance (dH) and geometrical distance (dTIH)
exhibited by the tetraicosahedron is not particularly strong. The general correlation principle fails, with
four types of counterexamples. Furthermore, the restricted principle that focuses on maximal logical
and geometrical distance succeeds for L2-bitstrings, but fails for L1- and L3-bitstrings. If we focus
exclusively on logico-geometrical distance correlation, the congruence principle from diagram design
thus predicts that the tetraicosahedron will fare worse than the rhombic dodecahedron and the
tetraicosahedron as an Aristotelian diagram for B4.

4.4. Logical and Geometrical Distance in the Aristotelian Nested Tetrahedron for B4

We now turn to the final polyhedral Aristotelian diagram for B4, viz. the nested tetrahedron.
Once again, a quick glance at Table 3 suffices to see that increasing Hamming distances do not
correspond to increasing Euclidean distances in the case of the nested tetrahedron: there exist multiple
cases of bitstrings b1, b2, b3, b4 ∈ B4 such that:

dH(b1, b2) < dH(b3, b4) and yet dTIH(b1, b2) ≥ dTIH(b3, b4). (13)

More specifically, there are ten types of such cases:

• if b1 ∈ L1, b2 ∈ L2, SA(b1, b2), b3 ∈ L2, b4 ∈ L2 and Un(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 1 < 2 = dH(b3, b4) and yet dNTH(b1, b2) = 1.41 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L2, SA(b1, b2), b3 ∈ L2, b4 ∈ L3 and SC(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 1 < 3 = dH(b3, b4) and yet dNTH(b1, b2) = 1.41 = dNTH(b3, b4),

• if b1 ∈ L2, b2 ∈ L2, Un(b1, b2), b3 ∈ L2, b4 ∈ L3 and SC(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 2 < 3 = dH(b3, b4) and yet dNTH(b1, b2) = 1.41 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L2, SA(b1, b2), b3 ∈ L3, b4 ∈ L3 and SC(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 1 < 2 = dH(b3, b4) and yet dNTH(b1, b2) = 1.41 > 0.94 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L3, SA(b1, b2), b3 ∈ L2, b4 ∈ L3 and SC(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 2 < 3 = dH(b3, b4) and yet dNTH(b1, b2) = 1.63 > 1.41 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L1, C(b1, b2), b3 ∈ L1, b4 ∈ L2 and C(b3, b4), a a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 2 < 3 = dH(b3, b4) and yet dNTH(b1, b2) = 2.83 > 2.45 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L1, C(b1, b2), b3 ∈ L2, b4 ∈ L3 and SC(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 2 < 3 = dH(b3, b4) and yet dNTH(b1, b2) = 2.83 > 1.41 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L1, C(b1, b2), b3 ∈ L1, b4 ∈ L3 and CD(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 2 < 4 = dH(b3, b4) and yet dNTH(b1, b2) = 2.83 > 2.31 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L1, C(b1, b2), b3 ∈ L2, b4 ∈ L2 and CD(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 2 < 4 = dH(b3, b4) and yet dNTH(b1, b2) = 2.83 > 2 = dNTH(b3, b4),

• if b1 ∈ L1, b2 ∈ L2, C(b1, b2), b3 ∈ L1, b4 ∈ L3 and CD(b3, b4), a a a a a a a a a a a a a a a a a a a a
then dH(b1, b2) = 3 < 4 = dH(b3, b4) and yet dNTH(b1, b2) = 2.45 > 2.31 = dNTH(b3, b4).

Finally, if we focus on maximal logical and geometrical distance, then we see in Table 3 that for all
bitstrings b ∈ L3, it holds that:

¬b = arg max
x∈B4

dNTH(b, x), (14)

and hence:
arg max

x∈B4
dH(b, x) = arg max

x∈B4
dNTH(b, x). (15)

In the Aristotelian nested tetrahedron for B4, maximal logical distance thus directly corresponds
to maximal geometrical distance, at least in the case of L3-bitstrings. However, for L1- and L2-bitstrings,
even this restricted principle of correlation between logical and geometrical distance no longer holds;
for example:

• dNTH(1000, 0110) = 2.45 > 2.31 = dNTH(1000, 0111) = dNTH(1000,¬1000),
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so ¬1000 6= arg maxx∈B4 dNTH(1000, x),

• dNTH(1100, 0001) = 2.45 > 2 = dNTH(1100, 0011) = dNTH(1100,¬1100),

so ¬1100 6= arg maxx∈B4 dNTH(1100, x).

In sum, then, the nested tetrahedron exhibits virtually no correlation between logical distance
(dH) and geometrical distance (dNTH). The general correlation principle fails, with ten types of
counterexamples. Furthermore, the restricted principle that focuses on maximal logical and geometrical
distance succeeds for L3-bitstrings, but fails for L1- and L2-bitstrings. If we focus exclusively on
logico-geometrical distance correlation, the congruence principle from diagram design thus predicts
that the nested tetrahedron will perform very poorly as an Aristotelian diagram for B4.

The fact that the restricted logico-geometrical correlation principle succeeds for L3 but fails for L1,
is clearly related to the fact that logical negation does not correspond to central symmetry in the nested
tetrahedron. After all, logical negation establishes a systematic connection between both logical levels:
b ∈ L1 iff ¬b ∈ L3. To understand this better, note that in polyhedral Aristotelian diagrams in which
negation does correspond to central symmetry, the restricted logico-geometrical correlation principle
holds for L1 iff it holds for L3. In particular, in the rhombic dodecahedron and the tetrakis hexahedron,
the restricted principle holds for both L1 and L3, and in the tetraicosahedron, this principle fails for
both L1 and L3.

4.5. Summary

In this section, we have performed a comparative analysis of the correlation between logical
and geometrical distance in each of the four polyhedral Aristotelian diagrams for B4. The rhombic
dodecahedron and the tetrakis hexahedron perform equally well: both satisfy the general correlation
principle (cf. (1),(2) and (6),(7)) and, hence, also the restricted principle that focuses on maximal
logical/geometrical distance; cf. (5) and (9). The tetraicosahedron fares worse: it does not satisfy the
general correlation principle (with four types of counterexamples), and the restricted principle for
maximal distance only holds for L2-bitstrings; cf. (12). Finally, the nested tetrahedron exhibits virtually
no correlation between logical and geometrical distance: it does not satisfy the general principle
(with ten types of counterexamples), and the restricted principle only holds for L3-bitstrings; cf. (15).

If logical distance among the elements of B4 is considered to be crucial information, and no other
visualization criteria are taken into consideration, then the congruence principle from diagram
design [66,67] will predict that the rhombic dodecahedron and the tetrakis hexahedron are both
optimal Aristotelian diagrams for visualizing B4, the nested tetrahedron performs worst, and the
tetraicosahedron falls somewhere in between.

5. Conclusions

In this paper, we have developed the idea that Aristotelian diagrams can be fruitfully studied
as truly geometrical entities. In particular, we have focused on four polyhedral Aristotelian
diagrams for the Boolean algebra B4, viz. the rhombic dodecahedron, the tetrakis hexahedron,
the tetraicosahedron and the nested tetrahedron. After an in-depth comparison of the geometrical
properties and interrelationships of these polyhedral diagrams, we have analyzed the correlation
(or lack thereof) between logical and geometrical distance. The outcome of this analysis is that the
Aristotelian rhombic dodecahedron and tetrakis hexahedron exhibit the strongest degree of correlation;
the tetraicosahedron performs worse; and the nested tetrahedron has the lowest degree of correlation.
These considerations should clearly be taken into account by any researcher in artificial intelligence
(and other fields) who makes use of B4 and wishes to clarify/illustrate her/his results by means of
a polyhedral Aristotelian diagram. In particular, if visualizing logical distance is the only desideratum
a diagram for B4 should fulfill, then the congruence principle states that this ordering of polyhedral
diagrams according to their degree of correlation will also be an ordering according to diagrammatic
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quality, with the rhombic dodecahedron and tetrakis hexahedron being the best visualizations of B4

and the nested tetrahedron being the worst.
Note that the last sentence of the previous paragraph is a conditional statement, and we can thus

question the plausibility of its condition. In particular, could not there be several other desiderata that
a diagram for B4 should fulfill, besides visualizing logical distance? For example, one might consider
it a reasonable desideratum that a diagram for B4 should visualize the logical levels of this Boolean
algebra. If such additional desiderata are taken into consideration, one should expect the comparative
assessment of diagrammatic quality to become drastically more complicated. Undertaking such
a multiple-criteria comparison between the four polyhedral Aristotelian diagrams studied in this paper
is a topic of ongoing research [55,57,92].
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