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1. Introduction

Let Z denote the set of all integers, Nk := {n ∈ Z : n ≥ k}, k ∈ Z, and N = N1. Investigations
of difference equations and systems of difference equations have been conducted for a long time
(see, for example, [1–37] and the references therein). The solvability of the equations and systems is
one of the oldest topics in the area. It is always nice to have formulas for solutions to the equations and
systems for themselves, but also since they can frequently help in studying of the long-term behavior
of the solutions, as is the case in [7,33,35]. Many classical results, including the ones on solvability of
the equations and systems, can be found in the following classical books: [8,14–16,19,20].

Many of solvable difference equations and systems essentially use the solvability of the linear
first-order difference equation, that is, of the following difference equation

xn+1 = qnxn + fn, n ∈ N0, (1)

where (qn)n∈N0 and ( fn)n∈N0 are given sequences. We will mention here just a few recent examples;
the interested reader can find many other examples in the list of the references of the mentioned papers.
In [33] was studied the following difference equation

xn =
anxn−k

bn + cnxn−1 · · · xn−k
, n ∈ N0, (2)

which is transformed to an equation of the form in (1) by using the change of variables
yn = 1/(xnxn−1 · · · xn−k+1), while [32] studies the following difference equation

xn+1 =
xnxn−k

xn−k+1(a + bxnxn−k)
, n ∈ N0,
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which is transformed to an equation of the form in (1) by using the change of variables yn =

1/(xn+1xn−k+1) (for an extension of the equation see [31]). Essentially the same ideas and methods
were used in [23,35], while [1] studies a special case of Equation (2) in another way. In fact, all the
papers use our ideas and methods from a 2004 note. Paper [27] presents several related methods
and can be considered as a representative one, where a comprehensive list of relevant references on
solvability is given. It is also worthy to mention that some nonlinear systems of difference equations
were solved by reducing them, by using some suitable changes of variables, to solvable linear ones
(see, for example, [7,34], as well as the related references therein). The solvability of some product-type
equations ([27]) and systems ([28,36,37]) has been also shown by using some solvable linear ones,
although in a more complex way. In fact, some of the results in papers [28,36,37] use special cases of
the following equation

zn = bnzan
n−1, n ∈ N0,

which is a product-type analog of Equation (1). All above mentioned examples show the importance
of Equation (1). Here, we will frequently use various things connected to Equation (1). Some recent
applications of this and related solvable equations can be found in [5,6]. Let us also mention that
beside showing the solvability of difference equations and systems by finding closed-form formulas
for their solutions, in the cases when it is not possible to find them, one can try to find some of their
invariants which can be also useful in studying of the long-term behavior of their solutions ([21,22]).

Motivated by the recent studies of the solvability, quite recently in [30], we have studied,
among other problems, the existence of bounded solutions to the difference equation

xn+2 − qnxn = fn, n ∈ N0, (3)

in two different ways. Applying classical method of variation of constants it is easily shown that in the
case qn = q ∈ C \ {0}, Equation (3) has the general solution in the following form:

xn = (
√

q)n
(

c0 +
n−1

∑
k=0

fk

2(
√

q)k+2

)
+ (−√q)n

(
d0 +

n−1

∑
k=0

(−1)k fk

2(
√

q)k+2

)
, n ∈ N0, (4)

where c0 and d0 are arbitrary complex numbers, and
√

q is one of two possible roots of q. By using
Formula (4), as well as another method, we have shown in [30], among other results, that the equation
in the case qn = q, n ∈ N0, has a unique bounded solution in the case when |q| > 1, and used the
obtained formula for the bounded solution as a motivation for introducing an operator which along
with the contraction mapping principle ([4]) helps in showing the existence of a unique bounded
solution to Equation (3) under some conditions posed on the sequence (qn)n∈N0 . It is a natural problem
to try to use the same ideas and methods in investigating of bounded solutions to some other classes
of linear and nonlinear difference equations.

One of the aims of the paper is to present some related results to those in [30] for the case of the
difference equation

xn+2 + pnxn+1 + qnxn = fn, n ∈ N0. (5)

This equation is one of the most important and widely studied difference ones, since it models
many real-life quantities and processes, for example, the amplitude of oscillation of the weights on
a discretely weighted vibrating string [3] (pp. 15–17). For some classical results and methods for
studying Equation (5), see, for example, [16,26], as well as the references therein. Note also that by
using the differences ∆xn = xn+1 − xn and ∆2xn = xn+2 − 2xn+1 + xn the equation can be written in
the following form

∆2xn + (pn + 2)∆xn + (pn + qn + 1)xn = fn, n ∈ N0,
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from which it immediately follows that the equation is a discrete variant of a linear second-order
differential equation.

We first investigate the case when

pn = p, qn = q 6= 0, n ∈ N0, (6)

and ( fn)n∈N0 is a bounded sequence, and after that the case when (pn)n∈N0 and (qn)n∈N0 are
nonconstant sequences. The case when (6) holds can be regarded as a folklore one, but it is difficult to
find many of the information provided here in the literature, especially at one place. The case when
the zeros of the characteristic polynomial associated to the corresponding homogeneous equation do
not belong to the unit circle is described in detail. It should be pointed out that when one of the zeros
belongs to the circle then, as usual, very different situations appears. Recall that if in Equation (1)
qn = 1, n ∈ N0, then, the bounded sequence ( fn)n∈N0 highly influences on the behavior of the solutions
to the equation. Namely, a solution to the equation can converge, diverge to infinity, the limit set can
be even a whole interval (see, for example, [19,24], as well as [2] for the case of metric spaces), or it can
be even a more complicated set.

As in [30], we first use some solvability methods and then the contraction mapping principle
in showing the existence of a unique bounded solution to Equation (5) under some conditions
posed on the coefficients of the equation. For some other applications of fixed-point theorems in
studying difference equations and systems, see, for example, [10–12,17,18,25] and the related references
therein. Note that beside the contraction mapping principle, very frequent situation is application of a
variant of the Schauder fixed-point theorem ([10–12,17,18]), and since recently the Darbo fixed-point
theorem ([38]) which uses the notion of measure of non-compactness ([25]). It should be noted that
many of these papers essentially use a similar idea, that is, a combination of a solvability method,
which is frequently hidden by some summations, and a fixed point theorem. The existence of periodic
solutions in the case when (pn)n∈N0 and (qn)n∈N0 are constant sequences, while ( fn)n∈N0 is a periodic
sequence is also studied, as well as the relationship between the periodic and non-periodic ones, which
is a natural continuation of the investigations in [29].

In our recent paper [29] we have also studied bounded solutions to Equation (1), but on the set of
all integers Z, which has motivated us to conduct a similar investigation for the case of Equation (5).
Hence, beside studying bounded solutions on domain N0, it will be also done on domains Z \ N2

and Z. One of the reasons, why instead of the domain Z \N is chosen Z \N2 is found in the fact that
the initial, that is, end values for the sets N0 and Z \N2 are the same, so that the domains patch each
other well. Let us mention that a part of our investigations in [29,30] are motivated by a problem
from [9].

Let S ⊆ Z be an unbounded set. Then the space of bounded sequences f = ( fn)n∈S on S with the
supremum norm

‖ f ‖∞,S = sup
n∈S
| fn|, (7)

is Banach’s, and is usually denoted by l∞(S). Throughout the paper we will simply use the notations
‖ f ‖∞ and l∞, no matter which set S is used, since at each point it will be clear what the set is. We will
also use the standard convention ∑l

j=m aj = 0, when m, l ∈ Z are such that l < m.
It is said that a sequence (xn)n∈Nk

converges geometrically (exponentially) to a sequence (x̃n)n∈Nk

if there are M > 0 and q ∈ [0, 1), such that

|xn − x̃n| ≤ Mqn, for n ∈ Nk,
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while a sequence (xn)n∈Z\Nk
converges geometrically (exponentially) to a sequence (x̃n)n∈Z\Nk

if there
are M > 0 and q ∈ [0, 1), such that

|x−n − x̃−n| ≤ Mqn, for n ≥ −k + 1.

2. Bounded Solutions to Equation (5) on N0

First, we prove an auxiliary result in a standard way, for the case when (pn)n∈N0 and (qn)n∈N0 are
constant sequences. The result can be obtained from a formula for the general solution to Equation (5)
when the fundamental set of solutions to the corresponding homogeneous equation is known. We will
give a proof of it for the completeness, and to avoid frequent troubles with indices which lead to some
minor inaccuracies related to the formula as it is the case in [20]. Some consequences of the lemma,
which should be folklore, are given.

Lemma 1. Consider the equation

xn+2 + pxn+1 + qxn = fn, n ∈ N0, (8)

where p ∈ C, q ∈ C \ {0}, and ( fn)n∈N0 is a sequence of complex numbers. Then the following statements
are true.

(a) If p2 6= 4q, then the general solution to Equation (8) is given by the following formula

xn = λn
1

(
c0 −

n−1

∑
k=0

fk

λk+1
1 (λ2 − λ1)

)
+ λn

2

(
d0 +

n−1

∑
k=0

fk

λk+1
2 (λ2 − λ1)

)
, (9)

for n ∈ N0, where c0 and d0 are arbitrary complex numbers, and

λ1,2 =
−p±

√
p2 − 4q

2
. (10)

(b) If p2 = 4q, then the general solution to Equation (8) is given by the following formula

xn = λn
(

c0 −
n−1

∑
k=0

(k + 1) fk

λk+2

)
+ nλn

(
d0 +

n−1

∑
k=0

fk

λk+2

)
, (11)

for n ∈ N0, where c0 and d0 are arbitrary complex numbers, and λ = −p/2.

Proof. (a) We solve the equation by the method of variation of constants ([8,20]). As it is well-known,
the corresponding homogeneous equation, in this case, has the general solution in the following form:

xn = cλn
1 + dλn

2 , n ∈ N0,

where λ1,2 are the zeros of the characteristic polynomial

P2(λ) = λ2 + pλ + q, (12)

associated to the homogeneous equation, from which (10) follows.
Hence, the general solution to (8) is searched for in the following form:

xn = cnλn
1 + dnλn

2 , n ∈ N0, (13)

where (cn)n∈N0 and (dn)n∈N0 are two (undetermined) sequences.
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The following condition is posed

xn+1 = cn+1λn+1
1 + dn+1λn+1

2 = cnλn+1
1 + dnλn+1

2 , (14)

for n ∈ N0, that is,

(cn+1 − cn)λ
n+1
1 + (dn+1 − dn)λ

n+1
2 = 0, (15)

for n ∈ N0.
Employing (13), (14), as well as (14) where n is replaced by n + 1 in (8), and using that

p = −(λ1 + λ2) and q = λ1λ2, we get

cn+1λn+2
1 + dn+1λn+2

2 − (λ1 + λ2)(cnλn+1
1 + dnλn+1

2 ) + λ1λ2(cnλn
1 + dnλn

2 ) = fn,

that is,

(cn+1 − cn)λ
n+2
1 + (dn+1 − dn)λ

n+2
2 = fn, (16)

for n ∈ N0.
For each fixed n ∈ N0, (15) and (16) jointly can be regarded as a two-dimensional linear system in

variables cn+1 − cn and dn+1 − dn.
By solving the system it is easily obtained

cn+1 − cn = − fn

λn+1
1 (λ2 − λ1)

and dn+1 − dn =
fn

λn+1
2 (λ2 − λ1)

, n ∈ N0,

from which it follows that

cn = c0 −
n−1

∑
k=0

fk

λk+1
1 (λ2 − λ1)

and dn = d0 +
n−1

∑
k=0

fk

λk+1
2 (λ2 − λ1)

, (17)

for n ∈ N0.
Using (17) into (13) we get (9). That (9) represents the general solution to (8), follows from the fact

that the sequence

x̂n :=
n−1

∑
k=0

λn−k−1
2 − λn−k−1

1
λ2 − λ1

fk

is a particular solution to Equation (8), which is easily verified, while

xh
n = c0λn

1 + d0λn
2 ,

is the general solution to the corresponding homogeneous equation ([8,20]).
(b) The corresponding homogeneous equation, in this case, has the general solution in the

following form:
xn = cλn + dnλn, n ∈ N0,

where λ is the (double) zero of polynomial (12), that is, λ = −p/2.
So, the general solution to (8) is looked for in the following form:

xn = cnλn + dnnλn, n ∈ N0, (18)

where (cn)n∈N0 and (dn)n∈N0 are two (undetermined) sequences.
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The following condition is posed

xn+1 = cn+1λn+1 + dn+1(n + 1)λn+1 = cnλn+1 + dn(n + 1)λn+1, (19)

for n ∈ N0, that is,

(cn+1 − cn)λ
n+1 + (dn+1 − dn)(n + 1)λn+1 = 0, n ∈ N0. (20)

Employing (18), (19), as well as (19) where n is replaced by n + 1 in (8), and using that p = −2λ

and q = λ2, we get

cn+1λn+2 + dn+1(n + 2)λn+2 − 2λ(cnλn+1 + dn(n + 1)λn+1) + λ2(cnλn + dnnλn) = fn,

that is,

(cn+1 − cn)λ
n+2 + (dn+1 − dn)(n + 2)λn+2 = fn, n ∈ N0. (21)

For each fixed n ∈ N0, equalities (20) and (21) can be regarded as a two-dimensional linear system
in variables cn+1 − cn and dn+1 − dn.

By solving the system it is easily obtained

cn+1 − cn = − (n + 1) fn

λn+2 and dn+1 − dn =
fn

λn+2 , n ∈ N0,

from which it follows that

cn = c0 −
n−1

∑
k=0

(k + 1) fk

λk+2 and dn = d0 +
n−1

∑
k=0

fk

λk+2 , n ∈ N0. (22)

Using (22) into (18) we get (11). That (11) represents the general solution to (8), follows from the
facts that the sequence

x̂n :=
n−1

∑
k=0

n− k− 1
λk+2−n fk, n ∈ N0,

is a particular solution to difference Equation (8), which is easily verified, while the sequence

xh
n = c0λn + d0nλn, n ∈ N0,

is the general solution to the corresponding homogeneous difference equation, as desired.

Remark 1. If q = 0, then Equation (8) is essentially reduced to Equation (1), when p 6= 0, or to a very
simple equation if p = 0, which is the reason why the condition q 6= 0 is posed in Lemma 1.

Corollary 1. Consider Equation (8) where p ∈ C, q ∈ C \ {0}, x0 and x1 are complex numbers, and ( fn)n∈N0

is a sequence of complex numbers. Then the following statements are true.

(a) If p2 6= 4q, then the solution to Equation (8) with the initial values x0 and x1 is given by the
following formula

xn =
1

λ2 − λ1

(
λn

1

(
λ2x0 − x1 −

n−1

∑
k=0

fk

λk+1
1

)
+ λn

2

(
x1 − λ1x0 +

n−1

∑
k=0

fk

λk+1
2

))
, (23)

for n ∈ N0, where λ1,2 are given by (10).
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(b) If p2 = 4q, then the solution to Equation (8) with the initial values x0 and x1 is given by the
following formula

xn = λn
(

x0 −
n−1

∑
k=0

(k + 1) fk

λk+2

)
+ nλn−1

(
x1 − λx0 +

n−1

∑
k=0

fk

λk+1

)
, (24)

for n ∈ N0, where λ = −p/2.

Proof. (a) Using Formula (9) with n = 0, 1, and by some calculations, we see that it must be

c0 + d0 = x0, λ1c0 + λ2d0 = x1.

By solving the two-dimensional linear system, we obtain

c0 =
λ2x0 − x1

λ2 − λ1
, d0 =

x1 − λ1x0

λ2 − λ1
. (25)

Using (25) in (9) is obtained (23).
(b) From (11) with n = 0, 1, and some calculations, we see that it must be

c0 = x0, c0 + d0 =
x1

λ
,

from which it follows that

c0 = x0, d0 =
x1 − λx0

λ
. (26)

Using (26) in (11) is obtained (24).

Remark 2. Corollary 1, which essentially includes Lemma 1, can be also obtained by another standard
method, the method of decomposition. We would like to point out that the method produces a slightly
different formula. Namely, Equation (8) can be written in the following form:

xn+2 − λ1xn+1 = λ2(xn+1 − λ1xn) + fn, n ∈ N0. (27)

By using the change of variables

yn = xn+1 − λ1xn, n ∈ N0,

Equation (27) becomes

yn+1 = λ2yn + fn, n ∈ N0, (28)

which is a special case of Equation (1), so it is solvable in closed-form, and its solution is

yn = λn
2 y0 +

n−1

∑
j=0

f jλ
n−1−j
2 , n ∈ N0,

from which it follows that

xn = λ1xn−1 + λn−1
2 (x1 − λ1x0) +

n−2

∑
j=0

f jλ
n−2−j
2 , n ∈ N. (29)
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By solving Equation (29) and after some calculation, in the case λ1 6= λ2, we obtain

xn =
(x1 − λ2x0)λ

n
1 − (x1 − λ1x0)λ

n
2

λ1 − λ2
+

n−2

∑
j=0

f j
λ

n−j−1
1 − λ

n−j−1
2

λ1 − λ2
, n ∈ N, (30)

which, on the first site, seems a bit different from the formula in (23). However, since

n−1

∑
j=0

f j
λ

n−j−1
1 − λ

n−j−1
2

λ1 − λ2
=

n−2

∑
j=0

f j
λ

n−j−1
1 − λ

n−j−1
2

λ1 − λ2
+ fn−1

1− 1
λ1 − λ2

,

we see that Formulas (23) and (30) are the same.
The same situation appears in the case λ1 = λ2. We leave the verification of the fact as an exercise.

In fact, a similar situation appears at several points, and at some different contexts, in the paper.
We will not mention them, and suggest the reader to have the remark on his mind.

The following folklore result is another consequence of Lemma 1.

Corollary 2. Consider Equation (8), where the zeros λ1,2 of polynomial (12) satisfy the condition

M := max{|λ1|, |λ2|} < 1, (31)

and ( fn)n∈N0 is a bounded sequence of complex numbers. Then every solution to the equation is bounded.

Proof. According to Lemma 1 we know that in the case p2 6= 4q, the general solution to difference
Equation (8) is given by Formula (9), while if p2 = 4q, the general solution is given by (11).

Assume first that p2 6= 4q. Then, by using (9), we have

|xn| ≤|λ1|n
(
|c0|+

n−1

∑
k=0

| fk|
|λ1|k+1|λ2 − λ1|

)
+ |λ2|n

(
|d0|+

n−1

∑
k=0

| fk|
|λ2|k+1|λ2 − λ1|

)

≤ Mn(|c0|+ |d0|) +
‖ f ‖∞

|λ2 − λ1|
n−1

∑
k=0

(|λ1|n−k−1 + |λ2|n−k−1)

≤ |c0|+ |d0|+
2‖ f ‖∞

|λ2 − λ1|(1−M)
,

for every n ∈ N0, from which the result follows, in this case.
Now assume that p2 = 4q. Since in this case λ1 = λ2 = λ = −p/2 and |λ| = M, by using (11),

we have

|xn| ≤|λ|n
(
|c0|+

n−1

∑
k=0

(n− k− 1)| fk|
|λ|k+2

)
+ n|λ|n|d0|

≤ n|λ|n(|c0|+ |d0|) + ‖ f ‖∞

n−1

∑
s=0

s|λ|s−1

≤ (|c0|+ |d0|) sup
n∈N

nMn +
‖ f ‖∞

(1−M)2 ,

for every n ∈ N0, from which along with the boundedness of the sequence (nMn)n∈N, the result
follows, in this case.

If the sequence ( fn)n∈N0 is T-periodic, that is,

fn = fn+T , n ∈ N0, (32)
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for some T ∈ N (for T = 1 is said that fn is eventually constant [13]), a natural question is if Equation (8)
in this case has periodic solutions, and if so what is the relation between the periodic ones and the
other solutions ([29]). The following result gives an answer to the question.

Theorem 1. Consider Equation (8), where the zeros λ1,2 of polynomial (12) satisfy condition (31) and ( fn)n∈N0

is a T-periodic sequence. Then the following statements hold.

(a) There is a unique T-periodic solution to Equation (8).
(b) All the solutions to Equation (8) converge geometrically to the periodic one.

Proof. (a) If (xn)n∈N0 is a T-periodic solution to Equation (8), then specially we have

x0 = xT and x1 = xT+1. (33)

On the other hand, if (33) holds, then from (8) and (32), we have

xT+2 = −pxT+1 − qxT + fT = −px1 − qx0 + f0 = x2.

A simple inductive argument along with a use of (8) shows that

xmT+l = xl ,

for every m ∈ N and l ∈ {0, 1, . . . , T − 1}, that is, such a solution to Equation (8) is T-periodic.
Case p2 6= 4q. From this and (23), we see that it is enough to show that the linear system

x0 =
1

λ2 − λ1

(
λT

1

(
λ2x0 − x1 −

T−1

∑
k=0

fk

λk+1
1

)
+ λT

2

(
x1 − λ1x0 +

T−1

∑
k=0

fk

λk+1
2

))

x1 =
1

λ2 − λ1

(
λT+1

1

(
λ2x0 − x1 −

T

∑
k=0

fk

λk+1
1

)
+ λT+1

2

(
x1 − λ1x0 +

T

∑
k=0

fk

λk+1
2

))
,

(34)

has a unique solution in variables x0 and x1.
System (34) can be written in the following form:

(λ1λ2(λ
T−1
1 − λT−1

2 ) + λ1 − λ2)x0 + (λT
2 − λT

1 )x1 = λT
1 S1 − λT

2 S2

λ1λ2(λ
T
1 − λT

2 )x0 + (λT+1
2 − λT+1

1 + λ1 − λ2)x1 = λT+1
1 S1 − λT+1

2 S2,
(35)

where

S1 :=
T−1

∑
j=0

f j

λ
j+1
1

and S2 :=
T−1

∑
j=0

f j

λ
j+1
2

.

After some standard but interesting calculation it is shown that the determinant of system (35) is:

∆ =

∣∣∣∣∣ λ1λ2(λ
T−1
1 − λT−1

2 ) + λ1 − λ2 λT
2 − λT

1
λ1λ2(λ

T
1 − λT

2 ) λT+1
2 − λT+1

1 + λ1 − λ2

∣∣∣∣∣
=(λ1 − λ2)

2(λT
1 − 1)(λT

2 − 1) 6= 0,

(36)

due to (31) and λ1 6= λ2.
Also, we have

∆1 =

∣∣∣∣∣ λT
1 S1 − λT

2 S2 λT
2 − λT

1
λT+1

1 S1 − λT+1
2 S2 λT+1

2 − λT+1
1 + λ1 − λ2

∣∣∣∣∣
=(λ2 − λ1)(λ

T
1 (λ

T
2 − 1)S1 − λT

2 (λ
T
1 − 1)S2),

(37)
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and

∆2 =

∣∣∣∣∣ λ1λ2(λ
T−1
1 − λT−1

2 ) + λ1 − λ2 λT
1 S1 − λT

2 S2

λ1λ2(λ
T
1 − λT

2 ) λT+1
1 S1 − λT+1

2 S2

∣∣∣∣∣
=(λ2 − λ1)(λ

T+1
1 (λT

2 − 1)S1 − λT+1
2 (λT

1 − 1)S2).

(38)

From (36) to (38), it follows that

x0 =
λT

1 (λ
T
2 − 1)S1 − λT

2 (λ
T
1 − 1)S2

(λ2 − λ1)(λ
T
1 − 1)(λT

2 − 1)
(39)

and

x1 =
λT+1

1 (λT
2 − 1)S1 − λT+1

2 (λT
1 − 1)S2

(λ2 − λ1)(λ
T
1 − 1)(λT

2 − 1)
, (40)

are the initial values for which is obtained the T-periodic solution to Equation (8) in this case.

Case p2 = 4q. Using (24), we see that (33) becomes the linear system

x0 =λT
(

x0 −
T−1

∑
k=0

(k + 1) fk

λk+2

)
+ TλT−1

(
x1 − λx0 +

T−1

∑
k=0

fk

λk+1

)

x1 =λT+1
(

x0 −
T

∑
k=0

(k + 1) fk

λk+2

)
+ (T + 1)λT

(
x1 − λx0 +

T

∑
k=0

fk

λk+1

)
.

(41)

System (41) can be rewritten in the following form:

(1 + (T − 1)λT)x0 − TλT−1x1 = TλT−1Ŝ1 − λT Ŝ2

TλT+1x0 + (1− (T + 1)λT)x1 = (T + 1)λT Ŝ1 − λT+1Ŝ2,
(42)

where

Ŝ1 :=
T−1

∑
j=0

f j

λj+1 and Ŝ2 :=
T−1

∑
j=0

(j + 1) f j

λj+2 .

After some calculation it is shown that the determinant of system (42) is:

∆ =

∣∣∣∣∣ 1 + (T − 1)λT −TλT−1

TλT+1 1− (T + 1)λT

∣∣∣∣∣ = (λT − 1)2 6= 0, (43)

due to (31).
Also, we have

∆1 =

∣∣∣∣∣ TλT−1Ŝ1 − λT Ŝ2 −TλT−1

(T + 1)λT Ŝ1 − λT+1Ŝ2 1− (T + 1)λT

∣∣∣∣∣
=TλT−1Ŝ1 + λT(λT − 1)Ŝ2,

(44)

and

∆2 =

∣∣∣∣∣ 1 + (T − 1)λT TλT−1Ŝ1 − λT Ŝ2

TλT+1 (T + 1)λT Ŝ1 − λT+1Ŝ2

∣∣∣∣∣
=λT(1 + T − λT)Ŝ1 + λT+1(λT − 1)Ŝ2.

(45)

From (43)–(45), it follows that

x0 =
TλT−1Ŝ1 + λT(λT − 1)Ŝ2

(λT − 1)2
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and

x1 =
λT(1 + T − λT)Ŝ1 + λT+1(λT − 1)Ŝ2

(λT − 1)2 ,

are the initial values for which is obtained the T-periodic solution to Equation (8) in this case.
(b) If (x̃n)n∈N0 is the T-periodic solution to Equation (8) and (xn)n∈N0 is any solution to the

equation, then if p2 6= 4q, from (23) we have

|x̃n − xn| =
1

|λ2 − λ1|

∣∣∣∣(λn
1

(
λ2 x̃0 − x̃1 −

n−1

∑
k=0

fk

λk+1
1

)
+ λn

2

(
x̃1 − λ1 x̃0 +

n−1

∑
k=0

fk

λk+1
2

))

−
(

λn
1

(
λ2x0 − x1 −

n−1

∑
k=0

fk

λk+1
1

)
+ λn

2

(
x1 − λ1x0 +

n−1

∑
k=0

fk

λk+1
2

))∣∣∣∣
≤ (|λ2||x̃0 − x0|+ |x̃1 − x1|)|λ1|n + (|λ1||x̃0 − x0|+ |x̃1 − x1|)|λ2|n

|λ2 − λ1|
,

from which along with (31) the statement follows in this case.
If p2 = 4q, then from (24) we have

|x̃n − xn| =
∣∣∣∣λn
(

x̃0 −
n−1

∑
k=0

(k + 1) fk

λk+2

)
+ nλn−1

(
x̃1 − λx̃0 +

n−1

∑
k=0

fk

λk+1

)

− λn
(

x0 −
n−1

∑
k=0

(k + 1) fk

λk+2

)
− nλn−1

(
x1 − λx0 +

n−1

∑
k=0

fk

λk+1

)∣∣∣∣
≤|x̃0 − x0||λ|n + (|x̃1 − x1|+ |λ||x̃0 − x0|)n|λ|n−1

≤M
(

1 + |λ|
2

)n

,

for some M = M(x0, x1, x̃0, x̃1, λ), from which the statement follows in this case.

The following result solves the problem of existence of a unique bounded solution to Equation (5)
for the case pn = p, qn = q, n ∈ N0, when

m := min{|λ1|, |λ2|} > 1. (46)

Theorem 2. Consider Equation (8), where the zeros λ1,2 of the polynomial (12) satisfy condition (46), and
( fn)n∈N0 is a bounded sequence of complex numbers. Then, there is a unique bounded solution to the equation.

Proof. According to Lemma 1 (a) we know that in the case p2 6= 4q, the general solution to (8) is given
by (9), while if p2 = 4q, the general solution is given by (11).

Assume first that p2 6= 4q. If in the case there is a bounded solution to Equation (8), then it must
be

c0 =
∞

∑
k=0

fk

λk+1
1 (λ2 − λ1)

=: S̃1 and d0 = −
∞

∑
k=0

fk

λk+1
2 (λ2 − λ1)

=: S̃2. (47)

Note that sums S̃1 and S̃2 are finite since due to condition (46) and the boundedness of ( fn)n∈N0 ,
we have ∣∣∣∣ ∞

∑
k=0

fk

λk+1
j (λ2 − λ1)

∣∣∣∣ ≤ ‖ f ‖∞

|λ2 − λ1|(|λj| − 1)
< +∞, j = 1, 2.

Indeed, if c0 6= S̃1 and d0 6= S̃2, then from (9), we easily get

|xn| � (max{|λ1|, |λ2|})n. (48)
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If c0 6= S̃1 and d0 = S̃2, then

xn = λn
1

(
c0 −

n−1

∑
k=0

fk

λk+1
1 (λ2 − λ1)

)
− λn

2

∞

∑
k=n

fk

λk+1
2 (λ2 − λ1)

.

From this and since ∣∣∣∣λn
2

∞

∑
k=n

fk

λk+1
2 (λ2 − λ1)

∣∣∣∣ ≤ ‖ f ‖∞

|λ2 − λ1|(|λ2| − 1)

we get

xn � λn
1 . (49)

If c0 = S̃1 and d0 6= S̃2, then

xn = λn
1

∞

∑
k=n

fk

λk+1
1 (λ2 − λ1)

+ λn
2

(
d0 +

n−1

∑
k=0

fk

λk+1
2 (λ2 − λ1)

)
.

From this and since ∣∣∣∣λn
1

∞

∑
k=n

fk

λk+1
1 (λ2 − λ1)

∣∣∣∣ ≤ ‖ f ‖∞

|λ2 − λ1|(|λ1| − 1)

we get

xn � λn
2 . (50)

Hence, in these three cases from (48)–(50) it would follow that the solutions would be unbounded,
a contradiction.

By using (47) in (9), we get

xn =
∞

∑
k=n

λn−k−1
1 − λn−k−1

2
λ2 − λ1

fk, n ∈ N0. (51)

A direct calculation shows that sequence (xn)n∈N0 defined by (51) is a solution to Equation (8).
On the other hand, by using the assumptions of the theorem we easily get

|xn| ≤
2‖ f ‖∞

|λ2 − λ1|
∞

∑
k=n

mn−k−1 =
2‖ f ‖∞

|λ2 − λ1|(m− 1)
< ∞, n ∈ N0,

from which the boundedness of (xn)n∈N0 , follows. From this and since by (47), (c0, d0) is uniquely
determined it follows that (51) is a unique bounded solution to Equation (8), in this case.

Now, assume that p2 = 4q. If in the case there is a bounded solution to (8), then it must be

c0 =
∞

∑
k=0

(k + 1) fk

λk+2 =: S3 and d0 = −
∞

∑
k=0

fk

λk+2 =: S4. (52)

Note that sums S3 and S4 are also finite since due to condition (46) and the boundedness of
( fn)n∈N0 we have ∣∣∣∣ ∞

∑
k=0

fk

λk+2

∣∣∣∣ ≤ ‖ f ‖∞

|λ|(|λ| − 1)
< +∞
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and ∣∣∣∣ ∞

∑
k=0

(k + 1) fk

λk+2

∣∣∣∣ ≤ ‖ f ‖∞

(|λ| − 1)2 < +∞.

Indeed, if c0 6= S3 and d0 6= S4, then from (11), we easily get

|xn| � n|λ|n. (53)

If c0 6= S3 and d0 = S4, then

xn = λn
(

c0 −
n−1

∑
k=0

(k + 1) fk

λk+2

)
− nλn

∞

∑
k=n

fk

λk+2 .

From this, since ∣∣∣∣nλn
∞

∑
k=n

fk

λk+2

∣∣∣∣ ≤ n‖ f ‖∞

|λ|(|λ| − 1)

and n = o(λn), we get

xn � λn. (54)

If c0 = S3 and d0 6= S4, then

xn = λn
∞

∑
k=n

(k + 1) fk

λk+2 + nλn
(

d0 +
n−1

∑
k=0

fk

λk+2

)
.

From this, since∣∣∣∣λn
∞

∑
k=n

(k + 1) fk

λk+2

∣∣∣∣ ≤ ‖ f ‖∞

|λ|2
∞

∑
s=0

s + n + 1
|λ|s =

‖ f ‖∞

|λ|2

(
|λ|n
|λ| − 1

+
|λ|2

(|λ| − 1)2

)
,

and n = o(nλn), we get

xn � nλn. (55)

Hence, in these three cases from (53)–(55) it would follow that the solutions are unbounded,
a contradiction.

By using (52) in (11), we get

xn =
∞

∑
k=n

(k + 1− n)
λk+2−n fk, n ∈ N0. (56)

A direct calculation shows that sequence (xn)n∈N0 defined by (56) is a solution to Equation (8).
On the other hand, by using the assumptions of the theorem we easily get

|xn| ≤ ‖ f ‖∞

∞

∑
k=n

(k + 1− n)|λ|n−k−2 =
‖ f ‖∞

(|λ| − 1)2 < ∞, n ∈ N0,

from which the boundedness of (xn)n∈N0 follows. From this and since by (52), (c0, d0) is uniquely
determined it follows that (56) is a unique bounded solution to Equation (8), in this case.

Theorem 3. Consider Equation (8), where p ∈ C, q ∈ C \ {0}, the zeros λ1,2 of the polynomial (12) satisfy
condition (46) and ( fn)n∈N0 is a T-periodic sequence. Then, the unique bounded solution to Equation (8)
is T-periodic.
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Proof. If (x̃n)n∈N0 is the bounded solution to Equation (8), then by Theorem 2 we see that it is given
by (51) when p2 6= 4q and (56) if p2 = 4q.

Hence, if p2 6= 4q, then we have

x̃n+T =
∞

∑
k=n+T

λn+T−k−1
1 − λn+T−k−1

2
λ2 − λ1

fk

=
∞

∑
j=n

λ
n−j−1
1 − λ

n−j−1
2

λ2 − λ1
f j+T

=
∞

∑
j=n

λ
n−j−1
1 − λ

n−j−1
2

λ2 − λ1
f j = x̃n,

(57)

for n ∈ N0, while if p2 = 4q, we have

x̃n+T =
∞

∑
k=n+T

(k + 1− n− T)
λk+2−n−T fk

=
∞

∑
j=n

(j + 1− n)
λj+2−n f j+T

=
∞

∑
j=n

(j + 1− n)
λj+2−n f j = x̃n,

(58)

for n ∈ N0. From (57) and (58) the result follows.

Theorem 4. Consider Equation (8), where p ∈ C, q ∈ C \ {0}, the zeros λ1,2 of the polynomial (12) satisfy
the following condition

min{|λ1|, |λ2|} < 1 < max{|λ1|, |λ2|}, (59)

and ( fn)n∈N0 is a bounded sequence of complex numbers. Then, the following statements are true.

(a) If |λ1| < 1 < |λ2|, then a solution to Equation (8) is bounded if and only if

λ1x0 − x1 =
∞

∑
j=0

f j

λ
j+1
2

. (60)

(b) If |λ2| < 1 < |λ1|, then a solution to Equation (8) is bounded if and only if

λ2x0 − x1 =
∞

∑
j=0

f j

λ
j+1
1

. (61)

Proof. (a) Since |λ1| < 1, we have that∣∣∣∣λn
1

(
λ2x0 − x1 −

n−1

∑
k=0

fk

λk+1
1

)∣∣∣∣ ≤(|λ2||x0|+ |x1|)|λ1|n + ‖ f ‖∞

n−1

∑
k=0
|λ1|n−k−1

≤|λ2||x0|+ |x1|+
‖ f ‖∞

1− |λ1|
< ∞.

(62)
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From (23), (62), and since |λ2| > 1, it follows that the boundedness of a solution xn to Equation (8)
implies (60). Indeed, since |λ2| > 1, we have∣∣∣∣ ∞

∑
k=0

fk

λk+1
2

∣∣∣∣ ≤ ∞

∑
k=0

| fk|
|λ2|k+1 ≤

‖ f ‖∞

|λ2| − 1
< +∞,

that is, the last series is absolutely convergent. So, if (60) were not hold, then for the solution would be

xn � λn
2 ,

which would contradict with its boundedness.
Now assume that (60) holds. Then from (23) and (60) it follows that the solution in the case

must be

xn =
1

λ2 − λ1

(
λn

1

(
λ2x0 − x1 −

n−1

∑
k=0

fk

λk+1
1

)
− λn

2

( ∞

∑
k=n

fk

λk+1
2

))
. (63)

Since |λ2| > 1, we have∣∣∣∣λn
2

( ∞

∑
k=n

fk

λk+1
2

)∣∣∣∣ ≤ ‖ f ‖∞

∞

∑
k=n
|λ2|n−k−1 =

‖ f ‖∞

|λ2| − 1
< ∞. (64)

Using (62) and (64) in (63), we have

|xn| ≤
1

|λ2 − λ1|

(
|λ2||x0|+ |x1|+

‖ f ‖∞

1− |λ1|
+
‖ f ‖∞

|λ2| − 1

)
,

from which it follows that the solution to Equation (8) is bounded.
(b) The proof of the statement is similar/dual to the one in (a). Hence, it is omitted.

Theorem 5. Consider Equation (8), where p ∈ C, q ∈ C \ {0}, the zeros λ1,2 of the polynomial (12) satisfy
condition (59) and ( fn)n∈N0 is a T-periodic sequence. Then, the following statements are true.

(a) There is a unique T-periodic solution to Equation (8).
(b) All bounded solutions to Equation (8) converge geometrically to the periodic one.

Proof. (a) We may assume that the condition holds |λ1| < 1 < |λ2|, since the other case is essentially
the same and is obtained by changing some letters only. By Theorem 4, we see that a solution to
Equation (8) is bounded if and only if (60) holds, and that bounded solutions to Equation (8) have the
form in (63). If a solution to the equation is T-periodic, then it must be x0 = xT , that is,

x0 =
1

λ2 − λ1

(
λT

1

(
λ2x0 − x1 −

T−1

∑
k=0

fk

λk+1
1

)
− λT

2

( ∞

∑
k=T

fk

λk+1
2

))
, (65)

from which, along with (63) and by some calculation is obtained

x0 =

λT
2 ∑∞

j=T
f j

λ
j+1
2

− λT
1 ∑∞

j=0
f j

λ
j+1
2

+ λT
1 ∑T−1

j=0
f j

λ
j+1
1

(λ2 − λ1)(λ
T
1 − 1)

. (66)

By using equalities (60) and (66) in (63) and after some calculation it is shown that for such chosen
x0 is obtained a T-periodic solution to Equation (8). Since initial value x0 is uniquely defined by (66),
and consequently by (60) initial value x1 is also uniquely defined, the T-periodic solution is unique
too, as claimed.
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(b) If (x̃n)n∈N0 is the T-periodic solution to Equation (8) and (xn)n∈N0 is any bounded solution to
the equation, then from (60) and (63) we have

|x̃n − xn| =
1

|λ2 − λ1|

∣∣∣∣λn
1

(
(λ2 − λ1)x̃0 +

∞

∑
k=0

fk

λk+1
2

−
n−1

∑
k=0

fk

λk+1
1

)
− λn

2

( ∞

∑
k=n

fk

λk+1
2

)

− λn
1

(
(λ2 − λ1)x0 +

∞

∑
k=0

fk

λk+1
2

−
n−1

∑
k=0

fk

λk+1
1

)
− λn

2

( ∞

∑
k=n

fk

λk+1
2

)∣∣∣∣
≤|x̃0 − x0||λ1|n,

from which the statement follows.

Remark 3. Since the sequence ( fn)n∈N0 in Theorem 5 is T-periodic, then the expression for x0 in (66)

can be written in a somewhat nicer way. Namely, since the series ∑∞
j=0

f j

λ
j+1
2

is absolutely convergent,

we have
∞

∑
j=mT

f j

λ
j+1
2

=
∞

∑
k=m

(k+1)T−1

∑
j=kT

f j

λ
j+1
2

=
∞

∑
k=m

T−1

∑
i=0

fkT+i

λkT+i+1
2

=
∞

∑
k=m

1
λkT

2

T−1

∑
i=0

fi

λi+1
2

=
λ
(1−m)T
2

λT
2 − 1

T−1

∑
i=0

fi

λi+1
2

,

(67)

for every m ∈ N0.
Using (67) in (66) for m = 0 and m = 1 and after some calculation it follows that

x0 =

λT
1 (λ

T
2 − 1)∑T−1

j=0
f j

λ
j+1
1

− λT
2 (λ

T
1 − 1)∑T−1

j=0
f j

λ
j+1
2

(λ2 − λ1)(λ
T
1 − 1)(λT

2 − 1)
.

From this, (60) and some calculation we get

x1 =

λT+1
1 (λT

2 − 1)∑T−1
j=0

f j

λ
j+1
1

− λT+1
2 (λT

1 − 1)∑T−1
j=0

f j

λ
j+1
2

(λ2 − λ1)(λ
T
1 − 1)(λT

2 − 1)
.

Note that the initial values match with the ones in (39) and (40).

Now we are in a position to formulate and prove the main results in this section. The results give
some sufficient conditions for the unique existence of bounded solutions to Equation (5), that is, when
the sequences (pn)n∈N0 and (qn)n∈N0 , in general, are not constant, and they are in the spirit of the main
result in our recent paper [30].

Theorem 6. Assume that (pn)n∈N0 and (qn)n∈N0 are sequences of complex numbers such that

q̂2 := sup
n∈N0

|pn + r1 + r2|+ |qn − r1r2|
|r1 − r2|(rm − 1)

<
1
2

, (68)

for some distinct numbers r1 and r2, such that rm := min{|r1|, |r2|} > 1, and ( fn)n∈N0 is a bounded sequence
of complex numbers. Then, Equation (5) has a unique bounded solution.

Proof. Write Equation (5) in the following form

xn+2 − (r1 + r2)xn+1 + r1r2xn = −(pn + r1 + r2)xn+1 + (r1r2 − qn)xn + fn, (69)

for n ∈ N0.
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Let A be the following operator defined on the class of all sequences

A(u) =
( ∞

∑
k=n

rn−k−1
1 − rn−k−1

2
r2 − r1

((r1r2 − qk)uk − (pk + r1 + r2)uk+1 + fk)

)
n∈N0

. (70)

If u ∈ l∞, then from (70), by using condition (68) and some elementary estimates, it follows that

‖A(u)‖∞ = sup
n∈N0

∣∣∣∣ ∞

∑
k=n

rn−k−1
1 − rn−k−1

2
r2 − r1

((r1r2 − qk)uk − (pk + r1 + r2)uk+1 + fk)

∣∣∣∣
≤2 sup

n∈N0

∞

∑
k=n

‖u‖∞(|r1r2 − qk|+ |pk + r1 + r2|) + ‖ f ‖∞

|r2 − r1|rk−n+1
m

≤‖u‖∞|r1 − r2|(rm − 1) + 2‖ f ‖∞

|r2 − r1|(rm − 1)
< ∞,

which means that operator A maps the Banach space l∞ into itself.
On the other hand, for every u, v ∈ l∞ we have

‖A(u)− A(v)‖∞

= sup
n∈N0

∣∣∣∣ ∞

∑
k=n

rn−k−1
1 − rn−k−1

2
r2 − r1

((r1r2 − qk)(uk − vk)− (pk + r1 + r2)(uk+1 − vk+1))

∣∣∣∣
≤‖u− v‖∞2 sup

n∈N0

∞

∑
k=n

|r1r2 − qk|+ |pk + r1 + r2|
|r2 − r1|rk−n+1

m

≤2̂q2‖u− v‖∞,

(71)

from which along with condition (68) it follows that the operator A : l∞ → l∞ is a contraction.
By the Banach fixed point theorem ([4]) it follows that the operator has a unique fixed point,

say x∗ = (x∗n)n∈N0 ∈ l∞, that is, A(x∗) = x∗, which can be written as follows

x∗n =
∞

∑
k=n

rn−k−1
1 − rn−k−1

2
r2 − r1

((r1r2 − qk)x∗k − (pk + r1 + r2)x∗k+1 + fk), (72)

for n ∈ N0.
A direct calculation shows that this bounded sequence satisfies difference Equation (69), that is,

Equation (5) for every n ∈ N0, from which the theorem follows.

Theorem 7. Assume that (pn)n∈N0 and (qn)n∈N0 are sequences of complex numbers such that

q̂ := sup
n∈N0

|pn + 2r|+ |qn − r2|
(r− 1)2 < 1, (73)

for some number r > 1, and ( fn)n∈N0 is a bounded sequence of complex numbers. Then the difference
Equation (5) has a unique bounded solution.

Proof. Write Equation (5) in the following form

xn+2 − 2rxn+1 + r2xn = −(pn + 2r)xn+1 + (r2 − qn)xn + fn, (74)

for n ∈ N0.



Symmetry 2017, 9, 227 18 of 31

Let A be the following operator defined on the class of all sequences

A(u) =
( ∞

∑
k=n

(k + 1− n)
rk+2−n ((r2 − qk)uk − (pk + 2r)uk+1 + fk)

)
n∈N0

. (75)

If u ∈ l∞, then from (75) it follows that

‖A(u)‖∞ = sup
n∈N0

∣∣∣∣ ∞

∑
k=n

(k + 1− n)
rk+2−n ((r2 − qk)uk − (pk + 2r)uk+1 + fk)

∣∣∣∣
≤ sup

n∈N0

∞

∑
k=n

(k + 1− n)(|r2 − qk||uk|+ |pk + 2r||uk+1|+ | fk|)
rk+2−n

≤ (r− 1)2‖u‖∞ + ‖ f ‖∞

(r− 1)2 < ∞,

which means that operator A maps the Banach space l∞ into itself.
On the other hand, for every u, v ∈ l∞ we have

‖A(u)− A(v)‖∞

= sup
n∈N0

∣∣∣∣ ∞

∑
k=n

(k + 1− n)
rk+2−n ((r2 − qk)(uk − vk)− (pk + 2r)(uk+1 − vk+1)

∣∣∣∣
≤‖u− v‖∞ sup

n∈N0

∞

∑
k=n

(k + 1− n)
rk+2−n (|r2 − qk|+ |pk + 2r|)

≤q̂‖u− v‖∞.

(76)

From (76) and condition (73) it follows that the operator A : l∞ → l∞ is a contraction.
By the Banach fixed point theorem we get that the operator has a unique fixed point, say x∗ =

(x∗n)n∈N0 ∈ l∞, that is, A(x∗) = x∗ or equivalently

x∗n =
∞

∑
k=n

(k + 1− n)
rk+2−n ((r2 − qk)x∗k − (pk + 2r)x∗k+1 + fk), (77)

for n ∈ N0.
A direct calculation shows that this bounded sequence satisfies difference Equation (74), that is,

Equation (5) for every n ∈ N0, from which the theorem follows.

3. Bounded Solutions to Equation (5) on the Domain Z \N2

Now we consider Equation (8) on domain Z \N2. Recall that the “initial” values on the domain are
again x0 and x1 (the values, are, in a way, the end values). To deal with a real second-order difference
equation it is natural to assume that q 6= 0 (the case q = 0, p 6= 0, has been recently studied in [29]).
In this case, the equation can be written in the following form

xn +
p
q

xn+1 +
1
q

xn+2 =
fn

q
, n ≤ −1, (78)

or equivalently as follows:

x−n −
(

1
λ1

+
1

λ2

)
x−(n−1) +

x−(n−2)

λ1λ2
=

f−n

λ1λ2
, n ∈ N, (79)

where λ1 and λ2 are zeros of the polynomial in (12).
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Equation (79) can be considered by using the change of variables yn = x−n which will transform
the equation into an equation of the form in (8), but with shifted indices. To avoid some technical
problems due to non-symmetricity of domains N0 and Z \N2, instead of this, we will use the method
of decomposition mentioned in Remark 2 (see, for example, [15,20]).

If we write (79) in the form

x−n −
x−(n−1)

λ1
=

1
λ2

(
x−(n−1) −

x−(n−2)

λ1

)
+

f−n

λ1λ2
, n ∈ N, (80)

and multiply the following equation

x−j −
x−(j−1)

λ1
=

1
λ2

(
x−(j−1) −

x−(j−2)

λ1

)
+

f−j

λ1λ2
(81)

by λ
−(n−j)
2 , j = 1, n, and suming up such obtained equalities, we get

x−n =
x−(n−1)

λ1
+

1
λn

2

(
x0 −

x1

λ1

)
+

1
λ1λ2

n

∑
j=1

f−j

λ
n−j
2

, (82)

for n ∈ N.
Multiplying the following equality

x−i =
x−(i−1)

λ1
+

1
λi

2

(
x0 −

x1

λ1

)
+

1
λ1λ2

i

∑
j=1

f−j

λ
i−j
2

, (83)

by λ
−(n−i)
1 , i = 1, n, and summing up such obtained equalities, in the case λ1 6= λ2, that is, p2 6= 4q,

we get

x−n =
x0

λn
1
+

1
λ2

(
x0 −

x1

λ1

) n−1

∑
j=0

1

λ
j
1λ

n−1−j
2

+
1

λ1λ2

n

∑
i=1

1
λn−i

1

i

∑
j=1

f−j

λ
i−j
2

(84)

=x0
λ
−(n+1)
1 − λ

−(n+1)
2

λ−1
1 − λ−1

2

− x1

λ1λ2

λ−n
1 − λ−n

2

λ−1
1 − λ−1

2

+
1

λ1λ2

n

∑
j=1

f−j

λn
1

λ
j
2

n

∑
i=j

(
λ1

λ2

)i

=x0
λ
−(n+1)
1 − λ

−(n+1)
2

λ−1
1 − λ−1

2

− x1

λ1λ2

λ−n
1 − λ−n

2

λ−1
1 − λ−1

2

+
1

λ1λ2

n

∑
j=1

f−j
λ

j−n−1
1 − λ

j−n−1
2

λ−1
1 − λ−1

2

=
λ
−(n+1)
1 (x0 − x1λ−1

2 + (λ1λ2)
−1 ∑n

j=1 f−jλ
j
1)

λ−1
1 − λ−1

2

−
λ
−(n+1)
2 (x0 − x1λ−1

1 + (λ1λ2)
−1 ∑n

j=1 f−jλ
j
2)

λ−1
1 − λ−1

2

=
λ−n

1 (λ2x0 − x1 + ∑n
j=1 f−jλ

j−1
1 )− λ−n

2 (λ1x0 − x1 + ∑n
j=1 f−jλ

j−1
2 )

λ2 − λ1
,

for n ∈ N. In fact, the formula also holds for n = 0 and n = 1, which is easily verified by direct
calculation and by using the convention for summations mentioned in introduction.
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Now assume that p2 = 4q, then (84) holds with λ1 = λ2 =: λ, from which along with some
calculation we get

x−n =
x0

λn +

(
x0 −

x1

λ

)
n

λn +
1

λn+2

n

∑
i=1

λi
i

∑
j=1

f−j

λi−j

=λ−(n+1)
(

λx0 + (λx0 − x1)n +
n

∑
j=1

f−j(n− j + 1)λj−1
)

,

for n ∈ N.
The last formula can be also written in the following form

x−n =λ−(n+1)
(

λx0 −
n

∑
j=1

f−j(j− 1)λj−1
)

+ nλ−(n+1)
(

λx0 − x1 +
n

∑
j=1

f−jλ
j−1
)

, n ∈ N.
(85)

Note that as in the previous case Formula (85) also holds for n = 0 and n = 1, which is easily
verified by direct calculation and by using the convention for summations mentioned in introduction.

As a consequence of the above consideration we have that the following result holds.

Lemma 2. Consider Equation (78) where p ∈ C, q ∈ C \ {0}, x0 and x1 are given complex numbers,
and ( f−n)n∈N is a sequence of complex numbers. Then the following statements are true:

(a) If p2 6= 4q, then the solution to Equation (78) with initial/end values x0 and x1 is given by

x−n =
λ−n

1 (λ2x0 − x1 + ∑n
j=1 f−jλ

j−1
1 )− λ−n

2 (λ1x0 − x1 + ∑n
j=1 f−jλ

j−1
2 )

λ2 − λ1
, (86)

where λ1,2 are given by (10).
(b) If p2 = 4q, then the solution to Equation (78) with initial/end values x0 and x1 is given by

x−n = λ−(n+1)
(

λx0 + (λx0 − x1)n +
n

∑
j=1

f−j(n− j + 1)λj−1
)

, (87)

where λ = −p/2.

Remark 4. Note that Formula (86) can be written in the form

x−n = x̂−n + xh
−n, (88)

with

xh
−n =

(λ2x0 − x1)λ
−n
1 − (λ1x0 − x1)λ

−n
2

λ2 − λ1
, (89)

x̂−n =
∑n

j=1 f−j(λ
−n+j−1
1 − λ

−n+j−1
2 )

λ2 − λ1
, n ∈ N, (90)

where xh
−n is the solution to the homogeneous difference equation corresponding to (79) with

initial/end values x0 and x1, while x̂−n is a particular solution to (79), in the case p2 6= 4q.
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Also, Formula (87) can be written in the form in (88) with

xh
−n =(λx0 + (λx0 − x1)n)λ−(n+1), (91)

x̂−n =
n

∑
j=1

f−j(n− j + 1)λ−n+j−2, n ∈ N, (92)

where xh
−n is the solution to the homogeneous difference equation corresponding to (79) with

initial/end values x0 and x1, while x̂−n is a particular solution to (79), in the case p2 = 4q.
From (23), (24), (89) and (91) it follows that the solution to Equation (8) with fn = 0, n ∈ Z, with

initial values x0 and x1 is given by

xn =
(λ2x0 − x1)λ

n
1 + (x1 − λ1x0)λ

n
2

λ2 − λ1
, n ∈ Z,

when p2 6= 4q, that is, by
xn = (λx0 + (x1 − λx0)n)λn−1, n ∈ Z,

when p2 = 4q.

From (86) and (87) similar to Corollary 2 is proved the following result. Hence, we omit the details.

Corollary 3. Consider Equation (78), where the zeros λ1,2 of polynomial (12) satisfy the condition in (46), and
( f−n)n∈N is a bounded sequence of complex numbers. Then every solution to the equation on domain Z \N2

is bounded.

Theorem 8. Consider Equation (78), where the zeros λ1,2 of polynomial (12) satisfy condition (46) and
( f−n)n∈N is a T-periodic sequence. Then the following statements hold.

(a) There is a unique T-periodic solution to Equation (79) on domain Z \N2.
(b) All the solutions to Equation (79) on domain Z \N2, converge geometrically to the periodic one.

Proof. (a) If (xn)n≤1 is a T-periodic solution to Equation (78), then it must be

x1 = x1−T and x0 = x−T . (93)

On the other hand, if (93) holds, then from (78) and since

f−n = f−n−T , n ∈ N, (94)

we have

x−(T+1) = −
p
q

x−T −
1
q

x1−T +
f−(T+1)

q
= − p

q
x0 −

1
q

x1 +
f−1

q
= x−1.

Using the same argument along with (78) and the method of induction it is proved that

x−mT−l = x−l ,

for every m ∈ N and l ∈ {−1, 0, 1, . . . , T − 2}, which shows that the solution to Equation (8)
is T-periodic.
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Case p2 6= 4q. This along with (86) shows that it is enough to prove that the linear system

x0 =
λ−T

1 (λ2x0 − x1 + ∑T
j=1 f−jλ

j−1
1 )− λ−T

2 (λ1x0 − x1 + ∑T
j=1 f−jλ

j−1
2 )

λ2 − λ1

x1 =
λ1−T

1 (λ2x0 − x1 + ∑T−1
j=1 f−jλ

j−1
1 )− λ1−T

2 (λ1x0 − x1 + ∑T−1
j=1 f−jλ

j−1
2 )

λ2 − λ1
,

(95)

has a unique solution in variables x0 and x1.
Note that system (95) can be written as follows

(λ1λ−T
2 − λ2λ−T

1 + λ2 − λ1)x0 + (λ−T
1 − λ−T

2 )x1 = λ−T
1 S5 − λ−T

2 S6

(λ1λ1−T
2 − λ2λ1−T

1 )x0 + (λ1−T
1 − λ1−T

2 + λ2 − λ1)x1 = λ1−T
1 S5 − λ1−T

2 S6,
(96)

where

S5 :=
T

∑
j=1

f−jλ
j−1
1 and S6 :=

T

∑
j=1

f−jλ
j−1
2 .

By some calculation is obtained

∆ =

∣∣∣∣∣ λ1λ−T
2 − λ2λ−T

1 + λ2 − λ1 λ−T
1 − λ−T

2
λ1λ1−T

2 − λ2λ1−T
1 λ1−T

1 − λ1−T
2 + λ2 − λ1

∣∣∣∣∣
=(λ1 − λ2)

2(λ−T
1 − 1)(λ−T

2 − 1) 6= 0,

(97)

due to (46) and λ1 6= λ2.
Also, we have

∆1 =

∣∣∣∣∣ λ−T
1 S5 − λ−T

2 S6 λ−T
1 − λ−T

2
λ1−T

1 S5 − λ1−T
2 S6 λ1−T

1 − λ1−T
2 + λ2 − λ1

∣∣∣∣∣
=(λ2 − λ1)(λ

−T
2 (λ−T

1 − 1)S6 − λ−T
1 (λ−T

2 − 1)S5),

(98)

and

∆2 =

∣∣∣∣∣ λ1λ−T
2 − λ2λ−T

1 + λ2 − λ1 λ−T
1 S5 − λ−T

2 S6

λ1λ1−T
2 − λ2λ1−T

1 λ1−T
1 S5 − λ1−T

2 S6

∣∣∣∣∣
=(λ2 − λ1)(λ

1−T
2 (λ−T

1 − 1)S6 − λ1−T
1 (λ−T

2 − 1)S5)

(99)

From (97)–(99), it follows that

x0 =
λ−T

2 (λ−T
1 − 1)S6 − λ−T

1 (λ−T
2 − 1)S5

(λ2 − λ1)(λ
−T
1 − 1)(λ−T

2 − 1)
(100)

and

x1 =
λ1−T

2 (λ−T
1 − 1)S6 − λ1−T

1 (λ−T
2 − 1)S5

(λ2 − λ1)(λ
−T
1 − 1)(λ−T

2 − 1)
, (101)

are the initial values for which is obtained the T-periodic solution to Equation (78) in this case.

Case p2 = 4q. Using (87), we see that (93) becomes the linear system

x0 =λ−(T+1)
(

λx0 + (λx0 − x1)T +
T

∑
j=1

f−j(T − j + 1)λj−1
)

x1 =λ−T
(

λx0 + (λx0 − x1)(T − 1) +
T−1

∑
j=1

f−j(T − j)λj−1
)

.

(102)
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System (102) can be written as follows

(λT+1 − λ(T + 1))x0 + Tx1 = S7

λTx0 + (1− T − λT)x1 = S8,
(103)

where

S7 :=
T

∑
j=1

f−j(T − j + 1)λj−1 and S8 := −
T−1

∑
j=1

f−j(T − j)λj−1.

After some calculation it is shown that the determinant of system (103) is

∆ =

∣∣∣∣∣ λT+1 − λ(T + 1) T
λT 1− T − λT

∣∣∣∣∣ = −λ(λT − 1)2 6= 0, (104)

due to (46). Also, we have

∆1 =

∣∣∣∣∣ S7 T
S8 1− T − λT

∣∣∣∣∣ = (1− T − λT)S7 − TS8, (105)

and

∆2 =

∣∣∣∣∣ λT+1 − λ(T + 1) S7

Tλ S8

∣∣∣∣∣ = (λT+1 − λ(T + 1))S8 − TλS7. (106)

From (104)–(106), it follows that

x0 =
(λT + T − 1)S7 + TS8

λ(λT − 1)2

and

x1 =
TS7 − (λT − T − 1)S8

(λT − 1)2 ,

are the initial values for which is obtained the T-periodic solution to Equation (78) in this case.
(b) If (x̃n)n≤1 is the T-periodic solution to Equation (78) and (xn)n≤1 is any solution to the equation,

then if p2 6= 4q, from (86) we have

|x̃−n − x−n| =
∣∣∣∣(λ−n

1 (λ2 x̃0 − x̃1 + ∑n
j=1 f−jλ

j−1
1 )− λ−n

2 (λ1 x̃0 − x̃1 + ∑n
j=1 f−jλ

j−1
2 )

λ2 − λ1

)

−
(

λ−n
1 (λ2x0 − x1 + ∑n

j=1 f−jλ
j−1
1 )− λ−n

2 (λ1x0 − x1 + ∑n
j=1 f−jλ

j−1
2 )

λ2 − λ1

)∣∣∣∣
≤ (|λ2||x̃0 − x0|+ |x̃1 − x1|)|λ1|−n + (|λ1||x̃0 − x0|+ |x̃1 − x1|)|λ2|−n

|λ2 − λ1|
,

for n ∈ N0, from which the statement follows in this case.
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If p2 = 4q, then from (87) we have

|x̃−n − x−n| =
∣∣∣∣λ−(n+1)

(
λx̃0 + (λx̃0 − x̃1)n +

n

∑
j=1

f−j(n− j + 1)λj−1
)

− λ−(n+1)
(

λx0 + (λx0 − x1)n +
n

∑
j=1

f−j(n− j + 1)λj−1
)∣∣∣∣

≤|x̃0 − x0||λ|−n + (|x̃1 − x1|+ |λ||x̃0 − x0|)n|λ|−(n+1)

≤M1

(
1 + |λ|

2|λ|

)n

,

for n ∈ N0, for some M1 = M1(x0, x1, x̃0, x̃1, λ), from which the statement follows in this case.

Theorem 9. Consider Equation (78), where the zeros λ1,2 of polynomial (12) satisfy condition (31), and
( f−n)n∈N is a bounded sequence of complex numbers. Then, there is a unique bounded solution to the equation
on domain Z \N2.

Proof. If p2 6= 4q, then from (31) and (86) we see that a solution to Equation (79) is bounded if and
only if

λ2x0 − x1 = −
∞

∑
j=1

f−jλ
j−1
1 and λ1x0 − x1 = −

∞

∑
j=1

f−jλ
j−1
2 , (107)

(note that both sums are finite due to (31) and the boundedness of ( f−n)n∈N), from which it follows
that the solution is

x−n =
1

λ2 − λ1

∞

∑
j=n+1

f−j(λ
j−n−1
2 − λ

j−n−1
1 ). (108)

By direct calculation is shown that (108) is a solution to Equation (78). Since

|x−n| ≤ ‖ f ‖∞
2

|λ2 − λ1|
∞

∑
j=n+1

Mj−n−1 =
2‖ f ‖∞

|λ2 − λ1|(1−M)
,

for n ∈ N, it follows that the solution is bounded. Since by (107), x0 and x1 are uniquely defined,
the bounded solution is unique.

If p2 = 4q, then from (31) and (87), similar to the corresponding part of the proof of Theorem 2 is
obtained that Equation (78) has a unique bounded solution if and only if

x0 =
∞

∑
j=2

f−j(j− 1)λj−2 and x1 =
∞

∑
j=1

f−j jλj−1, (109)

(note that both sums are also finite due to (31) and the boundedness of ( f−n)n∈N), from which it follows
that the solution is

x−n = λ−(n+1)
∞

∑
j=n+1

f−j(j− n− 1)λj−1. (110)

By direct calculation is shown that (110) is a solution to Equation (79). Since

|x−n| ≤ ‖ f ‖∞

∞

∑
j=n+2

(j− n− 1)Mj−n−2 =
‖ f ‖∞

(1−M)2 ,
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for n ∈ N, it follows that the solution is bounded. Since due to (109), x0 and x1 are uniquely defined,
the bounded solution is unique.

Theorem 10. Consider Equation (78), where p ∈ C, q ∈ C \ {0}, the zeros λ1,2 of the polynomial (12) are
distinct and satisfy condition (31) and ( f−n)n∈N is a T-periodic sequence. Then, the unique bounded solution to
Equation (79) is T-periodic.

Proof. Let (x̃n)n≤1 be the unique bounded solution to Equation (79). From Theorem 9 we see that
the unique bounded solution to Equation (79) is given by (108) if p2 6= 4q, and it is given by (110) if
p2 = 4q.

If p2 6= 4q, then we have

x̃−(n+T) =
1

λ2 − λ1

∞

∑
j=n+T+1

f−j(λ
j−n−T−1
2 − λ

j−n−T−1
1 )

=
1

λ2 − λ1

∞

∑
k=n+1

f−k−T(λ
k−n−1
2 − λk−n−1

1 )

=
1

λ2 − λ1

∞

∑
k=n+1

f−k(λ
k−n−1
2 − λk−n−1

1 ) = x̃−n,

(111)

for n ≥ −1, while if p2 = 4q, we have

x̃−(n+T) =λ−(n+T+1)
∞

∑
j=n+T+1

f−j(j− n− T − 1)λj−1

=λ−(n+T+1)
∞

∑
k=n+1

f−k−T(k− n− 1)λk+T−1

=λ−(n+1)
∞

∑
k=n+1

f−k(k− n− 1)λk−1 = x̃−n,

(112)

for n ≥ −1. From (111) and (112) the result follows.

Theorem 11. Consider Equation (78), where p ∈ C, q ∈ C \ {0}, the zeros λ1,2 of polynomial (12) satisfy
condition (59), and ( f−n)n∈N is a bounded sequence of complex numbers. Then, the following statements
are true.

(a) If |λ1| < 1 < |λ2|, then a solution to Equation (78) is bounded if and only if

x1 − λ2x0 =
∞

∑
j=1

f−jλ
j−1
1 . (113)

(b) If |λ2| < 1 < |λ1|, then a solution to Equation (78) is bounded if and only if

x1 − λ1x0 =
∞

∑
j=1

f−jλ
j−1
2 . (114)

Proof. (a) Since |λ2| > 1, we have that∣∣∣∣λ−n
2

(
λ1x0 − x1 +

n

∑
j=1

f−jλ
j−1
2

)∣∣∣∣ ≤(|λ1||x0|+ |x1|)|λ2|−n + ‖ f ‖∞

n

∑
j=1
|λ2|−n+j−1

≤|λ1||x0|+ |x1|+
‖ f ‖∞

|λ2| − 1
< ∞.

(115)
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From (86), (115), and since |λ1| < 1, it follows that the boundedness of a solution xn to
Equation (79) implies (113).

Now assume that (113) holds. Then from (86) and (113) it follows that the solution in the case
must be

x−n =
λ−n

1 (−∑∞
j=n+1 f−jλ

j−1
1 )− λ−n

2 (λ1x0 − x1 + ∑n
j=1 f−jλ

j−1
2 )

λ2 − λ1
. (116)

Since |λ1| < 1, we have∣∣∣∣λ−n
1

(
−

∞

∑
j=n+1

f−jλ
j−1
1

)∣∣∣∣ ≤ ‖ f ‖∞

∞

∑
k=n+1

|λ1|−n+j−1 =
‖ f ‖∞

1− |λ1|
< ∞. (117)

Using (115) and (117) in (116), we have

|x−n| ≤
1

|λ2 − λ1|

(
|λ1||x0|+ |x1|+

‖ f ‖∞

|λ2| − 1
+
‖ f ‖∞

1− |λ1|

)
,

from which it follows that the solution to Equation (79) is bounded.
(b) The proof of the statement is similar/dual to the one in (a). Hence, it is omitted.

Theorem 12. Consider Equation (78), where p ∈ C, q ∈ C \ {0}, the zeros λ1,2 of the polynomial (12) satisfy
condition (59) and ( f−n)n∈N is a T-periodic sequence. Then, the following statements are true.

(a) There is a unique T-periodic solution to Equation (78) on domain Z \N2.
(b) All bounded solutions to Equation (78) on domain Z \N2, converge geometrically to the periodic one.

Proof. (a) We may assume that the condition holds |λ1| < 1 < |λ2|, since the other case is essentially
the same. By Theorem 11, we see that a solution to Equation (78) is bounded if and only if (113) holds,
and that bounded solutions to Equation (78) have the form in (116). If a solution to the equation is
T-periodic, then it must be x1 = x1−T , that is,

x1 =
λ1−T

1 (−∑∞
j=T f−jλ

j−1
1 )− λ1−T

2 (λ1x0 − x1 + ∑T−1
j=1 f−jλ

j−1
2 )

λ2 − λ1
,

from which, along with (116) and by some calculation is obtained

x1 =
λ1(λ

−T
2 − λ−T

1 )∑∞
j=1 f−jλ

j−1
1 + ∑T−1

j=1 f−j(λ
j−T
1 − λ

j−T
2 )

(λ2 − λ1)(1− λ−T
2 )

. (118)

By using equalities (113) and (118) in (116) and after some calculation it is shown that for such
chosen x1 is obtained a T-periodic solution to Equation (78). Since initial value x1 is uniquely defined
by (118), and consequently by (113) initial value x0 is uniquely defined, the T-periodic solution is
unique too, as claimed.
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(b) If (x̃n)n≤1 is the T-periodic solution to Equation (78) and (xn)n≤1 is any bounded solution to
the equation, then from (116) and some simple estimates, we have

|x̃−n − x−n| =
1

|λ2 − λ1|

∣∣∣∣λ−n
1

(
−

∞

∑
j=n+1

f−jλ
j−1
1

)
− λ−n

2

(
λ1 x̃0 − x̃1 +

n

∑
j=1

f−jλ
j−1
2

)

− λ−n
1

(
−

∞

∑
j=n+1

f−jλ
j−1
1

)
− λ−n

2

(
λ1x0 − x1 +

n

∑
j=1

f−jλ
j−1
2

)∣∣∣∣
≤|λ1||x̃0 − x0|+ |x̃1 − x1|

|λ2 − λ1||λ2|n
,

from which the statement easily follows.

Remark 5. Since the sequence ( f−n)n∈N in Theorem 12 is T-periodic, then the expression for x1 in (118)
can be written in a somewhat nicer way. Namely, since the series ∑∞

j=1 f−jλ
j−1
1 is absolutely convergent,

we have
∞

∑
j=mT+1

f−jλ
j−1
1 =

∞

∑
k=m

(k+1)T

∑
j=kT+1

f−jλ
j−1
1 =

∞

∑
k=m

T

∑
i=1

f−i−kTλkT+i−1
1

=
∞

∑
k=m

λkT
1

T

∑
i=1

f−iλ
i−1
1 =

λmT
1

1− λT
1

T

∑
i=1

f−iλ
i−1
1 ,

(119)

for every m ∈ N0.
Using (119) in (118) for m = 0 and after some calculation it follows that

x1 =
(λ−T

1 − 1)∑T
j=1 f−jλ

j−T
2 − (λ−T

2 − 1)∑T
j=1 f−jλ

j−T
1

(λ2 − λ1)(λ
−T
1 − 1)(λ−T

2 − 1)
.

From this, (113) and some calculation we get

x0 =
λ1(λ

−T
1 − 1)∑T

j=1 f−jλ
j−T
2 − λ2(λ

−T
2 − 1)∑T

j=1 f−jλ
j−T
1

λ1λ2(λ2 − λ1)(λ
−T
1 − 1)(λ−T

2 − 1)
.

Note that the initial values match with those in (100) and (101).

The following result considers Equation (8) on domain Z. The result is essentially a consequence
of some of above mentioned results on domains N0 and Z \ N2, so it is formulated as a corollary,
although it is, in fact, an important results concerning the equation.

Corollary 4. Consider Equation (8) where p ∈ C and q ∈ C \ {0}. Let λ1,2 be the zeros of polynomial (12),
( fn)n∈Z be a bounded sequence of complex numbers, and one of the conditions (31), (46), (59) holds. Then,
the equation has a unique bounded solution on Z.

Proof. First, assume that (46) holds, then by Theorem 2 there is a unique bounded solution to
Equation (8) on N0, while by Corollary 3 all the solutions to the equation on Z \ N2 are bounded,
from which the result follows in the case. If (31) holds, then by Corollary 2 we have that all the
solutions to the equation on N0 are bounded, while by Theorem 9 there is a unique bounded solution
to the equation on Z \ N2, from which the result follows in the case. Now, assume that (59) holds.
Then, if |λ1| < 1 < |λ2| by Theorems 4 (a) and 11 (a), it follows that a solution to Equation (8) on Z is
bounded if and only if (60) and (113) hold, which is a two-dimensional linear system in x0 and x1 with
the determinant different from zero, from which it follows that there is a unique pair of initial values
x0, x1, such that the solution to Equation (8) is bounded. If |λ2| < 1 < |λ1|, then by Theorems 4 (b)
and 11 (b), it follows that a solution to (8) on Z is bounded if and only if (61) and (114) hold, which
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is also a two-dimensional linear system in x0 and x1 with the determinant different from zero, from
which it follows that there is a unique pair of initial values x0, x1, such that the solution to Equation (8)
is bounded, in this case, finishing the proof of the theorem.

The following two results are the main results in this section and deal with the general Equation (5)
on domain Z \N2. They correspond to Theorems 6 and 7, and are proved similarly. We present their
proofs for the completeness and benefit of the reader.

Theorem 13. Assume that (p−n)n∈N and (q−n)n∈N are sequences of complex numbers such that

q̂3 := sup
n∈N

|p−n/q−n + r−1
1 + r−1

2 |+ |(r1r2)
−1 − 1/q−n|

|r1 − r2|(1− rM)
<

1
2

, (120)

for some nonzero numbers r1 and r2, such that rM := max{|r1|, |r2|} < 1,

inf
n∈N
|q−n| > δ > 0, (121)

and ( f−n)n∈N is a bounded sequence of complex numbers. Then, Equation (5) has a unique bounded solution
on Z \N2.

Proof. Write Equation (5) in the following form

x−n − (r−1
1 + r−1

2 )x−(n−1) + (r1r2)
−1x−(n−2)

= −(p−n/q−n + r−1
1 + r−1

2 )x−(n−1) + ((r1r2)
−1 − 1/q−n)x−(n−2) + f−n/q−n, (122)

for n ∈ N.
Let A be the following operator defined on the class of all sequences

A(u) =
( ∞

∑
j=n+1

rj−n−1
2 − rj−n−1

1
r2 − r1

((
1

r1r2
− 1

q−j

)
u2−j −

( p−j

q−j
+ r−1

1 + r−1
2

)
u1−j +

f−j

q−j

))
n≤1

. (123)

If u ∈ l∞, then from (121), (123), and some simple inequalities, we have

‖A(u)‖∞ = sup
n∈N0

∣∣∣∣ ∞

∑
j=n+1

rj−n−1
2 − rj−n−1

1
r2 − r1

((
1

r1r2
− 1

q−j

)
u2−j −

( p−j

q−j
+ r−1

1 + r−1
2

)
u1−j +

f−j

q−j

)∣∣∣∣
≤2 sup

n∈N0

∞

∑
j=n+1

rj−n−1
M

‖u‖∞(|(r1r2)
−1 − q−1

−j |+ |p−j/q−j + r−1
1 + r−1

2 |) + ‖ f ‖∞δ−1

|r2 − r1|

≤‖u‖∞|r1 − r2|(1− rM) + 2‖ f ‖∞δ−1

|r2 − r1|(1− rM)
< ∞,

which means that operator A maps the Banach space l∞ into itself.
On the other hand, for every u, v ∈ l∞ we have

‖A(u)− A(v)‖∞

= sup
n∈N0

∣∣∣∣ ∞

∑
j=n+1

rj−n−1
2 − rj−n−1

1
r2 − r1

((
1

r1r2
− 1

q−j

)
(u2−j − v2−j)−

( p−j

q−j
+ r−1

1 + r−1
2

)
(u1−j − v1−j)

)∣∣∣∣
≤‖u− v‖∞2 sup

n∈N

∞

∑
j=n+1

rj−n−1
M

|(r1r2)
−1 − 1/q−j|+ |p−j/q−j + r−1

1 + r−1
2 |

|r2 − r1|

≤2q̂3‖u− v‖∞,
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from which along with (120) it follows that A : l∞ → l∞ is a contraction.
By the Banach fixed point theorem we get that the operator has a unique fixed point,

say x∗ = (x∗n)n≤1 ∈ l∞, that is, A(x∗) = x∗ or equivalently

x∗−n =
∞

∑
j=n+1

rj−n−1
2 − rj−n−1

1
r2 − r1

((
1

r1r2
− 1

q−j

)
x∗2−j −

( p−j

q−j
+ r−1

1 + r−1
2

)
x∗1−j +

f−j

q−j

)
, (124)

for n ≥ −1.
A direct calculation shows that this bounded sequence satisfies difference Equation (5), from

which the theorem follows.

Theorem 14. Assume that (p−n)n∈N and (q−n)n∈N are sequences of complex numbers such that

q̂ := sup
n∈N

|p−n/q−n + 2r−1|+ |r−2 − 1/q−n|
(1− r)2 < 1, (125)

for some number r < 1, that condition (121) holds, and ( f−n)n∈N is a bounded sequence of complex numbers.
Then, Equation (5) has a unique bounded solution on Z \N2.

Proof. Write Equation (5) in the following form

x−n −
2
r

x−(n−1) +
1
r2 x−(n−2) = −

(
p−n

q−n
+

2
r

)
x−(n−1) +

(
1
r2 −

1
q−n

)
x−(n−2) +

f−n

q−n
, (126)

for n ∈ N.
Let A be the following operator defined on the class of all sequences

A(u) =
( ∞

∑
j=n+2

(j− n− 1)rj−n−2
((

1
r2 −

1
q−j

)
u2−j −

( p−j

q−j
+

2
r

)
u1−j +

f−j

q−j

))
n∈N0

. (127)

If u ∈ l∞, then from (127) it follows that

‖A(u)‖∞ = sup
n∈N0

∣∣∣∣ ∞

∑
j=n+2

(j− n− 1)rj−n−2
((

1
r2 −

1
q−j

)
u2−j −

( p−j

q−j
+

2
r

)
u1−j +

f−j

q−j

)∣∣∣∣
≤ sup

n∈N0

∞

∑
j=n+2

(j− n− 1)rj−n−2
(∣∣∣∣ 1

r2 −
1

q−j

∣∣∣∣|u2−j|+
∣∣∣∣ p−j

q−j
+

2
r

∣∣∣∣|u1−j|+
| f−j|

δ

)

≤ (1− r)2‖u‖∞ + ‖ f ‖∞δ−1

(1− r)2 < ∞,

which means that operator A maps the Banach space l∞ into itself.
On the other hand, for every u, v ∈ l∞ we have

‖A(u)− A(v)‖∞

= sup
n∈N0

∣∣∣∣ ∞

∑
j=n+2

(j− n− 1)rj−n−2
((

1
r2 −

1
q−j

)
(u2−j − v2−j)−

( p−j

q−j
+

2
r

)
(u1−j − v1−j)

)∣∣∣∣
≤‖u− v‖∞ sup

n∈N0

∞

∑
j=n+2

(j− n− 1)rj−n−2
(∣∣∣∣ 1

r2 −
1

q−j

∣∣∣∣+ ∣∣∣∣ p−j

q−j
+

2
r

∣∣∣∣)
≤q̂‖u− v‖∞.

(128)

From (128) and condition (125) it follows that the operator A : l∞ → l∞ is a contraction.
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By the Banach fixed point theorem we get that the operator has a unique fixed point, say x∗ =
(x∗n)n≤1 ∈ l∞, that is, A(x∗) = x∗ or equivalently

x∗−n =
∞

∑
j=n+2

(j− n− 1)rj−n−2
((

1
r2 −

1
q−j

)
x∗2−j −

( p−j

q−j
+

2
r

)
x∗1−j +

f−j

q−j

)
, (129)

for n ≥ −1.
A direct calculation shows that this bounded sequence satisfies difference Equation (5), from

which the theorem follows.

4. Discussion

Motivated by some recent investigations of ours here we present how some solvability methods
along with the contraction mapping principle can be employed in studying of a nonhomogeneous
linear second-order difference equation, with a special attention on the existence of bounded solutions
and their relationship with other solutions. Beside the study of the equation on the usual domain N0,
it is also studied on the neglected ones Z \N2 and Z. A natural problem is to develop the methods
and ideas in the paper so that they can be applied in the study of other related difference equations of
second as well as of higher orders on all these domains, which will be one of our further directions in
the investigation of difference equations and systems.
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