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Abstract: In rock mechanics, the study of shear strength on the structural surface is crucial to
evaluating the stability of engineering rock mass. In order to determine the shear strength, a key
parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have
proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are obtained
by the classical statistics and curve fitting in the current method. Although the JRC-NNs and JRC-NN
functions contain much more information (partial determinate and partial indeterminate information)
than the crisp JRC values and functions in classical methods, the JRC functions and the JRC-NN
functions may also lose some useful information in the fitting process and result in the function
distortion of JRC values. Sometimes, some complex fitting functions may also result in the difficulty
of their expressions and analyses in actual applications. To solve these issues, we can combine the
neutrosophic numbers with neutrosophic statistics to realize the neutrosophic statistical analysis of
JRC-NNs for easily analyzing the characteristics (scale effect and anisotropy) of JRC values. In this
study, by means of the neutrosophic average values and standard deviations of JRC-NNs, rather than
fitting functions, we directly analyze the scale effect and anisotropy characteristics of JRC values
based on an actual case. The analysis results of the case demonstrate the feasibility and effectiveness
of the proposed neutrosophic statistical analysis of JRC-NNs and can overcome the insufficiencies of
the classical statistics and fitting functions. The main advantages of this study are that the proposed
neutrosophic statistical analysis method not only avoids information loss but also shows its simplicity
and effectiveness in the characteristic analysis of JRC.

Keywords: joint roughness coefficient (JRC); neutrosophic number; neutrosophic statistics; scale
effect; anisotropy

1. Introduction

The engineering experience shows that rock mass may deform and destroy along the weak
structural surfaces. The study of shear strength on the structural surface is crucial to evaluate the
stability of engineering rock mass. In order to determine the shear strength in rock mechanics, a
key parameter is the joint roughness coefficient (JRC). Since Barton [1] firstly defined the concept
of JRC, a lot of methods had been proposed to calculate the JRC value and analyze its anisotropy
and scale effect characteristics. Tse et al. [2] gave the linear regression relationship between the
JRC value and the root mean square (Z2). Then, Zhang et al. [3] improved the root mean square
(Z2) by considering the inclination angle, amplitude of asperities, and their directions, and then
introduced a new roughness index (λ) by using the modified root mean square (Z2’) to calculate JRC
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values. To quantify the anisotropic roughness of joint surfaces effectively, a variogram function and
a new index were proposed by Chen et al. [4] based on the digital image processing technique, and
then they also studied the scale effect by calculating the JRC values of different sample lengths [5].
However, all of these traditional methods do not consider the uncertainties of JRC values in real rock
engineering practice.

Recently, Ye et al. [6] not only utilized the crisp average value to express JRC by using traditional
statistical methods, but also considered its interval range (indeterminate range) to express the
indeterminate information of JRC by means of the neutrosophic function/interval function. They [6]
firstly applied the neutrosophic function to calculate JRC values and shear strength, and got the
relations between the sampling length and the maximum JRC values and between the sampling
length and the minimum JRC values, and then established the neutrosophic functions (thick/interval
functions) of JRC and shear strength. However, these thick/interval functions cannot express such an
indeterminate function containing the parameters of neutrosophic numbers (NNs) (i.e., indeterminate
parameters), where NN is composed of its determinate part a and its indeterminate part bI with
indeterminacy I and as denoted by z = a + bI for a, b ∈ R (R is all real numbers) [7–9]. Obviously,
NN is a very useful mathematical tool for the expression of the partial determinate and/or partial
indeterminate information in engineering problems. After that, Ye et al. [10] further proposed two NN
functions to express the anisotropic ellipse and logarithmic equations of JRC values corresponding
to an actual case and to analyze the anisotropy and scale effect of JRC values by the derivative of the
two NN functions, and then they further presented a NN function with two-variables so as to express
the indeterminate information of JRC values comprehensively in the sample sizes and measurement
orientations, and then they analyzed both the anisotropy and scale effect of JRC values simultaneously
by the partial derivative of the NN function with two-variables. However, all of these NN functions are
obtained by fitting curves of the measured values, where they may still lose some useful information
between 3% and 16% in the fitting process and lack a higher fitting accuracy although the fitting
degrees of these functions lie in the interval [84%, 97%] in actual applications [10]. Sometimes, some
complex fitting functions may also result in the difficulty of their expressions and analyses in actual
applications [10]. To overcome these insufficiencies, it is necessary to improve the expression and
analysis methods for the JRC values by some new statistical method so that we can retain more
vague, incomplete, imprecise, and indeterminate information in the expression and analysis of JRC
and avoid the information loss and distortion phenomenon of JRC values. Thus, the neutrosophic
interval statistical number (NISN) presented by Ye et al. [11] is composed of both NN and interval
probability, and then it only expresses the JRC value with indeterminate information, but they lack the
characteristic analysis of JRC values in [11].

However, determinate and/or indeterminacy information is often presented in the real world.
Hence, the NNs introduced by Smarandache [7–9] are very suitable for describing determinate and
indeterminate information. Then, the neutrosophic statistics presented in [9] is different from classical
statistics. The former can deal with indeterminate statistical problems, while the latter cannot do
them and can only obtain the crisp values. As mentioned above, since there exist some insufficiencies
in the existing analysis methods of JRC, we need a new method to overcome the insufficiencies.
For this purpose, we originally propose a neutrosophic statistical method of JRC-NNs to indirectly
analyze the scale effect and anisotropy of JRC values by means of the neutrosophic average values and
standard deviations of JRC-NNs (JRC values), respectively, to overcome the insufficiencies of existing
analysis methods. The main advantages of this study are that the proposed neutrosophic statistical
analysis method not only avoid information loss, but also show its simplicity and effectiveness in the
characteristic analysis of JRC values.

The rest of this paper is organized as follows. Section 2 introduces some basic concepts of NNs and
gives the neutrosophic statistical algorithm to calculate the neutrosophic average value and standard
deviation of NNs. Section 3 introduces the source of the JRC data and JRC-NNs in an actual case,
where the JRC-NNs of 24 measurement orientations in each sample length and 10 sample lengths
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in each measurement orientation will be used for neutrosophic statistical analysis of JRC-NNs in
the actual case study. In Section 4, the neutrosophic average values and standard deviations of the
24 JRC-NNs of different measurement orientations in each sample length are given based on the
proposed neutrosophic statistical algorithm and are used for the scale effect analysis of JRC values. In
Section 5, the neutrosophic average values and standard deviations of the 10 JRC-NNs of different
sample lengths in each measurement orientations are given based on the proposed neutrosophic
statistical algorithm and used for the anisotropic analysis of JRC values. Finally, concluding remarks
are given in Section 6.

2. Basic Concepts and Neutrosophic Statistical Algorithm of NNs

NNs and neutrosophic statistics are firstly proposed by Smarandache [7–9]. This section will
introduce some basic concepts of NNs and give the neutrosophic statistical algorithm of NNs to
calculate the neutrosophic average value and the standard deviation of NNs for the neutrosophic
statistical analysis of JRC-NNs in the following study.

A NN z = a + bI consists of a determinate part a and an indeterminate part bI, where a and b are real
numbers and I ∈ [IL, IU] is indeterminacy. It is clear that the NN can express the determinate and/or
indeterminate information. Here is a numerical example. A NN is z = 5 + 6I for I ∈ [0, 0.3]. Then, the
NN is z ∈ [5, 6.8] for I ∈ [0, 0.3] and its possible range/interval is z = [5, 6.8], where its determinate
part is 5 and its indeterminate part is 6I. For the numerical example, z = 5 + 6I for I ∈ [0, 0.3] can
be also expressed as another form z = 5 + 3I for I ∈ [0, 0.6]. Therefore, we can specify some suitable
interval range [IL, IU] for the indeterminacy I according to the different applied demands to adapt the
actual representation. In fact, NN is a changeable interval number depending on the indeterminacy
I ∈ [IL, IU].

As we know, data in classical statistics are determinate values/crisp values. On the contrary, data
in neutrosophic statistics are interval values/indeterminate values/NNs, which contain indeterminacy.
If there is no indeterminacy or crisp value in data, neutrosophic statistics is consistent with classical
statistics. Let us consider an example of neutrosophic statistics in the following.

Assume that four NNs are z1 = 1 + 2I, z2 = 2 + 3I, z3 = 3 + 4I, and z4 = 4 + 5I for I ∈ [0, 0.2], then the
average value of these four neutrosophic numbers can be obtained by the following calculational steps:

Firstly, the average value of the four determinate parts is obtained by the following calculation:

a = (1 + 2 + 3 + 4)/4 = 2.5

Secondly, the average value of the four coefficients in the indeterminate parts is yielded by the
following calculation:

b = (2 + 3 + 4 + 5)/4 = 3.5

Finally, the neutrosophic average value of the four NNs is given as follows:

z = 2.5 + 3.5I for I ∈ [0, 0.2]

This neutrosophic average value is also called the average NN [9], which still includes its
determinate and indeterminate information rather than a crisp value.

However, it is difficult to use the Smarandache’s neutrosophic statistics for engineering
applications. Thus, Ye et al. [12] presented some new operations of NNs to make them suitable
for engineering applications.

Let two NNs be z1 = a1 + b1I and z2 = a2 + b2I for I ∈ [IL, IU]. Then, Ye et al. [12] proposed their
basic operations:
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Step 6: Calculate the neutrosophic standard deviation: 

(1)

Then, these basic operations are different from the ones introduced in [9], and this makes them
suitable for engineering applications.

Based on Equation (1), we can give the neutrosophic statistical algorithm of the neutrosophic
average value and standard deviation of NNs.

Let zi = ai + biI (i = 1, 2, . . . , n) be a group of NNs for I ∈ [IL, IU], then their neutrosophic average
value and standard deviation can be calculated by the following neutrosophic statistical algorithm:

Step 1: Calculate the neutrosophic average value of ai (i = 1, 2, . . . , n):

a =
1
n

n

∑
i=1

ai (2)

Step 2: Calculate the average value of bi (i = 1, 2, . . . , n):

b =
1
n

n

∑
i=1

bi (3)

Step 3: Obtain the neutrosophic average value:

z = a + bI, I ∈ [IL, IU ] (4)

Step 4: Get the differences between zi (i = 1, 2, . . . , n) and z:

zi − z = ai − a + (bi − b)I, I ∈ [IL, IU ] (5)

Step 5: Calculate the square of all the differences between zi (i = 1, 2, . . . , n) and z:

(zi − z)2 =


min

(
(ai + bi IL)(a + bIL), (ai + bi IL)(a + bIU),
(ai + bi IU)(a + bIL), (ai + bi IU)(a + bIU)

)

max

(
(ai + bi IL)(a + bIL), (ai + bi IL)(a + bIU),
(ai + bi IU)(a + bIL), (ai + bi IU)(a + bIU)

)
, I ∈ [IL, IU ] (6)
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Step 6: Calculate the neutrosophic standard deviation:

σz =

√
1
n

n

∑
i=1

(zi − z)2 (7)

In the following sections, we shall apply the proposed neutrosophic statistical algorithm of NNs
to the characteristic analysis of JRC data.

3. JRC Values and JRC-NNs in an Actual Case

As an actual case study in this paper, the original roughness profiles were measured by using
profilograph and a roughness ruler [13] on a natural rock joint surface in Changshan County of
Zhejiang Province, China. In the actual case, based on a classical statistical method we have obtained
the average values µij and standard deviations σij (i = 1, 2, . . . , 24; j = 1, 2, . . . , 10) of actually measured
data in different sample lengths and different measurement orientations, which are shown in Table 1.

Then, we can use NNs zij = aij + bijI (i = 1, 2, . . . , 24; j = 1, 2, . . . , 10) to express the JRC values
in each orientation θ and in each sample length L. Various NNs of the JRC values are indicated by
the real numbers of aij and bij in zij (i = 1, 2, . . . , 24; j = 1, 2, . . . , 10). For convenient neutrosophic
statistical analysis, the indeterminacy I is specified as the unified form I ∈ [0, 1] in all the JRC-NNs.
Thus, there is zij = aij + bijI = µij − σij + 2 σijI (i = 1, 2, . . . , 24; j = 1, 2, . . . , 10), where aij = µij − σij is
the lower bound of the JRC value and zij may choose a robust range/confidence interval [µij − σij,
µij + σij] for the symmetry about the average value µij (see the references [10,11] in detail), and then
based on µij and σij in Table 1 aij and bij in zij (i = 1, 2, . . . , 24; j =1, 2, . . . , 10) are shown in Table 2.
For example, when θ = 0◦ and L = 10 cm for i = 1 and j = 1, we can obtain from Table 2 that the JRC-NN
is z11 = 8.3040 + 4.4771I for I ∈ [0, 1].

According to the measurement orientation θ and the sample length L in Table 2, the data in the
same column consists of a group of the data in each sample length L, and then there are 10 groups
in the JRC-NNs. On the other hand, the data in each row are composed of a group of the data in
each measurement orientation θ, and then there are 24 groups in the JRC-NNs. In the following, we
shall give the neutrosophic statistical analysis of the JRC-NNs based on the proposed neutrosophic
statistical algorithm to reflect their scale effect and anisotropy in the actual case.
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Table 1. The average values µij and standard deviations σij of actually measured data in different sample lengths L and different measurement orientations θ.

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm

θ µi1 σi1 µi2 σi2 µi3 σi3 µi4 σi4 µi5 σi5 µi6 σi6 µi7 σi7 µi8 σi8 µi9 σi9 µi10 σi10

0◦ 10.5425 2.2385 9.6532 1.7162 9.2733 1.5227 8.9745 1.7092 8.8222 1.6230 8.8016 1.6069 8.6815 1.6066 8.6009 1.5043 8.5681 1.3465 8.4630 1.2806
15◦ 10.7111 2.2392 9.9679 1.7379 9.3433 1.5555 9.2708 1.2743 9.2299 1.2850 8.9729 1.3071 8.8332 1.1706 8.5868 0.9413 8.3604 0.7673 8.1404 0.6372
30◦ 10.5943 2.3528 9.9289 2.0286 9.5715 1.6665 9.1209 1.4207 9.0920 1.4119 8.6006 0.9899 8.7596 1.1489 8.5713 1.0776 8.2927 1.0128 8.1041 0.9664
45◦ 9.9244 2.3120 9.2005 1.7237 9.0081 1.6464 8.5078 1.1376 8.3336 1.431 8.6237 1.3427 8.3262 1.2184 8.0768 1.2717 7.8458 1.2096 7.5734 1.1294
60◦ 9.0253 2.4592 8.4047 1.9813 7.8836 1.8199 7.7941 1.8829 7.1873 1.167 8.2678 1.7830 7.3595 1.5956 7.1381 1.4082 6.8722 1.2178 6.7131 0.9627
75◦ 7.9352 2.1063 7.4604 1.7756 6.7725 1.4153 6.3056 1.0241 6.5446 1.2140 6.4993 1.3108 6.2440 1.1208 6.0933 0.9171 5.9499 0.7311 5.8317 0.5855
90◦ 7.0467 2.4054 6.6915 1.8482 6.3378 1.4743 5.9993 1.1700 6.1481 1.1920 6.0893 1.1850 5.9543 1.1021 5.8932 0.9630 5.8259 0.9181 5.8219 0.8355
105◦ 7.7766 2.4105 7.2221 1.7560 6.6770 1.2608 6.2318 0.985 6.4634 1.2288 6.4609 1.5029 6.1670 1.3236 5.9923 1.1016 5.8903 0.9868 5.8359 0.8479
120◦ 9.1324 2.3250 8.5206 1.8963 8.1998 1.5792 7.9671 1.4094 7.3207 1.0418 7.8245 1.1807 7.2472 1.0637 7.0649 0.9507 6.8537 0.8122 6.6909 0.7715
135◦ 9.2258 1.9104 8.5670 1.5412 8.0898 1.3452 7.8194 0.9910 7.3735 0.9848 7.6660 1.2845 7.3846 1.1608 7.0872 1.1589 6.9154 1.0345 6.7586 0.9157
150◦ 10.4673 2.4365 9.5650 1.9065 8.9102 1.6863 8.9059 1.4562 8.3930 1.1855 8.8162 1.5870 8.2064 1.3432 8.0153 1.1287 7.6556 1.0101 7.4443 0.9080
165◦ 10.6035 2.2090 9.9647 1.6606 9.5320 1.5695 8.8760 1.5994 8.6121 1.4899 8.6463 1.5942 8.3931 1.3637 8.1107 1.2203 7.9051 1.0893 7.7175 1.0050
180◦ 9.8501 2.1439 9.0984 1.8556 8.7574 1.7300 8.6002 1.6753 8.2973 1.5862 8.1266 1.6278 7.9647 1.4864 7.8981 1.3395 7.8338 1.1935 7.8291 1.0616
195◦ 9.9383 2.2254 9.2299 1.8331 8.6781 1.6791 8.7993 1.4556 8.5308 1.5551 8.1016 1.5598 7.9219 1.2559 7.6562 0.9674 7.4610 0.8060 7.3131 0.7402
210◦ 9.5903 1.9444 8.9414 1.5298 8.6532 1.6227 8.2601 1.5626 8.2065 1.5438 7.3828 1.2507 7.7527 1.2989 7.5050 1.1484 7.2495 1.0876 7.0479 0.9558
225◦ 8.9167 1.9764 8.2550 1.4256 8.1330 1.4751 7.7012 1.2124 7.6798 1.4502 7.4365 1.1748 7.3183 1.2086 7.1309 1.2749 6.8652 1.2190 6.6742 1.1571
240◦ 7.8582 1.8456 7.3032 1.4385 6.8241 1.1626 6.7427 1.2022 6.3250 0.8971 6.8181 1.1123 6.3526 1.0430 6.1521 0.9953 5.9138 0.8906 5.7515 0.7329
255◦ 7.2166 1.9341 6.8638 1.3901 6.3349 1.2705 6.1050 1.0350 6.0333 0.9671 6.0693 1.1394 5.8924 0.9417 5.7122 0.8153 5.7803 0.8598 5.3946 0.5627
270◦ 6.8025 2.1165 6.3123 1.6374 6.0061 1.3786 5.8815 1.3700 5.7871 1.1783 5.9707 1.2858 5.8530 1.2711 5.7376 1.1886 5.8259 0.9181 5.5856 1.0273
285◦ 7.0061 1.5474 6.4941 1.1183 6.1107 0.9586 5.8455 0.9821 5.7563 0.9033 6.0606 1.3603 5.8403 1.2714 5.6386 1.1359 5.4716 1.0374 5.3629 0.9501
300◦ 8.4720 1.7448 7.8124 1.3531 7.5303 1.2127 7.2813 1.0247 6.9533 1.1089 7.0673 0.8880 6.8002 0.9202 6.6414 0.8727 6.4460 0.8434 6.3104 0.7904
315◦ 10.1428 2.4790 9.4554 2.1149 8.9644 1.7308 8.5698 1.4949 8.1224 1.4089 8.6863 1.5162 8.3659 1.5934 7.6582 1.3811 7.4641 1.1563 7.3537 1.0960
330◦ 9.8295 2.2844 9.0011 1.6139 8.3261 1.6005 8.3290 1.3232 7.8712 1.2376 8.0526 1.2755 7.9134 1.1209 7.6498 1.0157 7.3466 0.9740 7.0927 0.9342
345◦ 9.6831 2.0192 9.1761 1.6305 8.7732 1.1686 8.4741 1.1887 7.8597 1.1436 7.8485 1.0332 7.7270 1.0174 7.4667 0.9254 7.1781 0.821 7.0038 0.7346
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Table 2. The values of aij and bij in JRC neutrosophic numbers (JRC-NNs) zij (i = 1, 2, . . . , 24; j =1, 2, . . . , 10) for each orientation θ and each sample length L.

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm

θ ai1 bi1 ai2 bi2 ai3 bi3 ai4 bi4 ai5 bi5 ai6 bi6 ai7 bi7 ai8 bi8 ai9 bi9 ai10 bi10

0◦ 8.3040 4.4771 7.9370 3.4325 7.7506 3.0454 7.2653 3.4184 7.1992 3.2459 7.1947 3.2138 7.0750 3.2132 7.0966 3.0085 7.2216 2.6930 7.1824 2.5612
15◦ 8.4719 4.4784 8.2300 3.4759 7.7878 3.1110 7.9964 2.5487 7.9449 2.5700 7.6657 2.6142 7.6627 2.3412 7.6456 1.8825 7.5931 1.5347 7.5032 1.2745
30◦ 8.2415 4.7057 7.9003 4.0572 7.9051 3.3330 7.7002 2.8414 7.6801 2.8239 7.6107 1.9798 7.6107 2.2977 7.4938 2.1552 7.2799 2.0256 7.1377 1.9328
45◦ 7.6124 4.6240 7.4768 3.4474 7.3616 3.2929 7.3701 2.2753 6.9018 2.8636 7.2810 2.6853 7.1078 2.4369 6.8051 2.5434 6.6362 2.4192 6.4440 2.2589
60◦ 6.5660 4.9185 6.4234 3.9627 6.0638 3.6397 5.9112 3.7658 6.0203 2.3341 6.4848 3.5660 5.7639 3.1912 5.7299 2.8163 5.6544 2.4355 5.7504 1.9253
75◦ 5.8289 4.2126 5.6847 3.5513 5.3573 2.8306 5.2815 2.0483 5.3307 2.4279 5.1885 2.6216 5.1232 2.2416 5.1762 1.8342 5.2188 1.4622 5.2462 1.1710
90◦ 4.6413 4.8108 4.8432 3.6965 4.8635 2.9486 4.8293 2.3399 4.9561 2.3841 4.9043 2.3701 4.8522 2.2043 4.9302 1.9260 4.9078 1.8362 4.9865 1.6709
105◦ 5.3661 4.821 5.4661 3.5119 5.4162 2.5216 5.2460 1.9717 5.2346 2.4576 4.9580 3.0058 3.0054 2.6472 4.8907 2.2031 4.9034 1.9737 4.9881 1.6957
120◦ 6.8074 4.6500 6.6243 3.7926 6.6206 3.1584 6.5577 2.8188 6.2789 2.0837 6.6438 2.3614 6.1834 2.1274 6.1142 1.9014 6.0415 1.6243 5.9194 1.5430
135◦ 7.3153 3.8208 7.0258 3.0824 6.7446 2.6904 6.8283 1.9821 6.3887 1.9696 6.3815 2.5690 6.2238 2.3216 5.9283 2.3178 5.8810 2.0689 5.8429 1.8314
150◦ 8.0308 4.8731 7.6585 3.8130 7.2240 3.3725 7.4497 2.9125 7.2075 2.3710 7.2292 7.2291 6.8633 2.6863 6.8866 2.2573 6.6454 2.0203 6.5363 1.8161
165◦ 8.3945 4.4180 8.3040 3.3213 7.9625 3.1391 7.2766 3.1988 7.1222 2.9799 7.0521 3.1884 7.0294 2.7274 6.8904 2.4406 6.8158 2.1787 6.7124 2.0101
180◦ 7.7062 4.2877 7.2427 3.7113 7.0273 3.4601 6.9249 3.3506 6.7111 3.1724 6.4988 3.2556 6.4782 2.9729 6.5586 2.6790 6.6403 2.3871 6.7675 2.1232
195◦ 7.7130 4.4507 7.3968 3.6661 6.9990 3.3583 7.3437 2.9113 6.9757 3.1102 6.5419 3.1195 6.6660 2.5119 6.6888 1.9348 6.6550 1.6120 6.5729 1.4803
210◦ 7.6459 3.8887 7.4116 3.0596 7.0305 3.2453 6.6975 3.1252 6.6628 3.0875 6.1321 2.5014 6.4538 2.5977 6.3566 2.2967 6.1619 2.1752 6.0921 1.9116
225◦ 6.9402 3.9529 6.8294 2.8512 6.6580 2.9502 6.4888 2.4248 6.2296 2.9004 6.2617 2.3495 6.1097 2.4172 5.8560 2.5498 5.6462 2.4379 5.5170 2.3143
240◦ 6.0125 3.6913 5.8648 2.8769 5.6615 2.3252 5.5405 2.4044 5.4280 1.7941 5.7058 2.2246 5.3096 2.0861 5.1568 1.9906 5.0231 1.7812 5.0186 1.4658
255◦ 5.2825 3.8683 5.4738 2.7801 5.0644 2.5410 5.0700 2.0701 5.0662 1.9343 4.9300 2.2788 4.9507 1.8834 4.8968 1.6307 4.9204 1.7197 4.8319 1.1253
270◦ 4.6859 4.2330 4.6748 3.2749 4.6275 2.7571 4.5115 2.7401 4.6088 2.3565 4.6849 2.5716 4.5820 2.5422 4.5490 2.3772 4.9078 1.8362 4.5584 2.0545
285◦ 5.4587 3.0948 5.3757 2.2367 5.1521 1.9172 4.8634 1.9642 4.8530 1.8066 4.7003 2.7205 4.5688 2.5429 4.5027 2.2719 4.4341 2.0749 4.4128 1.9002
300◦ 6.7272 3.4897 6.4594 2.7061 6.3176 2.4254 6.2566 2.0494 5.8444 2.2178 6.1793 1.7760 5.8800 1.8404 5.7687 1.7453 5.6025 1.6869 5.5200 1.5808
315◦ 7.6638 4.9579 7.3405 4.2297 7.2336 3.4616 7.0749 2.9898 6.7135 2.8178 7.1701 3.0324 6.7725 3.1868 6.2771 2.7622 6.3079 2.3125 6.2577 2.1921
330◦ 7.5450 4.5689 7.3872 3.2277 6.7256 3.2009 7.0058 2.6464 6.6335 2.4751 6.7770 2.5510 6.7925 2.2418 6.6340 2.0314 6.3726 1.9480 6.1586 1.8684
345◦ 7.6639 4.0383 7.5456 3.2610 7.6046 2.3372 7.2854 2.3774 6.7161 2.2872 6.8153 2.0664 6.7096 2.0348 6.5413 1.8508 6.3570 1.6421 6.2692 1.4692
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4. Scale Effect Analysis in Different Sample Lengths Based on the Neutrosophic
Statistical Algorithm

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each column in Table 2
based on the neutrosophic statistical algorithm to reflect the scale effect of JRC-NNs in different
sample lengths.

In the neutrosophic statistical analysis of JRC-NNs, we need to calculate the neutrosophic average
value and the standard deviation of each group of JRC-NNs in each column by using Equations (2)–(7).
To show their calculational procedures in detail, we give the following example.

For example, the neutrosophic average value and standard deviation of the JRC-NNs in
L = 10 cm is calculated. Then, we give the following calculational steps based on the neutrosophic
statistical algorithm.

Step 1: By Equation (2), calculate the average value of the determinate parts ai1 (i = 1, 2, . . . , 24)
in the JRC-NNs corresponding to the first column as follows:

a1 = 1
24

24
∑

i=1
ai1 = (8.304 + 8.4719 + 8.2415 + 7.6124 + 6.566 + 5.8289 + 4.6413 + 5.3661

+6.8074 + 7.3153 + 8.0308 + 8.3945 + 7.7062 + 7.713 + 7.6459 + 6.9402+
6.0125 + 5.2825 + 4.6859 + 5.4587 + 6.7272 + 7.6638 + 7.545 + 7.6639)/24

= 6.9427.

Step 2: By Equation (3), calculate the average value of the indeterminate coefficients
bi1 (i = 1, 2, . . . , 24) in the JRC-NNs:

b1 = 1
24

24
∑

i=1
bi1 = (4.4771 + 4.4784 + 4.7057 + 4.624 + 4.9185 + 4.2126 + 4.8108 + 4.821

+4.65 + 3.8208 + 4.8731 + 4.418 + 4.2877 + 4.4507 + 3.8887 + 3.9529+
3.6913 + 3.8683 + 4.233 + 3.0948 + 3.4897 + 4.9579 + 4.5689 + 4.0383)/24

= 4.3055.

Step 3: By Equation (4), obtain the neutrosophic average value of the JRC-NNs in the first column:

z1 = a1 + b1 I = 6.9427 + 4.3055I, I ∈ [0, 1].

Step 4: By Equation (5), calculate the differences between zi1 (i = 1, 2, . . . , 24) and z1:

z11 − z1= (a11 − a1) + (b11 − b1)I = 1.3613 + 0.1716I, . . . ,

z241 − z1= (a241 − a1) + (b241 − b1)I = 0.7212− 0.2672I, I ∈ [0, 1].

Step 5: By Equation (6), calculate the square of all the differences:

(z11 − z1)
2 = [min((a11 − a1)

2, (a11 − a1)((a11 − a1) + 1× (b11 − b1)), ((a11 − a1) + 1× (b11 − b1))
2
),

max((a11 − a1)
2, (a11 − a1)((a11 − a1) + 1× (b11 − b1)), ((a11 − a1) + 1× (b11 − b1))

2
)]

= [(a11 − a1)
2, ((a11 − a1) + 1× (b11 − b1))

2
] = [1.8530, 2.3495], . . . ,

(z241 − z1)
2 = [0.2061, 0.5202].

Step 6: By Equation (7), calculate the neutrosophic standard deviation:

σz1 =
√

1
24 ∑24

i=1(zi1 − z1)
2 =

[√
1

24 (1.8530 + . . . + 0.2061),
√

1
24 (2.3495 + . . . + 0.5202

]
= [1.0866, 1.4375].

Thus, the neutrosophic average value and the standard deviation of the JRC-NNs in the
first column are obtained by the above calculational steps. By the similar calculational steps, the
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neutrosophic average values and standard deviations of JRC-NNs in other columns can be also
obtained and all of the results are shown in Table 3. Then, the neutrosophic average values and
standard deviations of JRC-NNs in different sample lengths are depicted in Figures 1 and 2.

Table 3. The neutrosophic average values and standard deviations of JRC-NNs in different
sample lengths.

Sample Length L
Average Value Standard

Deviation σzjaj bj zj (I ∈ [0, 1])

10 cm 6.9427 4.3055 [6.9427, 11.2482] [1.0866, 1.4375]
20 cm 6.7740 3.3761 [6.7740, 10.1501] [0.9894, 1.3176]
30 cm 6.5483 2.9609 [6.5483, 9.5092] [0.9878, 1.3073]
40 cm 6.4490 2.6322 [6.4490, 9.0812] [0.9607, 1.3257]
50 cm 6.2795 2.5196 [6.2795, 8.7991] [0.8988, 1.2243]
60 cm 6.2913 2.6582 [6.2913, 8.9495] [0.8594, 1.1493]
70 cm 6.1505 2.4706 [6.1505, 8.6211] [0.8711, 1.1260]
80 cm 6.0573 2.2253 [6.0573, 8.2826] [0.8352, 1.0883]
90 cm 5.9928 1.9952 [5.9928, 7.9880] [0.7960, 1.0300]
100 cm 5.9261 1.7990 [5.9261, 7.7251] [0.7644, 1.0553]

Symmetry 2017, 9, 208 9 of 14 

 

24 2

1 1 11

1 1 1
 ( ) (1.8530 0.2061), (2.3495 0.5202
24 24 24

   [1.0866,1.4375].

z ii
z z



 
     

 



   

Thus, the neutrosophic average value and the standard deviation of the JRC-NNs in the first 

column are obtained by the above calculational steps. By the similar calculational steps, the 

neutrosophic average values and standard deviations of JRC-NNs in other columns can be also 

obtained and all of the results are shown in Table 3. Then, the neutrosophic average values and 

standard deviations of JRC-NNs in different sample lengths are depicted in Figures 1 and 2. 

Table 3. The neutrosophic average values and standard deviations of JRC-NNs in different sample 

lengths. 

Sample Length L 
Average Value 

Standard Deviation zj  
ja  

jb  jz  (I   [0, 1]) 

10 cm 6.9427 4.3055 [6.9427, 11.2482] [1.0866, 1.4375] 

20 cm 6.7740 3.3761 [6.7740, 10.1501] [0.9894, 1.3176] 

30 cm 6.5483 2.9609 [6.5483, 9.5092] [0.9878, 1.3073] 

40 cm 6.4490 2.6322 [6.4490, 9.0812] [0.9607, 1.3257] 

50 cm 6.2795 2.5196 [6.2795, 8.7991] [0.8988, 1.2243] 

60 cm 6.2913 2.6582 [6.2913, 8.9495] [0.8594, 1.1493] 

70 cm 6.1505 2.4706 [6.1505, 8.6211] [0.8711, 1.1260] 

80 cm 6.0573 2.2253 [6.0573, 8.2826] [0.8352, 1.0883] 

90 cm 5.9928 1.9952 [5.9928, 7.9880] [0.7960, 1.0300] 

100 cm 5.9261 1.7990 [5.9261, 7.7251] [0.7644, 1.0553] 

 

Figure 1. The neutrosophic average values of JRC-NNs in different sample lengths L. 

0 10 20 30 40 50 60 70 80 90 100 110
5

6

7

8

9

10

11

12

L (cm)

A
v
e

ra
g

e
 v

a
lu

e

Figure 1. The neutrosophic average values of JRC-NNs in different sample lengths L.Symmetry 2017, 9, 208 10 of 14 

 

 

Figure 2. The neutrosophic standard deviations of JRC-NNs in different sample lengths L. 

Figure 1 shows that the neutrosophic average values (ranges) of JRC-NNs decrease with the 

sample length increases. It is obvious that they can reflect the scale effect in different lengths. In 

other words, the larger the length L is, the smaller the average value (range) of JRC-NNs is. Thus, the 

scale effect in different lengths is consistent with that of the literature [10]. 

In Figure 2, we can see that the neutrosophic standard deviations of JRC-NNs decrease with the 

sample length increases. Since the standard deviation is used to indicate the dispersion degree of 

data, the neutrosophic standard deviation in some length L means the dispersion degree of the 

JRC-NNs. The larger the standard deviation is, the more discrete the JRC-NNs is. Under some 

sample lengths, its standard deviation means the dispersion degree of the JRC-NNs in different 

orientations. The larger the neutrosophic standard deviation is, the more obvious the anisotropy of 

the JRC-NNs under this length is. Hence, the neutrosophic standard deviations of JRC-NNs can also 

indicate the scale effect of the anisotropy of JRC-NNs. What’s more, when the sample length is large 

enough, the anisotropy of the JRC values may decrease to some stable tendency. This situation is 

consistent with the tendency in [10]. 

Obviously, both neutrosophic average values and neutrosophic standard deviations of 

JRC-NNs can reflect the scale effect of JRC-NNs. Then, the neutrosophic average values reflect the 

scale effect of JRC values, while the neutrosophic standard deviations reflect the scale effect of the 

anisotropy of JRC values. 

5. Anisotropic Analysis in Different Measurement Orientations Based on the Neutrosophic 

Statistical Algorithm 

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each row in Table 2 

based on the neutrosophic statistical algorithm to reflect the anisotropy of JRC-NNs in different 

measurement orientations. 

To indicate the neutrosophic statistical process, we take the orientation of θ = 0° for i = 1 as an 

example to show the detailed calculational steps of the neutrosophic average value and the standard 

deviation of the JRC-NNs in the orientation based on the neutrosophic statistical algorithm. 

Step 1: By Equation (2), calculate the average value of the determinate parts a1j (j = 1, 2,…, 10) of 

the JRC-NNs in the first row (i = 1) as follows: 

10

1 1

1

1
(8.304+7.9370+7.7506+7.2653+7.1992+7.1947+7.0750+7.0966

10

+7.2216+7.1824)/10 7.4226.

j

j

a a


 




 

 

Step 2: By Equation (3), calculate the average value of b1j (j = 1, 2,…, 10) in the indeterminate 

parts of the JRC-NNs: 

0 10 20 30 40 50 60 70 80 90 100 110
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L (cm)

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Figure 2. The neutrosophic standard deviations of JRC-NNs in different sample lengths L.
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Figure 1 shows that the neutrosophic average values (ranges) of JRC-NNs decrease with the
sample length increases. It is obvious that they can reflect the scale effect in different lengths. In other
words, the larger the length L is, the smaller the average value (range) of JRC-NNs is. Thus, the scale
effect in different lengths is consistent with that of the literature [10].

In Figure 2, we can see that the neutrosophic standard deviations of JRC-NNs decrease with
the sample length increases. Since the standard deviation is used to indicate the dispersion degree
of data, the neutrosophic standard deviation in some length L means the dispersion degree of the
JRC-NNs. The larger the standard deviation is, the more discrete the JRC-NNs is. Under some sample
lengths, its standard deviation means the dispersion degree of the JRC-NNs in different orientations.
The larger the neutrosophic standard deviation is, the more obvious the anisotropy of the JRC-NNs
under this length is. Hence, the neutrosophic standard deviations of JRC-NNs can also indicate the
scale effect of the anisotropy of JRC-NNs. What’s more, when the sample length is large enough, the
anisotropy of the JRC values may decrease to some stable tendency. This situation is consistent with
the tendency in [10].

Obviously, both neutrosophic average values and neutrosophic standard deviations of JRC-NNs
can reflect the scale effect of JRC-NNs. Then, the neutrosophic average values reflect the scale effect
of JRC values, while the neutrosophic standard deviations reflect the scale effect of the anisotropy of
JRC values.

5. Anisotropic Analysis in Different Measurement Orientations Based on the Neutrosophic
Statistical Algorithm

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each row in Table 2
based on the neutrosophic statistical algorithm to reflect the anisotropy of JRC-NNs in different
measurement orientations.

To indicate the neutrosophic statistical process, we take the orientation of θ = 0◦ for i = 1 as an
example to show the detailed calculational steps of the neutrosophic average value and the standard
deviation of the JRC-NNs in the orientation based on the neutrosophic statistical algorithm.

Step 1: By Equation (2), calculate the average value of the determinate parts a1j (j = 1, 2, . . . , 10)
of the JRC-NNs in the first row (i = 1) as follows:

a1 = 1
10

10
∑

j=1
a1j = (8.304 + 7.9370 + 7.7506 + 7.2653 + 7.1992 + 7.1947 + 7.0750 + 7.0966

+7.2216 + 7.1824)/10 = 7.4226.

Step 2: By Equation (3), calculate the average value of b1j (j = 1, 2, . . . , 10) in the indeterminate
parts of the JRC-NNs:

b1 = 1
10

10
∑

j=1
b1j = (4.4771 + 3.4325 + 3.0454 + 3.4184 + 3.2459 + 3.2138 + 3.2132 + 3.0085

+2.6930 + 2.5612)/10 = 3.2309.

Step 3: By Equation (4), get the neutrosophic average value of the JRC-NNs in the first row:

z1 = a1 + b1 I = 7.4226 + 3.2309I, I ∈ [0, 1].

Step 4: By Equation (5), calculate the differences between z1j (j = 1, 2, . . . , 10) and z1:

z11 − z1= (a11 − a1) + (b11 − b1)I = 0.8814 + 1.2462I, . . . ,

z110 − z1= (a110 − a1) + (b110 − b1)I = 0.2402− 0.6697I, I ∈ [0, 1].
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Step 5: By Equation (6), calculate the square of these differences:

(z11 − z1)
2 = [min((a11 − a1)

2, (a11 − a1)((a11 − a1) + 1× (b11 − b1)), ((a11 − a1) + 1× (b11 − b1))
2
),

max((a11 − a1)
2, (a11 − a1)((a11 − a1) + 1× (b11 − b1)), ((a11 − a1) + 1× (b11 − b1))

2
)]

= [(a11 − a1)
2, ((a11 − a) + 1× (b11 − b1))

2
] = [0.7767, 4.5263], . . . ,

(z110 − z1)
2 = [0.0577, 0.8279].

Step 6: By Equation (7), calculate the neutrosophic standard deviation:

σz1 =
√

1
10 ∑10

j=1
(
z1j − z1

)2
=

[√
1

10 (0.7767 + . . . + 0.0577),
√

1
10 (4.5263 + . . . + 0.8279

]
= [0.3844, 0.8420].

By the similar calculational steps, the neutrosophic average values and standard deviations of
JRC-NNs in other rows can be also obtained and all the results are shown in Table 4. Then, the
neutrosophic average values and standard deviations of JRC-NNs in different orientations are depicted
in Figures 3 and 4.

Table 4. The average values and standard deviations in each orientation θ.

Orientation θ
Average Value Standard

Deviation σziai bi zi (I ∈ [0, 1])

0◦ 7.4226 3.2309 [7.4226, 10.6535] [0.3844, 0.8420]
15◦ 7.8501 2.5831 [7.8501, 10.4332] [0.2843, 1.1698]
30◦ 7.6560 2.8152 [7.6560, 10.4712] [0.3013, 1.1842]
45◦ 7.0997 2.8847 [7.0997, 9.9844] [0.3385, 0.9850]
60◦ 6.0368 3.2555 [6.0368, 9.2923] [0.3130, 1.1182]
75◦ 5.3436 2.4401 [5.3436, 7.7837] [0.2130, 1.0704]
90◦ 4.8714 2.6187 [4.8714, 7.4901] [0.0907, 0.8406]

105◦ 5.1312 2.6809 [5.1312, 7.8121] [0.1902, 1.0122]
120◦ 6.3791 2.6061 [6.3791, 8.9852] [0.2789, 1.2189]
135◦ 6.4560 2.4654 [6.4560, 8.9214] [0.4636, 1.0067]
150◦ 7.1731 2.9296 [7.1731, 10.1027] [0.4368, 1.2946]
165◦ 7.3560 2.9602 [7.3560, 10.3162] [0.5843, 1.1961]
180◦ 6.8556 3.1400 [6.8556, 9.9956] [0.3554, 0.9170]
195◦ 6.9553 2.8155 [6.9553, 9.7708] [0.3640, 1.2298]
210◦ 6.6645 2.7889 [6.6645, 9.4534] [0.5157, 1.0531]
225◦ 6.2537 2.7148 [6.2537, 8.9685] [0.4522, 0.8612]
240◦ 5.4721 2.2640 [5.4721, 7.7361] [0.3255, 0.9058]
255◦ 5.0487 2.1831 [5.0487, 7.2318] [0.1818, 0.8701]
270◦ 4.6391 2.6743 [4.6391, 7.3134] [0.1003, 0.6426]
285◦ 4.8322 2.2530 [4.8322, 7.0852] [0.3335, 0.6340]
300◦ 6.0556 2.1518 [6.0556, 8.2074] [0.3653, 0.9042]
315◦ 6.8812 3.1943 [6.8812, 10.0755] [0.4565, 1.2396]
330◦ 6.8032 2.6760 [6.8032, 9.4792] [0.3983, 1.1377]
345◦ 6.9508 2.3364 [6.9508, 9.2872] [0.5018, 1.1878]



Symmetry 2017, 9, 208 12 of 14

Symmetry 2017, 9, 208 12 of 14 

 

255° 5.0487 2.1831 [5.0487, 7.2318] [0.1818, 0.8701] 

270° 4.6391 2.6743 [4.6391, 7.3134] [0.1003, 0.6426] 

285° 4.8322 2.2530 [4.8322, 7.0852] [0.3335, 0.6340] 

300° 6.0556 2.1518 [6.0556, 8.2074] [0.3653, 0.9042] 

315° 6.8812 3.1943 [6.8812, 10.0755] [0.4565, 1.2396] 

330° 6.8032 2.6760 [6.8032, 9.4792] [0.3983, 1.1377] 

345° 6.9508 2.3364 [6.9508, 9.2872] [0.5018, 1.1878] 

 

Figure 3. The neutrosophic average values of JRC-NNs in different orientations θ. 

 

Figure 4. The neutrosophic standard deviations of JRC-NNs in different orientations θ. 

Figure 3 shows that the neutrosophic average values (ranges) of JRC-NNs are very different in 

every orientation. Their changing curves look somewhat like trigonometric functions, which show 

the anisotropy of JRC-NNs. 

In Figure 4, the neutrosophic standard deviations indicate the dispersion degrees of JRC-NNs 

under different sample lengths in some orientation. The larger the neutrosophic standard deviation 

is, the more discrete the JRC-NNs is. This case indicates that the scale effect of JRC-NNs is more 

obvious in the orientation. Although the changing curves in Figure 4 are irregular, it is clear that the 

dispersion degree of each orientation is very different. For example, the neutrosophic standard 

deviation of θ = 270° is obviously smaller than that of other orientations. Especially, if the JRC-NNs 

of all rows have the same neutrosophic standard deviations in such a special case, then the two 

0 50 100 150 200 250 300 350
4

5

6

7

8

9

10

11

θ (°)

A
v
e

ra
g

e
 v

a
lu

e

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ (°)

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Figure 3. The neutrosophic average values of JRC-NNs in different orientations θ.
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Figure 4. The neutrosophic standard deviations of JRC-NNs in different orientations θ.

Figure 3 shows that the neutrosophic average values (ranges) of JRC-NNs are very different in
every orientation. Their changing curves look somewhat like trigonometric functions, which show the
anisotropy of JRC-NNs.

In Figure 4, the neutrosophic standard deviations indicate the dispersion degrees of JRC-NNs
under different sample lengths in some orientation. The larger the neutrosophic standard deviation is,
the more discrete the JRC-NNs is. This case indicates that the scale effect of JRC-NNs is more obvious
in the orientation. Although the changing curves in Figure 4 are irregular, it is clear that the dispersion
degree of each orientation is very different. For example, the neutrosophic standard deviation of
θ = 270◦ is obviously smaller than that of other orientations. Especially, if the JRC-NNs of all rows have
the same neutrosophic standard deviations in such a special case, then the two curve area in Figure 4
will be reduced to the area between two parallel lines without the anisotropy in each sample scale.

From the above analysis, it is obvious that the neutrosophic average values and standard
deviations of JRC-NNs (JRC values) also imply the anisotropy in different orientations. Thus, the
neutrosophic average values reflect the anisotropy of JRC values, while the neutrosophic standard
deviations reflect the anisotropy of the scale effect. Obviously, this neutrosophic statistical analysis
method is more detailed and more effective than existing methods and avoids the difficulty of the
curve fitting and analysis in some complex cases.
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6. Conclusion Remarks

According to the JRC data obtained in an actual case and the expressions and operations of
JRC-NNs, we provided a new neutrosophic statistical analysis method based on the neutrosophic
statistical algorithm of the neutrosophic average values and the standard deviations of JRC-NNs in
different columns (different sample lengths) and different rows (different measurement orientations).
It is obvious that the two characteristic analyses (scale effect and anisotropy) of JRC values were
indicated in this study. For the first characteristic, we analyzed the scale effect of JRC-NNs in different
sample lengths, where the neutrosophic average values reflect the scale effect of JRC-NNs, while
the neutrosophic standard deviations reflect the scale effect of the anisotropy of JRC-NNs. For the
second characteristic, we analyzed the anisotropy of JRC values in different measurement orientations,
where the neutrosophic average values reflect the anisotropy of JRC-NNs, while the neutrosophic
standard deviations reflect the anisotropy of the scale effect. Therefore, the neutrosophic statistical
analysis of the actual case demonstrates that the neutrosophic average values and neutrosophic
standard deviations of JRC-NNs can reflect the scale effect and anisotropic characteristics of JRC values
reasonably and effectively.

However, the obtained analysis results and the performance benefits of the presented neutrosophic
statistical algorithm in this study are summarized as follows:

(1) The neutrosophic statistical analysis method without fitting functions is more feasible and more
reasonable than the existing method [10].

(2) The neutrosophic statistical analysis method based on the neutrosophic average values and
neutrosophic standard deviations of JRC-NNs can retain much more information and reflect the
scale effect and anisotropic characteristics of JRC values in detail.

(3) The presented neutrosophic statistical algorithm can analyze the scale effect and the anisotropy
of JRC-NNs (JRC values) directly and effectively so as to reduce the information distortion.

(4) The presented neutrosophic statistical algorithm based on the neutrosophic statistical averages
and standard deviations of JRC-NNs is more convenient and simpler than the existing curve
fitting and derivative analysis of JRC-NN functions in [10].

(5) The presented neutrosophic statistical algorithm can overcome the insufficiencies of the existing
method in the fitting and analysis process [10].

(6) This study can extend the existing related methods with JRC-NNs [10,11] and show its easy
analysis advantage in complex cases.

From what has been discussed above, the proposed neutrosophic statistical analysis method
of JRC-NNs provides a more convenient and feasible new way for the scale effect and anisotropic
characteristic analysis of JRC values in rock mechanics.
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