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Abstract: Local Lorentz invariance is an important component of General Relativity. Testing for
Local Lorentz invariance can not only probe the foundation stone of General Relativity but also
help to explore the unified theory for General Relativity and quantum mechanics. In this paper,
we search the Local Lorentz invariance violation associated with operators of mass dimension d = 6
in the pure-gravity sector with short-range gravitational experiments. To enlarge the Local Lorentz
invariance violation signal effectively, we design a new experiment in which the constraints of all
fourteen violation coefficients may be improved by about one order of magnitude.

Keywords: Local Lorentz invariance violation; pendulum experiment; experimental design

1. Introduction

Local Lorentz Invariance (LLI), as a built-in element of General Relativity (GR) (for recent
overviews for its centenary see, for example, [1,2]), denotes that the physical results are kept invariant
when rotations and boosts are performed on a physical system. Though GR provides an impressive
description of the wide variety of gravitational phenomena, a unified theory is expected to merge
gravity and quantum physics, which is a very popular topic of current physics research [3]. However,
current unified theories, such as string theory [4–6], predict that some modifications to the foundations
of GR may induce some observable effects associated with the Lorentz violation. Thus, investigating
the Lorentz violation is a worthy tool to test GR [7–14], and it may help us to explore the unified theory
for GR and quantum mechanics.

In the past few years, LLI violation theories have developed rapidly, resulting in many frameworks
to test LLI violation effects at attainable scales, such as the SME(Standard Model extension) frame [6,7],
PPN (Parameterized post-Newtonian)frame [10,15,16], and so on. Here, we only focus on the testing
Lorentz violation effect in the SME frame. In this frame, the LLI violating effect can be divided into
three parts: a pure-matter sector, matter–gravity couplings and a pure-gravity sector, in which the last
part can be written as a series with mass dimension d (such as d = 4, 6 ...). As experimental techniques
are improved, combining theories and experiments to test LLI violation becomes an interesting
work. Currently, the LLI violation effect for the pure-matter sector [17], matter–gravity couplings
sector [8,18,19] and pure-gravity sector (for d = 4) have been widely studied. For the pure-matter
sector, many experiments have been used to search for the LLI violation effect for different particles,
such as photons, electrons, protons and so on. Here, take photon related experiments as a typical
example, the available tightest photon-sector constraint currently is at 10−43 [20] for a certain particular
operator. For LLI violation in matter–gravity couplings, the best current constraints are obtained at
10−11 GeV [19]. For LLI violation in the pure-gravity part, the experimental classification falls into
three parts: experiments on ground [21], solar system [22], and astrophysical measurements [23,24],
in which the different limits for different mass dimensions of LLI violation effects are given. For mass
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dimension d = 4, the best constraints for violating coefficients are obtained at 10−12 [22] in solar system.
In this paper, we focus on searching for LLI violation in pure-gravity sector for d = 6, which has been
widely tested by short-range gravitational experiments, since the short-range experiments are better
than other experiments to probe higher dimension coefficients with r-dependence. The best current
limit for d = 6 is at 10−9 m2 [25], which is given by a combined analysis for lab-based on-ground
experiments HUST-2011 [26], HUST-2015 [27], IU-2002 and IU-2012 [28]. Based on the experiment
performed in our lab, the test of the gravitational inverse square law, we have proposed a simple
scheme to greatly enlarge the LLI violation signal [29]. Here, we will further refine the experimental
part of the project.

This paper has the following structure: in Section 2, we will introduce the LLI violation coefficients
in the SME frame expressed by the cartesian coefficients and Newton spherical coefficients, respectively.
As the violating coefficients expressed in cartesian coefficients can be limited with the double
trace condition, and each of the violation coefficients expressed by spherical decomposition can
be independently limited. Thus, we shortly introduce the two types of expressions for the violating
coefficients. In Section 3, the Lorentz violation torque in pendulum experiments is analyzed in detail.
In Section 4, we introduce a new experimental design for testing the LLI violation effect with a stripe
structure. Then it is followed by a simple discussion on it. Finally, we give a conclusion in Section 5.

2. LLI Violation in SME Frame

2.1. LLI Violation: Cartesian Coefficients

The Standard Model extension (SME) is an effective field theory describing Lorentz violation in
low-energy experiments. The pure-gravity sector can be formulated as a Lagrange density composed
of the usual Einstein-Hilbert term R and a cosmological constant, and the LLI violating terms
expressed by an infinite series of operators with the increasing mass dimension d, which represents
LLI violation [7,30],

L =

√−g
16πGN

(R + Λ + LM + L(4)
LV + L(5)

LV + L(6)
LV + · · · ), (1)

here, LM is the matter term, and the last three terms are the Lorentz violation terms, which are
constituted by the LLI violating coefficient field kαβ··· and the gravitationally physical quantities
(curvature tensors Rαβγσ [30] and its covariant derivatives). Here, we consider violating terms with

d = 6, for which L(6)
LV can be written as:

L(6)
LV =

1
2
(k(6)1 )αβγδκλ{Dκ , Dλ}Rαβγδ + (k(6)2 )αβγδκλµνRκλµνRαβγδ. (2)

which can be tested by gravity interaction at short range. In the Post-Newtonian approximation,
Equation (2) results in the modified Poisson equation, and then the Lorentz violation potential between
two masses in a lab frame can be written as

VLV(~r) = −Gm1m2
k̄(r̂)
|~r3| , (3)

in which the~r is the vector separating two masses, the corrected factor k̄(r̂) is the background dynamical
field via spontaneous Lorentz violation in lab frame, and it can be expressed as

k̄(r̂) =
3
2
(k̄e f f )iijj − 9(k̄e f f )ijkk r̂i r̂j +

15
2
(k̄e f f )ijkl r̂i r̂j r̂k r̂l , (4)

in which r̂i is the projection of the unit vector along~r in the ith direction, and the indices j, k, and l also
stand for three spatial directions. For the lab-based, on ground experiments, as the LLI violating effect
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is related to the rotation and boost of the Earth, it can be expressed by the tensor field of background
in space-time. Besides, as the convention, the results of LLI violation coefficients from experimental
searching are usually reported in the Sun-centered celestial-equatorial frame (SME frame). However,
as the experiments take place on the earth, we should make a transformation for the LLI violation
coefficients from lab frame to SME frame. Here, the lab frame (x, y, z) is defined as: the x axis is along
the length direction of the pendulum and the angle of the x axis and local south is θ and the y and z axis
point to east and the zenith, respectively. The SME frame (X, Y, Z) is defined as: the Z axis points along
the direction of the Earth’s rotation axis and the X axis points toward the vernal Equinox [31–35]. Thus,
the LLI violating effect in the lab frame is modulated by the Earth’s rotation, generating a sidereal
torque signal experimentally [36]. Ignoring the Earth’s boost (approximately to 10−4), the SME frame
(X, Y, Z) can be related to the lab frame (x, y, z) by a time-dependence rotation:

RjJ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 cos χ cos ω⊕T cos χ sin ω⊕T − sin χ

− sin ω⊕T cos ω⊕T 0
sin χ cos ω⊕T sin χ sin ω⊕T cos χ

 , (5)

here, T is the sidereal time, χ the colatitude of the lab, and ω⊕ ' 2π/(23h56 min) the Earth’s sidereal
frequency. Therefore, the T-dependence violating coefficients (k̄e f f )jklm (in the lab frame) can be
connected to the constant violating coefficients (in the SME frame) with the following transformation,

(k̄e f f )jklm = RjJ RkKRlLRmM(k̄e f f )JKLM, (6)

take the Equations (4)–(6) into Equation (3), the Lorentz violation potential between two masses can be
correspondingly written as a Fourier series

VLV(θ,~r, T) =
−Gm1m2

r3 [c0 +
4

∑
m=1

(cm cos mω⊕T + sm sin mω⊕T)]. (7)

According to Equation (6), the Fourier amplitudes c0, cm, and sm in Equation (7) are functions
of (k̄e f f )JKLM. As double trace (k̄e f f )JKJK is a rotational scalar, it can not be observed in gravitational
experiments. Therefore, one can set the double trace (k̄e f f )JKJK = 0, and only fourteen coefficients
can be measured in experiments. To simplify the analysis, (k̄e f f )JKLM can be replaced by the modified
coefficients k̄ j (j = 1,2,3, · · · 14) with a transformation,



k̄1

k̄2

k̄3

k̄4

k̄5

k̄6

k̄7

k̄8

k̄9

k̄10

k̄11

k̄12

k̄13

k̄14



=



1 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
−1 −1 6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 −3
0 0 0 0 0 0 0 0 0 0 0 1 −3 0





(k̄e f f )XXXX
(k̄e f f )YYYY
(k̄e f f )XXYY
(k̄e f f )XXZZ
(k̄e f f )YYZZ
(k̄e f f )XXXY
(k̄e f f )XYYY
(k̄e f f )XYZZ
(k̄e f f )XZZZ
(k̄e f f )YZZZ
(k̄e f f )XXXZ
(k̄e f f )YYYZ
(k̄e f f )XXYZ
(k̄e f f )XYYZ



. (8)

Here, the transforming matrix is obtained by decomposing the corrected factor k(r̂, T), expressed
in the Fourier series of Equation (7), into even and odd harmonics and further decomposing the even
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part into three terms with the frequencies at 0, 2ω⊕ and 4ω⊕ and the odd part into two terms with the
frequencies at ω⊕ and 3ω⊕. The detailed description can also be found in the reference [24]. Then the
relationship between the predigested coefficients k̄ j and nine Fourier amplitudes can be expressed as,

c0 = λ1k̄1 + λ2k̄2

c2 = λ3k̄3 + λ4k̄4 + λ5k̄5 + λ6k̄6

s2 = − 1
2 λ5k̄3 − 1

2 λ6k̄4 + 2λ3k̄5 + 2λ4k̄6

c4 = λ7k̄7 + λ8k̄8

s4 = 1
4 λ8k̄7 − 4λ7k̄8

c1 = λ9k̄9 + λ10k̄10 + λ11k̄11 + λ12k̄12

s1 = −λ10k̄9 + λ9k̄10 − λ12k̄11 + λ11k̄12

c3 = λ13k̄13 + λ14k̄14

s3 = λ14k̄13 − λ13k̄14

. (9)

By introducing the rotation
x̃ = x cos θ cos χ− y sin θ cos χ + z sin χ

ỹ = x sin θ + y cos θ

z̃ = −x cos θ sin χ + y sin θ sin χ + z cos χ

, (10)

λj(θ, r̂, χ) can be further written as

λ1(θ, r̂, χ) = −27
16

+
63
8r2 z̃2 − 75

16r4 z̃4 λ2(θ, r̂, χ) = −9
2
+

36
r2 z̃2 − 75

2r4 z̃4

λ3(θ, r̂, χ) = −9
2

x̃2 − ỹ2

r2 +
15
4

x̃4 − ỹ4

r4 λ4(θ, r̂, χ) = −9
2

x̃2 − ỹ2

r2

(
1− 5

z̃2

r2

)
λ5(θ, r̂, χ) =

x̃ỹ
r2

(
−18 + 15

x̃2 + ỹ2

r2

)
λ6(θ, r̂, χ) = 18

x̃ỹ
r2

(
−1 + 5

z̃2

r2

)
λ7(θ, r̂, χ) =

45
8

x̃2ỹ2

r4 −
15
16

x̃4 + ỹ4

r4 λ8(θ, r̂, χ) = 15
x̃ỹ
r2

x̃2 − ỹ2

r2

λ9(θ, r̂, χ) =
−x̃z̃
r2 (18− 30

z̃2

r2 ) λ10(θ, r̂, χ) =
z̃ỹ
r2

(
−18 + 30

z̃2

r2

)
λ11(θ, r̂, χ) =

−x̃z̃
r2

(
18− 45

2
x̃2 + ỹ2

r2

)
λ12(θ, r̂, χ) =

−z̃ỹ
r2

(
18− 45

2
x̃2 + ỹ2

r2

)
λ13(θ, r̂, χ) =

15
2
−x̃z̃
r2

3ỹ2 − x̃2

r2 λ14(θ, r̂, χ) =
45
2
−z̃ỹ
r2

x̃2 − ỹ2/3
r2

, (11)
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and the relation between Fourier amplitudes and LLI violation coefficients can be shown as,



c0

c2

s2

c4

s4

c1

s1

c3

s3


=



λ1 2λ1 λ1 λ2 λ2 0 0 0 0 0 0 0 0 0
λ3 −λ3 0 λ4 −λ4 λ5 λ5 λ6 0 0 0 0 0 0
−λ5

2
λ5
2 0 −λ6

2
λ6
2 2λ3 2λ3 2λ4 0 0 0 0 0 0

−λ7−λ76λ7 0 0 λ8 −λ8 0 0 0 0 0 0 0
−λ8

4
−λ8

4
3λ8

2 0 0 −4λ7 4λ7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ9 λ10λ11 λ12 λ12 λ11

0 0 0 0 0 0 0 0 −λ10 λ9 λ11 λ11 λ11 −λ12

0 0 0 0 0 0 0 0 0 0 λ13 λ14 −3λ14−3λ13

0 0 0 0 0 0 0 0 0 0 λ14−λ13 3λ13 −3λ14





(k̄e f f )XXXX
(k̄e f f )YYYY
(k̄e f f )XXYY
(k̄e f f )XXZZ
(k̄e f f )YYZZ
(k̄e f f )XXXY
(k̄e f f )XYYY
(k̄e f f )XYZZ
(k̄e f f )XZZZ
(k̄e f f )YZZZ
(k̄e f f )XXXZ
(k̄e f f )YYYZ
(k̄e f f )XXYZ
(k̄e f f )XYYZ



. (12)

Based on this equation, we can search for the LLI violation effect through the experimental data.

2.2. LLI Violation: Spherical Coefficients

Based on the lab frame, LLI violation coefficients can also be expressed by spherical decomposition.
Spherical coefficients provide a clean separation of the observable harmonics in sidereal time and offer
a direct path for analyses seeking effects of Lorentz violation at arbitrary d. Therefore, the Lorentz
violation potential for d = 6, in terms of the spherical coordinates r, θ, and φ in the lab frame, can be
written as,

VLV(~r) = −G ∑
jm

m1m2

r3 Yjm(θ, φ)klab
jm , (13)

where klab
jm are the spherical coefficients representing the LLI violating effect in the lab frame, which can

be related to the SME frame coefficients through the relation [37],

klab
jm = ∑

m′
eimθeim′ω⊕Td(j)

mm′(−χ)k jm′ . (14)

Here, j in the klab
jm equals to 2 or 4 for d = 6, m varies from −j, · · · j, when m is positive or

negative, k jm is correspondingly Rek j,m or Imk j,m, and d(j)
mm′ is the little Wigner matrices representing

the rotation with respect to the y axis. The LLI violation potential in the lab experiments can be
regarded as oscillatory with period T and frequency ω⊕. Therefore, the LLI violating force varies
with the frequencies including the fourth harmonic of ω⊕, and it is also the functions of fourteen
independently non-relativistic coefficients k jm. Here, to compare them easily, we assume that the
relation with respect to spherical coefficients between Fourier amplitudes and transfer coefficients
has the similar transforming form to cartesian coefficients. Then, the nine Fourier amplitudes in
Equation (7) can be expressed by the spherical coefficients as
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c0 = γ1k2,0 + γ2k4,0

c2 = γ3Rek2,2 + γ4Imk2,2+γ5Rek4,2 + γ6Imk4,2

s2 = γ4Rek2,2 − γ3Imk2,2 + γ6Rek4,2 − γ5Imk4,2

c4 = γ7Rek4,4 + γ8Imk4,4

s4 = γ8Rek4,4 − γ7Imk4,4

c3 = γ13Rek4,3 + γ14Imk4,3

s3 = γ14Rek4,3 − γ13Imk4,3

, (15)

which have been written with cartesian coefficients, shown in Equation (9). The final expression for
violation coefficients (cartesian coefficients or spherical coefficients) can be transformed to each other
by a transformation matrix [37], and the relation of k jm and (k̄e f f )JKLM can be shown as



k2,0

Rek2,1

k2,−1

Rek2,2

Imk2,−2

k4,0

Rek4,1

Imk4,−1

Rek4,2

Imk4,−2

Rek4,3

Imk4,−3

Rek4,4

Imk4,−4



=
√

π
7



36√
5

0 0 72√
5

0 36√
5

0 0 0 0 36√
5

0 36√
5

0

0 0 12
√

6√
5

0 0 0 0 12
√

6√
5

0 12
√

6√
5

0 0 0 0

0 0 0 0 −12
√

6√
5

0 0 0 0 0 0 −12
√

6√
5

0 −12
√

6√
5

−6
√

6√
5

0 0 0 0 −6
√

6√
5

0 0 0 0 6
√

6√
5

0 6
√

6√
5

0

0 12
√

6√
5

0 0 0 0 12
√

6√
5

0 12
√

6√
5

0 0 0 0 0

−5 0 0 −10 0 −40
√

10
7 0 0 0 0 −5 0 −40 0

0 0 6 0 0 0 0 6 0 −8 0 0 0 0
0 0 0 0 −6 0 0 0 0 0 0 −6 0 8

−
√

10 0 0 0 0 −10
√

5 0 0 0 0
√

10 0 −6
√

10 0
0 2
√

10 0 0 0 0 2
√

10 0 −12
√

10 0 0 0 0 0
0 0 −2

√
35 0 0 0 0 6

√
35 0 0 0 0 0 0

0 0 0 0 6
√

35 0 0 0 0 0 0 −2
√

35 0 0√
5√
2

0 0 −3
√

70 0 0 0 0 0 0
√

5√
2

0 0 0

0 −2
√

70 0 0 0 0 2
√

70 0 0 0 0 0 0 0





(k̄e f f )XXXX
(k̄e f f )XXXY
(k̄e f f )XXXZ
(k̄e f f )XXYY
(k̄e f f )XXYZ
(k̄e f f )XXZZ
(k̄e f f )XYYY
(k̄e f f )XYYZ
(k̄e f f )XYZZ
(k̄e f f )XZZZ
(k̄e f f )YYYY
(k̄e f f )YYYZ
(k̄e f f )YYZZ
(k̄e f f )YZZZ



. (16)

Combining this transformation and Equation (11), γj can be obtained as

γ1 = −
√

5
4
√

π
(1− 3 z̃2

r2 ) γ2 = 1
16
√

π
(9− 90 z̃2

r2 − 105 z̃4

r4 )

γ3 = −
√

15
2
√

2π
( x̃2−ỹ2

r2 ) γ4 = −
√

15
2
√

2π

x̃ỹ
r2

γ5 = 3
√

5
4
√

2π

x̃2−ỹ2

r2 (1− 7 z̃2

r2 ) γ6 = 3
√

5
2
√

2π

x̃ỹ
r2 (1− 7 z̃2

r2 )

γ7 = 3
√

35
8
√

2π

x̃4−6x̃2 ỹ2+ỹ4

r4 γ8 = 3
√

35√
2π

x̃ỹ
r2

x̃2−ỹ2

r2

γ9 =
√

15√
2π

x̃ỹ
r2 γ10 = −

√
15√
2π

ỹz̃
r2

γ11 = − 3
√

5
4
√

π
x̃z̃
r2 (3− 7 z̃2

r2 ) γ12 = 3
√

5
4
√

π

ỹz̃
r2 (3− 7 z̃2

r2 )

γ13 = 3
√

35
4
√

π
x̃z̃
r2

x̃2−3ỹ2

r2 γ14 = − 3
√

35
4
√

π

ỹz̃
r2

ỹ2−3x̃2

r2

. (17)

As a result, the nine Fourier amplitudes c0, cm and sm are linear combinations of k jm, through the
fourteen independent functions γj(θ, r̂, χ) with j = 1, 2, · · · 14.

3. LLI Violation in Pendulum Experiments

In general short-range pendulum experiments, the planar geometry is often used to suppress the
Newtonian background, and it also suppresses the LLI violation signal. After the numerical calculation,
the Newtonian force between two infinite planes of uniform mass density is constant, and the Lorentz
violating force between two infinite planes is zero. In fact, the infinite plate is not existent in true life,
so the Lorentz violating force between two planes is not zero, and we find it is dominated by the edge
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effect. Based on the experimental data of testing the gravitational inverse square law (HUST-2011)
with a pendulum, we have analyzed the LLI violation effect and constrained the violating coefficients
at the level of 10−8 m2 [38]. Moreover, we perform a combined analysis and achieved the best level of
LLI violation at 10−9 m2 [25]. For our experiments (HUST-2011, HUST-2015), the range and density
modulation are adopted to change the interaction between the test and source masses, and we measure
the variation of torque to extract the LLI violating signal, while IU experiments (IU-2002 and IU-2012)
measure the force variation at a shorter range.

We now analyze the LLI violating signal between the test (density ρ1 ) and source (density ρ2)
masses in a pendulum experiment. With the assumption of dm1 = ρ1dV1 and dm2 = ρ2dV2, the Lorentz
violation torque can be expressed by cartesian coefficients and spherical coefficients as

τLV = Gρ1ρ2

∫∫
dV1dV2

∂

∂θ1

k(~r)
r3 = Gρ1ρ2

∫∫
dV1dV2

∂

∂θ1

∑
jm

Yjm(θ, φ)klab
jm

r3

= Gρ1ρ2

∫∫
dV1dV2

∂

∂θ1

c0 +
4
∑

m=1
cm cos(mω⊕T) + smsin(mω⊕T)

r3 .

, (18)

with θ1 the angle between torque balance and source mass in horizontal direction. Comparing with
Equation (9), the transfer coefficients with cartesian coefficients and spherical coefficients can be
shown as,

Λj = Gρ1ρ2

∫∫
∂

∂θ1

λj(θ, r̂, χ)

r3 dV1dV2

Γj = Gρ1ρ2

∫∫
∂

∂θ1

γj(θ, r̂, χ)

r3 dV1dV2

. (19)

The Lorentz violation torque can be similarly expanded as the Fourier series,

τLV = C0 +
4

∑
m=1

[Cm cos(mω⊕T) + Sm sin(mω⊕T)], (20)

then the specific relation between the Fourier amplitudes and the LLI violation coefficients can be
written as



C0

C2

S2

C4

S4

C1

S1

C3

S3


=



Λ1 2Λ1 Λ1 Λ2 Λ2 0 0 0 0 0 0 0 0 0
Λ3 −Λ3 0 Λ4 −Λ4 Λ5 Λ5 Λ6 0 0 0 0 0 0
−Λ5

2
Λ5
2 0 −Λ6

2
Λ6
2 2Λ3 2Λ3 2Λ4 0 0 0 0 0 0

−Λ7−Λ76Λ7 0 0 Λ8 −λ8 0 0 0 0 0 0 0
−Λ8

4
−Λ8

4
3Λ8

2 0 0 −4Λ7 4Λ7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Λ9 Λ10Λ11 Λ12 Λ12 Λ11

0 0 0 0 0 0 0 0 −Λ10 Λ9 Λ11 Λ11 Λ11 −Λ12

0 0 0 0 0 0 0 0 0 0 Λ13 Λ14 −3Λ14−3Λ13

0 0 0 0 0 0 0 0 0 0 Λ14−Λ13 3Λ13 −3Λ14





(k̄e f f )XXXX
(k̄e f f )YYYY
(k̄e f f )XXYY
(k̄e f f )XXZZ
(k̄e f f )YYZZ
(k̄e f f )XXXY
(k̄e f f )XYYY
(k̄e f f )XYZZ
(k̄e f f )XZZZ
(k̄e f f )YZZZ
(k̄e f f )XXXZ
(k̄e f f )YYYZ
(k̄e f f )XXYZ
(k̄e f f )XYYZ



(21)
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in cartesian coefficients, and



C0

C2

S2

C4

S4

C1

S1

C3

S3


=



Γ1 Γ2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Γ3 Γ4 Γ5 Γ6 0 0 0 0 0 0 0 0
0 0 Γ4 −Γ3 Γ6 −Γ5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Γ7 Γ8 0 0 0 0 0 0
0 0 0 0 0 0 Γ8 −Γ7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Γ9 Γ10 Γ11 Γ12 0 0
0 0 0 0 0 0 0 0 Γ10 −Γ9 Γ12 −Γ11 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Γ13 Γ14

0 0 0 0 0 0 0 0 0 0 0 0 Γ14 −Γ13





k2,0

k4,0

Re k2,2

Im k2,2

Re k4,2

Im k4,2

Re k4,4

Im k4,4

Re k2,1

Im k2,1

Re k4,1

Im k4,1

Re k4,3

Im k4,3



(22)

in spherical coefficients. Based on Equations (21) and (22), C0 is a linear combination of Λ1 and Λ2

or Γ1 and Γ2. C2, S2 are the linear combinations of Λ3, Λ4, Λ5 and Λ6 or Γ3, Γ4, Γ5 and Γ6. C4, S4

are the linear combinations of Λ7 and Λ8 or Γ7 and Γ8. C1, S2 are the linear combinations of Λ9, Λ10,
Λ11 and Λ12 or Γ9, Γ10 ,Γ11 and Γ12. C3, S3 are the linear combinations of Λ13 and Λ14 or Γ13 and
Γ14. As a result, we can achieve the spherical coefficients k jm and descartes coefficients (k̄e f f )JKLM,
as long as the Lorentz violation torque is measured. According to Equations (21) and (22), the transfer
coefficients can be regarded as the bridge of the LLI violation torque and LLI violation coefficients.
Based on Equation (16), the relation of transfer coefficients with spherical coefficients and cartesian
coefficients can be expressed as

Γ1 = 5(8Λ1−5Λ2)

36
√

5π
Γ2 = Λ1−Λ2

5
√

π

Γ3 = −
√

5/6π
6 (6Λ3 + Λ4) Γ4 =

√
5/6π
12 (6Λ5 + Λ6)

Γ5 =
√

5/2π
5 (Λ4 −Λ3) Γ3 =

√
5/2π
10 (Λ5 −Λ6)

Γ7 = −
√

14
5π Λ7 Γ8 = −

√
7

10π Λ8

Γ9 = 1
4

√
5

6π (Λ9 +
4
3 Λ11) Γ10 = 1

4

√
5

6π (Λ10 +
4
3 Λ12)

Γ9 = 1
10

√
5
π (Λ11 −Λ9) Γ10 = 1

10

√
5
π (Λ10 −Λ12)

Γ13 = − 1
2

√
7

5π Λ13 Γ14 = − 1
2

√
7

5π Λ14

. (23)

4. Experimental Design and Expected Result for Testing Lorentz Violation

4.1. Experimental Design

As LLI violation effect is dominated by the edge effect, here, we modify the structure of test
and source masses from the flat plate design (see HUST-2011) to the striped design. The detailed
description for this new design can be seen in [29], in which the transfer coefficients are improved
greatly and the upper bound of the LLI violation coefficients may be improved by about one order
of magnitude.

To independently limit the fourteen LLI violation coefficients, we advance two stripe-type designs,
horizontal stripe type and vertical stripe type, shown in Figure 1. Here, we will take the horizontal
stripe-type setup, for example, to simply introduce this new design. With the same dimensions of
19.8 mm× 19.8 mm× 1.3 mm, two tungsten and horizontally stripped masses (one is the test mass
Wt and the other is the counterbalance mass) are symmetrically adhered to the two sides of the
I-shaped pendulum, symmetrically. The arm length of the test mass is 41.1 mm. The source mass
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platform, facing the pendulum, is also designed as an I-shaped structure. A tungsten source mass
(Ws) with dimension 19.8 mm× 19.8 mm× 1.3 mm is adhered to one side of the I-shaped structure,
opposite to the test mass Wt. The non-Newtonian torque can be measured between test and source
masses for separations from 0.4 to 1.0 mm, where the net change of Newtonian torque is counteracted
by a tungsten counterweight mass with dimensions of 19.8 mm× 19.8 mm× 1.3 mm, adhered to the
other side of the source mass platform, and located the same to Wt in the y axis direction. The right
parts in the experimental setups of (a) and (b) are copper cylinders, which are used to calibrate the
gravitational signal. To increase the LLI violation signal and decrease the Newton torque signal at
the same time, we come up with a new design, shown in Figure 2: with the positions of test masses
(Wt) unchanged, one should shift the left source mass up for half of the width of a strip (+π/2) and
left half of the width of a strip, and shift the right Ws down for half of the width of a strip (−π/2)
and right for half of the width of a strip. In this design, the Newtonian torque between left test and
source masses is counteracted by the Newtonian torque between right test and source masses strictly.
In other words, this specially tripped design can not only suppress the Newtonian gravitational signal
strongly but also enlarge the LLI violating signal.

(a) 

(b) 

x 

Lab frame z South 

q

y 
x 

Lab frame z 

South q

y 

Figure 1. Schematic diagram of the LLI-violation signal-sensitive experimental design. Both the test
and source masses are in the periodically stripped geometry (along z direction). (a) is horizontal
stripe-type geometry with the angle θ = π/2 between torsion system and lab system; (b) is vertical
stripe-type geometry with θ = π/6.
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x

z

Test mass (Wt )

shift
π

2

Source mass (Ws)

shift
π

2

Figure 2. Relative positions between the test (Wt) and source (Ws) masses in the x − z plane.
The positions of the test masses (left mass and right mass) are kept invariant in experiments. One source
mass is shifted up for half of a strip’s width (+π/2) and left for half of a strip’s width.

From Figure 1, to make the transfer coefficients as large as possible, different angles are chosen in
(a) and (b). Based on Equation (22), the larger transfer coefficients Γj are, the larger LLI violation signal
we will achieve, which means the higher limitation of the LLI violation coefficients k jm we will obtain
with the same experimental precision. From Equation (19), as θ is involved in the transfer coefficients,
we should choose an appropriate angle to make the fourteen transfer coefficients large simultaneously.
For the violating signal in the typical short-range pendulum experiments, the uncertainty for the
constant mode C0 is limited by the systematic errors, while the uncertainties for the harmonic modes
Cm and Sm are limited by the statistics errors. As the systematic error is lager than the statistics error,
the constraints of the violating coefficients related to C0 are potentially worse than those related to
Cm and Sm. Here, to achieve better constraints for the total violating coefficients, we select a better
"θ", with which the transferring coefficients for the violating coefficients related to C0 get the larger
values. This can be checked by the numerical simulation. To more directly describe their relation,
we list the variation of all transfer coefficients with θ in horizontal stripe-type (see Figure 3) and
vertical stripe-type (see Figure 4), respectively. Besides, the appropriate angles in different stripe-type
experiments are also denoted in Figures 3 and 4.

For this new experimental design, the LLI violation torque is modulated by changing the
separation between the test and source masses. The violating torque can be expanded as a Fourier
series, and nine Fourier amplitudes can be extracted from the experiments. Thus, the fourteen
Lorentz violation coefficients cannot be obtained by one experiment. Here, we design two stripe-type
experiments (see Figure 1a,b) to test the LLI effect. Finally, all fourteen LLI violation coefficients can be
extracted from a combined analysis of horizontal and vertical stripe geometry experiments.
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Figure 3. (Color online) The relationship between all fourteen transfer coefficients and angle in
horizontal stripe-type experiment. From this figure, the transfer coefficients get larger, when θ ≈ π/7
or π/2.
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Figure 4. (Color online) The relationship between the fourteen transfer coefficients and angle in vertical
stripe-type experiment. From this figure, the transfer coefficients get larger, when θ ≈ π/6 or 3π/5.

4.2. Discussion and Expected Result

Based on the description of experimental design, at least two experiments are needed to
independently give the limit of LLI violation coefficients. In fact, either horizontal stripes experiment
or vertical stripes experiment can be operated more than twice with different angles θ. Therefore,
to obtain the best constraints for the LLI violation coefficients, the most important thing is to choose
a perfect combination.



Symmetry 2017, 9, 219 12 of 15

To choose a suitable combined scheme, we can use the existing experimental error bar to estimate
the feasibility of our new stripe-type design. As the new experimental design is based on HUST-2011
experiment, we can estimate the error bar similarly. In HUST-2011 experiment [38], experimental error
of the constant term (C0) and harmonic terms (Cm, Sm) at 2σ have achieved the level at 1.9× 10−16 Nm
and 0.45× 10−16 Nm, respectively. The error of C0 is dominant by the systematic error, while the
errors of Cm, Sm are limited by the thermal noise, which is at the same level to the statistical errors in
current experiment.

The systematic errors related to C0 are rooted in the machining and aligning of the masses,
especially the aligning in experiment. Then, assuming both the machining precision and aligning
(no matter along the horizontal direction or the vertical direction) precision are three microns, a whole
error estimation for horizontal stripe-type and vertical stripe-type experimental designs can be derived,
which are listed in second and third columns of Table 1, respectively. Meanwhile, similar to the
HUST-2011 experiment, we also cursorily estimate the thermal noise, which is also listed in Table 1.
Moreover, to derive an expected constraints for LLI violation coefficients, we set the errors of Cm, Sm at
0.45× 10−16 Nm, and C0 at 11.7× 10−16 Nm and 10.4× 10−16 Nm in horizontal and vertical stripe-type
structures, respectively.

Based on the above analysis, to independently constrain the LLI violating coefficients with a high
limitation, we choose two stripe-type experiments with the same error level for a combining analysis,
in which θ = π/7 and π/2 in horizontal stripe-type experiments and θ = π/6 and 3π/5 in vertical
stripe-type experiments. Finally, we estimate the improvement of the constraints for the LLI violating
coefficients, which is shown by the ratio of the total error in the current best constraint to that in our
new design, see Table 2. Here, the first column represents the all fourteen spherical coefficients for
d = 6; the second column gives the current best constraints of LLI violating spherical coefficients;
and the last two columns stands for the improvement of the limitation of LLI violation coefficients in
horizontal stripe-type and vertical stripe-type designs, respectively.

Table 1. The main errors of constant term amplitude (C0) in the periodic strip design, which include
the metrology errors (assuming the errors on all sources are three microns) and the statistical error
(thermal noise).

Sources
Error of C0 in Horizontal

Stripe-Type Design (∆τ (10−16Nm))
Error of C0 in Vertical

Stripe-Type Design (∆τ (10−16Nm))

Size error in test mass 4.0 4.0
Size error in source mass 3.9 3.8

The aligned error in horizontal direction 1.4 5.2
The aligned error in height direction 4.4 0.6
Horizontal error in experimenting 0.8 6.6

Height error in experimenting 9.1 2.5
Statistical error (thermal noise) 0.4 0.4

Total 11.7 10.4

From Table 2, the upper bounds of violation coefficients are all improved in the two stripe-type
experiments. However, different coefficients have different improvements. The coefficients related to
harmonic frequencies are increased by more than one order of magnitude, while the coefficients related
to the constant term just can be increased four or five multiples. Therefore, to effectively improve the
constraints of Lorentz violation coefficients, one can ameliorate the precision of experimental material
to decrease the system error or extend the length of data to decease the statistical error.
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Table 2. The improvement of the constraints for LLI violating spherical coefficients in the new design,
which is shown by the ratio of the total error in the current best constraint [37] to that in our new design.
(See the last columns of this Table).

Coefficients
Current Constraint

(10−8 m2) [37]
Ratio in Horizontal Stripe-Type

for θ = π/7 and π/2
Ratio in Vertical Stripe-Type

for θ = π/6 and 3π/5

k2,0 3± 23 4 5
Re k1,1 −4± 4 16 21
Im k2,1 −2± 4 16 21
Re k2,2 0± 9 67 73
Im k2,2 1± 4 30 32

k4,0 4± 25 4 4
Re k4,1 3± 5 13 14
Im k4,1 1± 5 13 14
Re k2,2 0± 12 44 92
Im k2,2 2± 2 7 15
Re k4,3 0± 1 7 7
Im k4,3 1± 1 7 7
Re k4,4 2± 9 97 49
Im k4,4 2± 5 54 27

5. Conclusions

In this paper, we describe an experimental design, increasing the LLI violation signal with the
test mass and source mass in the stripe type. With this design, the constraints of all fourteen Lorentz
violation coefficients may be improved by about one order of magnitude. In addition, we find that
an appropriate value for θ (the angle between the SME and lab frames) can help to give the larger
transfer coefficients: for the typical parameters, take θ ≈ π/7 and π/2 in the horizontal stripe-type
experiments and θ ≈ π/6 and 3π/5 in the vertical stripe-type experiments, respectively. Finally,
we report in Table 2 the expected improvements of the constraints for each LLI violation coefficients
with conservative estimation.
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