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Abstract: Regarding the point projection and inversion problem, a classical algorithm for orthogonal
projection onto curves and surfaces has been presented by Hu and Wallner (2005). The objective
of this paper is to give a convergence analysis of the projection algorithm. On the point projection
problem, we give a formal proof that it is second order convergent and independent of the initial
value to project a point onto a planar parameter curve. Meantime, for the point inversion problem,
we then give a formal proof that it is third order convergent and independent of the initial value.

Keywords: point projection; planar parametric curve; second order convergence; third
order convergence

1. Introduction

A vital problem is the projection of a point onto a surface or parametric curve in order to get the foot
point and calculate the corresponding parameter values, which is widely applied in the field of Geometric
Modeling [1–7], Computer Graphics and Computer Vision [5–7], Computer Aided Geometric Design [8–12],
geometric design [13–15], geometry sculpt [16], scientific research and engineering applications [17]
and computer animation [18–20].

To find the orthogonal projection of a point onto surfaces or parametric curves, Limaien and Trochu [1]
constructed an auxiliary function and obtain all its zeros. Based on the geometric method [4], Li et al. [2]
use the geometric iterative method with second order approximation properties. The common features
of [2] and [4] are that they both use the curvature information, and they are independent of the initial
value, respectively. If the algorithm in Hu et al. [4] is applied in the spatial parametric curve, the order
of convergence will be one rather than two. In addition, the line segment between the center of circle,
test point and osculating circle will not intersect in some cases.

Pottmann et al. [3] adopt the idea of the ICP algorithm and provide a new method to geometrically
align a point cloud to a surface and to the related registration problems. An alternative notion has been
presented in [3], which depends on both instantaneous kinematics and the geometry of the squared
distance function corresponding to a surface. Evidenced by local convergence analysis, as well as
by experiment results, the newly proposed ICP method is faster to converge than the classic one.
Piegl et al. [5] present a method to project a point onto NURBS surfaces with three stpes: decompose
a NURBS surface into quadrilaterals, project the test point onto the nearest quadrilateral, and finally
get the parameter from the nearest quadrilateral. Mortenson [21] converted the projection problem

Symmetry 2017, 9, 210; doi:10.3390/sym9100210 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-9923-0011
http://dx.doi.org/10.3390/sym9100210
http://www.mdpi.com/journal/symmetry


Symmetry 2017, 9, 210 2 of 13

into the problem of obtaining a polynomial’s root, and then adopted the Newton-Raphson approach
to get the root.

Chen et al. [18] used clipping circle technology and proposed an approach to find the minimum
distance between a point and a NURBS curve. In the same vein, Chen et al. [19] used clipping sphere
technology and provided an approach to find the minimum distance between a clamped B-Spline
surface and a point. Similar to [18,19], Young-Taek Oh et al. [22] used an efficient culling technique
to reduce redundant curves and surfaces and proposed an efficient method to project a point to its
nearest point on a set of freeform surfaces and curves. Chen et al. [20] proposed a new quadratic
clipping approach to calculate a root of a polynomial f (t) of degree n within an interval. Distinct
from the classic method in R1 space, it approximates (t, f (t)) and gets three quadratic curves in
R2 space, which results in a higher order of approximation. Among various methods to find the
roots to a polynomial equation in computer graphics and computer aided geometric design, clipping
methods with the Bernstein–Bézier form demonstrate great numerical stability. To search the roots of
a polynomial f (t) in an interval, Chen et al. [11] proposed a rational cubic clipping method, of which
the approximation order and the corresponding convergence rate to search a single root are both seven.
Based on their previous method in [11], Chen et al. [12] revise a rational cubic clipping approach to
get two bounding cubic within O(n) time, which could get a faster convergence rate of five instead
of four in a previous attempt. For Bézier curves, Chen et al. [23] improved the algebraic pruning
method to prevent invalid roots after conversion of the point projection problem into a root finding
problem, which is applicable for NURBS curves because, in NURBS curves, is not hard to be changed
into Bézier form.

Song et al. [24] presented an algorithm to solve the problem of orthogonal projection of parametric
curves onto B-spline surfaces. They use a tracing method and then create a polyline approximating the
pre-image curve of the projection curve. Bharath Ram Sundar et al. [25] have constructed a measure
of distance computation between surfaces and curves. To find point inversion for a parametric
surface, Wang et al. [26] proposed a new method to give a simple procedure to get the parameters
determined by a given point on a surface. They essentially formulate ordinary differential equation
systems, which are determined by the intersection curve segment or by the projection curve segment.
Li et al. [27] combined a first order algorithm with Newton’s second order algorithm to propose the
hybrid second order approach, which goes faster than the current methods and does not depend on
the initial value. The adoption of ADMM in [28] contributes to refine the estimate in each iteration
because it can incorporate information about the direction of estimates gotten in previous steps.
In sum, those methods use lots of techniques, for instance, converting the projection problem into
a root searching problem for a nonlinear equation system, subdivision approaches, and geometric
approaches as well as circular clipping approaches.

One widely used, fast and robust method is introduced by the paper [4] and consists of two steps:
calculate parameter values by projecting points onto curvature circles in the first step and then compute
parameter increments using Taylor’s expansion of the surface or curve in the second step. The paper [4]
claims to be quadratic in its convergence rate but does not prove that. In this paper, regarding the
point projection problem, we formally prove that projecting a point onto a planar parameter curve is
of second order convergence and independent of the initial value. On the point inversion problem,
we formally prove that it is of third order convergence and independent of the initial value.
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2. Convergence Analysis

In this part, we conduct a convergence analysis of iteration, presented in formula Equation (5) in
paper [4]. We parameterize the curvature circle c̄ such that it shares the same Taylor’s polynomial with
the curve c. Then this equality holds:

q = c̄(t0 + ∆t) = c(t0 + ∆t) + o(∆t2)

= c(t0) + ∆tc′(t0) +
∆t2

2
c′′(t0) + o(∆t2)

(1)

In R2, we deal with the Equation (1) using the method in the paper [4] and get
det(q− c(tn), c′′(tn)) = ∆t det(c′(tn), c′′(tn)) + o(∆t2), which yields the iterative formula

∆t =
det(q− c(tn), c′′(tn))

det(c′(tn), c′′(tn))
=

1

k ‖c′‖3 det(q− c(tn), c′′(tn)) (2)

On the point projection problem, to verify that the algorithm defined by Equation (2) (hereafter,
the iterative method (2)) is quadratically convergent, we firstly derive the expression of the footpoint
q. The corresponding parameter is denoted as α when we orthogonally project a test point p onto
a parameter curve c(t), where p = (p1, p2) and c(t) = ( f1(t), f2(t)). By the definition of the minimum
distance between a curve and a point, we will get the relation as follows

(p− h)× n = 0 (3)

where h = ( f1(α), f2(α)) and normal vector n = (− f ′2(α), f ′1(α)). The unit normal vector,
the curvature, the relative curvature, and the radius of curvature circle of curve c(t) can be expressed
as follows, respectively,

β(t) = (− f ′2(t)√
( f ′1(t))

2 + ( f ′2(t))
2

,
f ′1(t)√

( f ′1(t))
2 + ( f ′2(t))

2
) (4)

k(t) =

∣∣ f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
∣∣

(( f ′1(t))
2 + ( f ′2(t))

2)3/2 (5)

kr(t) =
f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
(( f ′1(t))

2 + ( f ′2(t))
2)3/2 (6)

R(t) =
1

κ(t)
=

(( f ′1(t))
2 + ( f ′2(t))

2)
3
2∣∣ f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
∣∣ (7)

In this paper, we prove the case where
∣∣ f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)

∣∣ = f ′1(t) f ′′2 (t) − f ′′1 (t) f ′2(t).
Additionally, the proof method also holds for the case

∣∣ f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
∣∣ = −( f ′1(t) f ′′2 (t) −

f ′′1 (t) f ′2(t)) only with an opposite sign to the previous case. So the formula Equation (7) can be
written as

R(t) =
(( f ′1(t))

2 + ( f ′2(t))
2)

3
2

f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
(8)

The center of curvature circle of the planar curve c(t) is

m = (m1, m2) = c(t) + β(t)/kr(t) (9)
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Now, inserting Equations (4) and (6) into Equation (9), we get

m1(t) = f1(t)−
f ′2(t)(( f ′1(t))

2 + ( f ′2(t))
2)

f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
(10)

and

m2(t) = f2(t) +
f ′1(t)(( f ′1(t))

2 + ( f ′2(t))
2)

f ′1(t) f ′′2 (t)− f ′′1 (t) f ′2(t)
(11)

The line connecting the test point p and the center of curvature circle m can be parameterized as{
x = p1 + (m1 − p1)u
y = p2 + (m2 − p2)u

(12)

where u is a parameter. Also, the equation of the curvature circle is

(x−m1)
2 + (y−m2)

2 = R2 (13)

As the footpoint q = (q1, q2) is the intersection of the line Equation (12) and the curvature circle
Equation (13), substituting Equation (12) into Equation (13), we get

(p1 + (m1 − p1) u−m1)
2 + (p2 + (m2 − p2) u−m2)

2 = R2 (14)

Solving Equation (14), we have

u = 1± R√
(m1 − p1)2 + (m2 − p2)2

(15)

Since the footpoint q lies between the center of curvature circle m and the test point p,
the parameter u must belong to (0, 1). By Equation (15), the parameter u will be

u = 1− R√
(m1 − p1)2 + (m2 − p2)2

(16)

From Equations (3), (10), (12) and (16), we get horizontal coordinate q1 of the intersection q

q1 =p1 + (m1 − p1)u

=p1 + (m1 − p1)(1−
R√

(m1 − p1)2 + (m2 − p2)2
)

(17)

From Equations (11), (12) and (16), we obtain vertical coordinate q2 of the intersection q

q2 =p2 + (m2 − p2)u

=p2 + (m2 − p2)(1−
R√

(m1 − p1)2 + (m2 − p2)2
)

(18)

From Equation (17), we have

q1 − f1(t) =− f1(t) + p1 + (m1 − p1)u

=− f1(t) + p1 + (m1 − p1)(1−
R√

(m1 − p1)2 + (m2 − p2)2
)

(19)
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From Equation (18), we get

q2 − f2(t) = − f2(t) + p2 + (m2 − p2)u

= − f2(t) + p2 + (m2 − p2)(1−
R√

(m1 − p1)2 + (m2 − p2)2
)

(20)

Till now, we provide the detailed illustration of the iterative method (2). Next, we will
use a method similar to those in the literature [29–31] to prove the theorem. The standard
convergence analysis method in numerical analysis in [29–31] are used, namely, en+1 = C0ek

n + o(ek+1
n ),

where en+1 = tn+1 − α, en = tn − α, k is a positive integer, C0 is constant.

Theorem 1. Let q(t) − c(t) = (q1(t) − f1(t), q2(t) − f2(t)) be a real parametric curve function in two
dimensions, suppose q(t)− c(t) has first and second derivatives within an interval I. When q(t)− c(t) has
only a single root α ∈ I, and tn stays close sufficiently to α, then the iterative method (2) will be of second order
convergence for the point projection problem.

Proof. Let en = tn − α, ai = (1/i!)
(

f (i)1 (α)
)

, bi = (1/i!)
(

f (i)2 (α)
)

, i = 0, 1, 2, 3, ...,. Assume that
α is a simple root of q − c(t) = (q1 − f1(t), q2 − f2(t)) = 0, i.e., q(α) − c(α) = (q1(α) − f1(α),
q2(α)− f2(α)) = 0, q′(α)− c′(α) = (q′1(α)− f ′1(α), q′2(α)− f ′2(α)) 6= 0. For f1(t), f2(t), we take the
Taylor’s expansion around α,

f1(tn) = a0 + a1en + a2e2
n + o(e3

n) (21)

f2(tn) = b0 + b1en + b2e2
n + o(e3

n) (22)

Furthermore, we have
f ′1(tn) = a1 + 2a2en + o(e2

n) (23)

f ′2(tn) = b1 + 2b2en + o(e2
n) (24)

and
f ′′1 (tn) = 2a2 + o(en) (25)

f ′′2 (tn) = 2b2 + o(en) (26)

For the sake of simplicity, we use the Maple 18 package to calculate the Taylor’s expansion in the
following way. Combine the derivation of Equations (4)–(20) with the orthogonal projection condition
for Equation (3) and Equation (21)–(26), and then simplify these equations, we acquire parameterized
increment ∆t as follows:

∆t =− en −
6

δ(a2
1 + b2

1)
(a1a2

2 p2b1 − a2
1b2 p2a2 + a2

1b2b0a2 − a1a2
2b0b1

− b1b2
2 p2a1 + b2

1b2 p2a2 + b1b2
2b0a1 − b2

1b2b0a2)e2
n + o(e3

n)
(27)

where δ = a3
1 + a1b2

1 − 2p2b2a1 + 2p2a2b1 + 2b0a1b2 − 2b0a2b1, p2 =
a0a1 − a1 p1 + b0b1

b1
and p2 also

satisfies the relationship (p1 − f1(α)) f ′1(α) + (p2 − f2(α)) f ′2(α) = 0, which is transformed from the
Equation (3).

Because
∆t = en+1 − en (28)
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Substituting Equations (28) into (27), we can get the following error equation similar to that in [32],

en+1 =− 6
δ(a2

1 + b2
1)
(a1a2

2 p2b1 − a2
1b2 p2a2 + a2

1b2b0a2 − a1a2
2b0b1

− b1b2
2 p2a1 + b2

1b2 p2a2 + b1b2
2b0a1 − b2

1b2b0a2)e2
n + o(e3

n)
(29)

This implies that the algorithm defined by the iterative method (2) is quadratically convergent for
the point projection problem. The proof is completed.

Then, we will illustrate that the algorithm expressed by the iterative method (2) is third order
convergent for the point inversion problem.

Theorem 2. Let q(t) − c(t) = (q1(t) − f1(t), q2(t) − f2(t)) be a real parametric curve function in two
dimensions, suppose q(t)− c(t) has first and second derivatives within an interval. When q(t)− c(t) has only
one single root α ∈ I, and tn stays close sufficiently to α, so the iterative method (2) will be of cubic convergence
for point the inversion problem.

Proof. Given the point inversion problem is a special case of the point projection problem, the proof
of this theorem will use the results in the proof of Theorem 1. For the same part, we will not
repeat. Since the test point p is on the parametric curve c(t), from Equation (3), we can know that
(p1, p2) = (a0, b0). From Equation (29) and (p1, p2) = (a0, b0), we acquire the following error equation
in [32],

en+1 =
2(a1a2 + b1b2)

2

(a2
1 + b2

1)
2

e3
n + o(e4

n) (30)

This implies that the algorithm expressed by the iterative method (2) is third order convergent for
the point inversion problem. The proof is completed.

Theorem 3. The iterative method (2) is independent of the initial value for point projection and
inversion problem.

Proof. Firstly, we presents the interpretation for Figure 1. Assume there exists a horizontal axis t
and planar parametric curve c(t). There are two points on the planar parametric curve c(t): the first
point c(tn) with tn on the horizontal axis, and the second point c(α) is the corresponding orthogonal
projection point of the test point p onto the planar parametric curve c(t), where α is the corresponding
parameter value on the horizontal axis. While, according to the iterative method (2), the line segment
determined by point p and point c(α) and tangent line of planar parametric curve c(t) at t = α are
mutually perpendicular. The tangent line of the planar parametric curve c(t) through point c(tn) will
determine a footpoint q, which is obtained by orthogonally projecting test point p onto the tangent line
of the curve c(t) at t = tn. The corresponding parametric value tn+1 of footpoint q on the horizontal axis
is obviously the next iterative value used by the iterative method (2). The corresponding parametric
value of the middle point of the line segment determined by the point c(tn) and the footpoint q is M.

Secondly, we present the proof of Theorem 3. When the iterative method (2) only has one solution,
it is independent of the initial value for point projection and inversion problem.
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c(α)

c(t )n

t
n

c(t)

tn+1

Figure 1. Graphic demonstration for convergence analysis.

The proof method is similar to the ones in references [33–35]. It is not difficult to show
that the corresponding parameter of the first dimensional for the planar parametric curve on the
two-dimensional horizontal plane is t. When the iterative method (2) begins to iterate, as the
iterative parameter value satisfies the inequality relationship tn < α, by the graphical demonstration,
the parameter corresponding to the footpoint q will be tn+1. The middle point of point (tn+1, 0)

and point (tn, 0) is (M, 0), which implies the relationship M =
tn + tn+1

2
. Additionally, because of

0 < ∆t = tn+1 − tn, there is an inequality relationship tn < M < α. This result sufficiently yields
the inequality tn − α < tn+1 − α < α− tn = −(tn − α), namely, there is an iterative error expression
|en+1| < |en|, where en = tn − α. If tn > α, then the proving method is similar to the case with
tn < α. Thus, for the planar parametric curve c(t), there is an iterative error expression |en+1| < |en| in
the two-dimensional horizontal plane, namely, the iterative method (2) is independent of the initial
iterative parametric value.

Alternatively, we will present a descriptive proof that the iterative method (2) is independent of the
initial iterative parametric value. This proof method is also similar to the one in the literature [33–35].
Suppose that the starting point lies on the left of α, then footpoint q will lie on the right to the starting
point, and hence ∆t will be positive. By the iterative method (2), the iterative sequence is expressed
as follows,

tn = tn−1 + ∆tn−1 (31)

where

∆tn−1 =
det(q− c(tn−1), c′′(tn−1))

det(c′(tn−1), c′′(tn−1))
=

1

k ‖c′‖3 det(q− c(tn−1), c′′(tn−1))

If tn < α, the sequence tn is strictly monotonically increasing. If tn > α, by at most three iterations,
the sequence tn converge to α. Notice that this iterative sequence performs like an attenuated pendulum
and converges to α. Furthermore, when the starting point lies to the right of α, the convergence holds
in the same way. To summarize, the footpoint q depends on the test point p all the time, rather than on
the starting iteration point. So the iterative method (2) is independent of the initial value. The proof
is completed.

Remark 1. The iterative method (2) is independent of the initial value, but it only requires that c(t) is C2, while
the methods in the literature [33–35] need to satisfy the sufficient conditions for global convergence. In addition,
the iterative method (2) fits in with robustness and stabilization in Professor Les A. Piegl’s view [36].

Remark 2. If k(t) = 0 of the Equation (5), then t = t0. Hence, we calculate the distance between the point
c(t0) on the curve c(t) and the test point p, i.e., d1 = ‖p− c(t0)‖. At the same time, in order to deal with
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the possible failure of the projection or inversion, we use the parameter perturbation method and increment the
parameter t0 by a small positive constant ε, t0 = t0 + ε, so that the iteration can continue. During the iteration
process, when the derivative of the curve c(t) at t = t0 becomes zero, the same perturbation approach is applied.
Eventually, d =min{d1, d2, d3, ...} becomes the minimum distance between the curve c(t) and the test point p.

3. Numerical Experiments

This section provides numerical evidence to compare the behavior of the Newton iterative
algorithm and the iterative method (2) discussed above.

Example 1. We consider the curve c(t) = (t, sin(t)) with test point p = (2, 2) and the corresponding
parameter of projection point α = 1.7838126561069. Table 1 shows the results of Newton iteration and the
iterative method (2). The results verify that the iterative method (2) has better convergence and robustness,
while the Newton algorithm is dependent on the initial value but is unstable (See Figure 2).

Table 1. Step sizes ∆t1, ∆t2 in Example 1 for the Newton method and the iterative method (2).

p = (2, 2), t0 = −0.32

iterative methods Step 1 2 3 4 5 6

Newton method ∆t1 NC NC NC NC NC NC
The iterative method (2) ∆t2 1.82 2.8× 10−1 2.1× 10−3 8.3× 10−7 1.4× 10−13 0

p = (2, 2), t0 = 4.2

iterative methods Step 2 3 4 5 6 7

Newton method ∆t1 NC NC NC NC NC NC
The iterative method (2) ∆t2 −1.65× 10−1 −4.1× 10−2 3.5× 10−4 2.5× 10−8 2.2× 10−16 0

Note: we use NC in Table 1 to represent that the Newton method does not converge, and the same notation
applies in Table 2 to Table 6.

Figure 2. Graphic demonstration for Example 1.

Example 2. We use the curve c(t) = (t, cos(t)) with test point p = (2, 5) and the corresponding parameter
of projection point α = 0.402360707683495. Table 2 shows the results of Newton iteration and the iterative
method (2). The results also verify that the iterative method (2) has better convergence and robustness,
while Newton algorithm is dependent on the initial value but is unstable (See Figure 3).

Table 2. Step sizes ∆t1, ∆t2 in Example 2 for the Newton method and the iterative method (2).

p = (2, 5), t0 = 1.7

iterative methods Step 4 5 6 7 8 9 10

Newton method ∆t1 NC NC NC NC NC NC NC
The iterative method (2) ∆t2 −1.04 3.29× 10−1 2.94× 10−2 4.48× 10−4 1.05× 10−7 5.77× 10−15 0.0

p = (2, 5), t0 = −2.4

iterative methods Step 5 6 7 8 9 10 11

Newton method ∆t1 NC NC NC NC NC NC NC
The iterative method (2) ∆t2 −1.34 −0.461 9.08× 10−2 4.08× 10−3 8.69× 10−6 3.94× 10−11 0
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Figure 3. Graphic demonstration for Example 2.

Example 3. We consider the curve c(t) = (t2 + sin(t), sin(sin(t)) + cos(t)) with test point is p = (−1, 1)
and the corresponding parameter of projection point α = −0.26523161027243385. Table 3 shows the number
of iterations for the Newton iteration and the iterative method (2). The results show the iterative method (2)
has better convergence and robustness, at the same time, the Newton’s method sometimes converges slowly and
depends on the initial value but is unstable (See Figure 4).

Table 3. Comparison of the robustness and effectiveness for the Newton’s method and the iterative
method (2).

t0 −20 −16 −13 −10 −7 −2 0 1 5 8 11 15 18 20
The iterative method (2) 7 7 7 7 6 5 4 5 6 7 7 7 8 8

Newton’s method NC 11 11 10 10 7 5 6 9 10 11 11 12 NC

Figure 4. Graphic demonstration for Example 3.

Example 4. We use the curve c(t) = (t, sin(t) + cos(t)), t ∈ [3, 6] . Test point p = (−2,−6) and the
corresponding parameter of projection point is 3.1213051310788399. Table 4 shows the number of iterations
for Newton iteration and the iterative method (2). Results show the iterative method (2) has better convergence
and robustness, at the same time, Newton’s method is sometimes dependent on the initial value but is unstable
(See Figure 5).

Table 4. Comparison of the robustness and effectiveness for the Newton’s method and the iterative
method (2).

t0 5.75 5.76 5.77 5.78 5.79 5.80 5.82 5.84 5.85 5.87
The iterative method (2) 5 5 6 6 6 7 7 7 7 7

Newton method NC NC NC NC NC NC NC NC NC NC

t0 5.88 5.89 5.90 5.92 5.93 5.95 5.96 5.97 5.99 6.00
The iterative method (2) 7 6 6 8 10 25 23 24 21 22

Newton method NC NC NC NC NC NC NC NC NC NC
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Figure 5. Graphic demonstration for Example 4.

Example 5. We consider the curve c(t) = (t, sin(0.5t)), t ∈ [−6, 2]. Test point is p = (3,−7), and the
corresponding parameter of projection point is −0.35701470284643136. Table 5 shows number of iterations for
Newton iteration and the iterative method (2). Results show the the iterative method (2) has better convergence
and robustness, at the same time, Newton’s method is sometimes dependent on the initial value but is unstable
(See Figure 6).

Table 5. Comparison of the robustness and effectiveness for the Newton’s method and the iterative
method (2).

t0 −5.6 −5.5 −5.3 −5.2 −5.0 −4.9 −4.8 −4.7 −4.6 −4.5
The iterative method (2) 11 11 11 12 14 11 13 14 11 14

Newton method NC NC NC NC NC NC NC NC NC NC

t0 −4.3 −4.0 −3.8 −3.4 −3.0 −2.3 −2.0 −1.0 0.4 1.0
The iterative method (2) 13 11 16 7 10 6 11 11 12 14

Newton method NC NC NC NC NC NC NC NC NC NC

Figure 6. Graphic demonstration for Example 5.

Example 6. We use the curve c(t) = (t, cos(2t)), t ∈ [−12,−8]. The test point is p = (−1, 5), and the
corresponding parameter of projection point is −8.8928968570625730. Table 6 shows the number of iterations
for Newton iteration and the iterative method (2). Results show the iterative method (2) has better convergence
and robustness, at the same time, Newton’s method is sometimes dependent on the initial value but is unstable
(See Figure 7).
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Table 6. Comparison of the robustness and effectiveness for the Newton’s method and the iterative
method (2).

t0 −12.8 −12.4 −12.1 −11.9 −11.7 −11.0 −10.8 −10.7 −10.4 −10.0
The iterative method (2) 59 55 59 46 46 53 41 42 39 32

Newton method NC NC NC NC NC NC NC NC NC NC

Figure 7. Graphic demonstration for Example 6.

Remark 3. The iterative method (2) orthogonally projects a test point onto a parametric curve c(t). For the
case with multiple orthogonal points, our approach is changed in the following way:

(1) Divide a parameter interval [a, b] of parametric curve c(t) into M subintervals with equal length.
(2) Randomly select an initial iterative parametric value in each subinterval.
(3) Using the iterative method (2) and using each initial iterative parametric value, iterate, respectively.

Suppose that the iterative parametric values are α1 ,α2 ,...,αM, respectively.
(4) Calculate the local minimum distances d1, d2, ..., dM,where di = ‖p− c(αi)‖.
(5) Calculate the global minimum distance d = ‖p− c(α)‖ =

{
d1,d2,...dM

}
.

If we attempt to search all the solutions as fast as possible, divide a parameter interval [a, b] into
M subintervals with equal length such that M is sufficiently large.

According to Figures 5 and 7, either blue point is the only orthogonal projection point of the
test point, but not the point with minimum distance. For t ∈ [−6, 6] in Figure 5, four parameter
values are −5.8827783434357889, −2.3086073340017088, 1.0869042777921642, 3.1213051310788399,
respectively. According to Remark 3, it is easy to find that the orthogonal projection point determined
by the parameter value of −2.3086073340017088 is the one with minimum distance, but the orthogonal
projection points determined by the other parameter values are not. For t ∈ [−10, 3] in Figure 7,
eight parameter values are −8.1893433622682510, −5.9663756035363462, −4.8785206470437198,
−3.0152895587637027, −1.5956295339830861, −5.8855753296468201 × 10−2, 1.6840779491863052,
2.8953236261013390, respectively. In the same way, only the orthogonal projection point determined by
the parameter value of −5.8855753296468201× 10−2 is the one with minimum distance.

4. Conclusions

In this paper, regarding the point projection problem, we formally prove that projection of a point
onto a planar parameter curve is quadratically convergent and independent of the initial value. On the
point inversion problem, we formally prove that the inversion problem is cubically convergent and
independent of the initial value. In the future, we would like to present a formal proof of convergence
on projecting a point onto a spatial parametric curve and surface in literature [4].
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