
symmetryS S

Article

Lattice-Based Revocable Certificateless Signature

Ying-Hao Hung, Yuh-Min Tseng * and Sen-Shan Huang

Department of Mathematics, National Changhua University of Education, Jin-De Campus,
Chang-Hua 500, Taiwan; hungyinghao@gmail.com (Y.-H.H.); sshuang@cc.ncue.edu.tw (S.-S.H.)
* Correspondence: ymtseng@cc.ncue.edu.tw; Tel.: +886-4-723-2105 (ext. 3216)

Received: 27 September 2017; Accepted: 18 October 2017; Published: 20 October 2017

Abstract: Certificateless signatures (CLS) are noticeable because they may resolve the key escrow
problem in ID-based signatures and break away the management problem regarding certificate in
conventional signatures. However, the security of the mostly previous CLS schemes relies on the
difficulty of solving discrete logarithm or large integer factorization problems. These two problems
would be solved by quantum computers in the future so that the signature schemes based on them
will also become insecure. For post-quantum cryptography, lattice-based cryptography is significant
due to its efficiency and security. However, no study on addressing the revocation problem in the
existing lattice-based CLS schemes is presented. In this paper, we focus on the revocation issue and
present the first revocable CLS (RCLS) scheme over lattices. Based on the short integer solution
(SIS) assumption over lattices, the proposed lattice-based RCLS scheme is shown to be existential
unforgeability against adaptive chosen message attacks. By performance analysis and comparisons,
the proposed lattice-based RCLS scheme is better than the previously proposed lattice-based CLS
scheme, in terms of private key size, signature length and the revocation mechanism.

Keywords: cryptography; lattice; certificateless signature; short integer solution (SIS); assumption;
post-quantum cryptography

1. Introduction

Identity (ID)-based public-key cryptography (ID-PKC) was introduced by Shamir [1] to break
away the requirement of certificates in conventional public-key cryptography (PKC). In ID-PKC, the
public key of a user is decided by his/her associated identity information, such as e-mail address,
telephone number, social security number, and so on. With the public key of a user, a trusted third
party (called private key generator (PKG) produces the user’s associated private key and sends it to
the user via a secure channel. Thus, the legitimacy of public keys can be verified publicly. Boneh and
Franklin [2] employed Shamir’s concept to construct a workable ID-based encryption (IBE) scheme
using bilinear maps such as Ate, Tate, and Weil pairings. Since the PKG knows all the users’ private
keys, the PKG may impersonate all the users to forge a signature on any message and encrypt any
ciphertext. In such a case, all ID-based cryptographic schemes have the key escrow problem.

In 1993, certificateless public-key cryptography (CL-PKC) was introduced by Al-Riyami and
Paterson [3] to simultaneously repeal the use of certificates in conventional PKC and resolve the
key escrow problem in ID-PKC. They concretely presented a certificateless signature (CLS) and
a certificateless public-key encryption (CL-PKE) scheme. In CL-PKC, the private key of a user includes
two parts, namely, a secret value and a partial private key. The secret value is randomly selected by
the user while the partial private key is generated with her/his identity by a key generation center
(KGC). Hence, the KGC does not know a user’s private key so that the key escrow problem occurred
in ID-PKC is avoided. In addition, the user independently generates and publishes the public key,
so the need of certificates in conventional PKC is abolished. Afterwards, numerous works [4–9] have
addressed the CL-PKC area.
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That are several cases that request a user’s public key to be invalidated before its preplanned
expiration time. Thus, a public-key setting should offer a revocation method to cancel compromised
or illegal users from the system. Tseng and Tsai [10] presented the revocation method using public
channel. In addition, two primitives (encryption and signature) in revocable certificateless public-key
cryptography (RCL-PKC) were also proposed, such as revocable certificateless public-key encryption
(RCL-PKE) schemes [11,12] and revocable certificateless signature (RCLS) scheme [13,14]. Furthermore,
Hung et al. [15] presented a short RCLS scheme.

Indeed, the security of these conventional PKC, ID-PKC, CL-PKC and RCL-PKC mentioned
above rely on the difficulty of solving the discrete logarithm or integer factorization problems.
However, when quantum computers come into reality, both hard problems would become easy
to compute [16] so that those cryptographic schemes based on them would become insecure. Whereas,
several new mathematical methods for cryptography have been constructed to resist quantum attacks.
For post-quantum cryptography, lattice-based cryptography is significant [17] because no efficient
quantum algorithm can solve the related problems that include the short integer solution (SIS) and
short independent vector problem (SIVP) problems over lattices. Moreover, lattice-based cryptography
is more efficient than other post-quantum cryptographies.

1.1. Related Work

For lattice-based cryptography, Goldreicha et al. [18] proposed lattice-based signature and
public-key encryption schemes under the conventional PKC settings. Unfortunately, its signature
scheme was completely broken in [19]. Afterward, several famous signature schemes were presented,
including Gentry et al.’s scheme [20] and Lyubashevsky’s schemes [21,22]. The former is provably
secure. In their scheme, Gentry et al. employed the Gaussian sampling and the hash-and-sign
techniques, respectively, to produce users’ private keys and signatures. However, the private key is
lengthy while the hash-and-sign technique is inefficient. Lyubashevsky [21] employed the Fiat-Shamir
transformation technique to propose an efficient lattice-based signature scheme while its security is
based on the short integer solution problem (SIS) over lattices. The Fiat-Shamir transformation turns
out to be more efficient than the hash-and-sign technique when generating a signature. Moreover,
to improve the efficiency further, Lyubashevsky [22] proposed another lattice-based signature scheme,
which employed the rejection sampling technique to produce the signature. Lyubashevsky’s second
scheme is simple and needs just a few matrix-vector multiplications and rejection samplings.

To combine the advantages of ID-PKC and lattice-based cryptography, Ruckert [23] presented
two ID-based signature (IBS) schemes over lattice assumptions. One was shown to be secure in the
standard model and the other is secure in the random oracle model. The framework of Ruckert’s
scheme followed Gentry et al.’s scheme [20]. Therefore, the private key and the signature remain
lengthy. Then, several lattice-based IBS schemes [24–26] were presented to enhance the security and
efficiency. Recently, Xiang [27] adopted the binary tree structure used in [28] to construct a revocable
IBS (RIBS) scheme over lattices. To improve the efficiency, Hung et al. [29] furthermore presented
a new lattice-based RIBS. Their scheme adopted the NTRU lattice in [26] to produce the private key of
a user. Therefore, the private key size and signature size are shorter than those of Xiang’s scheme.

In the past, the study of the lattice-based certificateless signature (CLS) schemes received little
attention. Tian and Huang [30] proposed the first lattice-based CLS scheme. Since they adopted the
GPV lattice in [20] to generate the private key of a user, it is of the form (S1, S2), where S1 is an m1 × k
matrix and S2 is an m2 × k matrix, with m1, m2 > 5klogq and q being a prime. However, the private
key above turns out to be lengthy, so is the associated signature. Therefore, their scheme is inefficient
and impractical. Moreover, no study on addressing the revocation problem in the existing lattice-based
CLS schemes is presented.



Symmetry 2017, 9, 242 3 of 17

1.2. Contribution and Organization

In this paper, we focus on the revocation issue and present the first revocable CLS (RCLS) scheme
over lattices while improving the performance of Tian and Huang’s CLS scheme [30] mentioned above.
Our RCLS scheme provides a revocation method using public channel to cancel compromised or
illegal users. The revocation method follows the revocation concept of our previous literature [10].
In our RCLS scheme, a user’s private key consists of three parts that include a secret value, a time
update key and a partial private key. The secret value is randomly selected by the user while the
partial private key is generated with her/his identity by a key generation center (KGC). The point is
that the time update key is changed along with time period and the KGC periodically sends new time
update keys to non-revoked users via a public channel. If the KGC would like to cancel compromised
or illegal users, the KGC just stops generating the new time update keys of these users. In our RCLS
scheme, the partial private key is generated by using the key extract algorithm of Ducas et al.’s
ID-based encryption over lattices [26]. In the key extract phase, Ducas et al. adopted a particular
sampling algorithm to improve Gentry et al.’s key extract algorithm [20] by producing short trapdoor
(private key). Meanwhile, in our signing phase, we adopt the rejection sampling technique in [22]
to produce a signature. Therefore, our lattice-based RCLS has shorter private key size and signature
length than others. Relied on the difficulty of solving the short integer solution (SIS) problem [31],
we show that the proposed lattice-based RCLS scheme offers existential unforgeability against adaptive
chosen-message attacks for three adversaries that include Type I adversary (outsider), Type II adversary
(honest-but-curious KGC) and Type III adversary (revoked user). When compared with the previously
proposed lattice-based CLS scheme, the proposed lattice-based RCLS scheme possesses better security
and similar efficiency.

The rest of the paper is arranged as follows. In Section 2, preliminaries are presented. The
framework and security model of RCLS schemes are given in Section 3. The proposed lattice-based
RCLS scheme is presented in Section 4. In Section 5, the security analysis of our scheme is demonstrated.
Comparisons are presented in Section 6. Conclusions are drawn in Section 7.

2. Preliminaries

2.1. Notations

Throughout this paper, we denote several parameters as follows:

- N: a power-of-two integer.
- R: the set of real numbers.
- Z: the set of integers.
- Zq for a q > 0: the interval be the set of integers with [−q/2, q/2).
- Rq = Zq[X]/

(
XN + 1

)
: a ring of polynomials modulo XN + 1 with coefficients in Zq.

For a vector x and a matrix X, ‖x‖ =
√

∑ x2
i and ‖X‖∞ = max[‖Xi‖], respectively, denote the

Euclidean norm of x and the longest norm of all columns of X. Let f =
N−1
∑

i=o
fixi and g =

N−1
∑

i=o
gixi be

two polynomials in Rq.
For a set S, the notation y ←S denotes that y is uniformly selected at random from S. For a

distribution D, z←D means that z is selected according to the distribution D.

2.2. Anticirculant Matrices

Anticirculant matrices have a special structure and useful properties. An N-dimensional
anticirculant matrix CN( f ) is defined as follows.
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Definition 1. CN( f ) is a Toeplitz matrix represented by

CN( f ) =


( f )

(x · f )
...

(xN−1 · f )

 =


f0 f1 · · · fN−2 fN−1

− fN−1 f0 · · · fN−3 fN−2

· · · · · · · · · · · · · · ·
− f1 − f2 · · · − fN−1 f0

,

where f =
N−1
∑

i=o
fixi ∈ Rq.

For convenience, CN( f ) is abbreviated as C( f ) in the sequel. Anticirculant matrices have the
following nice property.

Lemma 1. If f , g ∈ Rq, we have C( f ) ∗C(g) = C( f ∗ g) and C( f ) + C(g) = C( f + g) [26].

2.3. Lattice and NTRU Lattice

Here, we briefly define a lattice and an NTRU lattice. A lattice is a full-rank discrete subgroup of
Rn. And an NTRU lattice comes from a particular class of convolution modular lattices. The detailed
definitions are given below.

Definition 2. Let n vectors v1, v2, . . . , vn be linearly independent and B = {v1, . . . , vn} be the basis of the
n-dimensional lattice Λ. The lattice Λ produced by the basis B is presented as

Λ = L(v1, . . . , vn) = {
n

∑
i=1

xivi : xi ∈ Rn}.

Definition 3. Let h = g ∗ f−1, where f , g ∈ Rq. The NTRU lattice Λh, q associated with h and a positive
integer q is a full-rank lattice of Z2N and is represented as

Λh, q =
{
(u, v) ∈ R2

q

∣∣∣u + v ∗ h = 0
}

.

Indeed, Λh, q is produced by the rows of

Ah, q =

[
−C(h) IN

qIN ON

]
,

where IN is the N × N unit matrix, ON and C(h), respectively, denote the N × N null matrix and
an N-dimensional anticirculant matrix with h. If h is uniformly distributed in Rq, the basis Λh, q is
not suitable to solve the usual lattice problems. Hence Hoffstein et al. [32] remedied this situation by
constructing another appropriate basis for Λh, q, namely,

B f ,g =

[
C(g) −C( f )
C(G) −C(F)

]
,

where F, G ∈ Rq such that f ∗ G− g ∗ F = q.
Indeed, we can efficiently find F and G. By the following lemma, B f , g is called the short basis for

Λh, q due to the fact ‖B f ,g‖ ≤ ‖Ah ,q‖.

Lemma 2. Let f , g ∈ Rq and h = g ∗ f−1 , and let F, G ∈ Rq satisfy the equality f ∗ G− g ∗ F = q [26].
Then, B f , g generates the same NTRU lattice Λh, q as Ah, q does and ‖B f ,g‖ ≤ ‖Ah ,q‖.
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Lemma 3. Given a prime q, a power-of-two integer N and σ = 1.17
√

q/(2N), there exists a probabilistic
polynomial-time (PPT) algorithm TrapGen(q, N) that can produce a pair of polynomials f and g and then
computes h = g ∗ f−1, and outputs a trapdoor matrix B f , g as a short basis of Λh, q. Here, h is published
publicly and is statistically close to be uniform in Rq [26].

2.4. Gaussian Distribution

Here, we present the definitions of the continuous and discrete Gaussian distributions, which are
useful tools in lattice-based cryptography.

Definition 4. The continuous Gaussian distribution over RN with the center c ε RN and the standard deviation
s > 0, is defined as

ρN
c,s(x) = (

1
s
√

2π
)

N
e
−‖x−c‖2

2s2 , where x ∈ RN .

We scale this distribution for any lattice Λ ∈ RN by ρN
c, s(Λ) = ∑

x∈Λ
ρN

c, s(x) so as to make the

distribution fitting and acquire a probability function.

Definition 5. The discrete Gaussian distribution over RN with the center c ε RN and the standard deviation
s > 0, is defined as DN

c,s(x) = ρN
c,s(x)/ρN

c,s(Λ), where xε RN .

In this paper, ρN
s and DN

s are abbreviated from ρN
0,s and DN

0,s respectively for convenience.
In the following lemma, Lyubashevsky [22] gave two properties of a discrete distribution DN

c,σ(x)
in dimension N with standard deviation σ at center c.

Lemma 4. Let cε ZN .

(1) If σ = ω(‖c‖
√

log N), then Pr[x ∈ DN
σ ; DN

σ (x)/DN
c,σ(x) = O(1)] = 1− 2−ω(log N).

(2) If σ = α‖c‖ and α > 0, then Pr[x ∈ DN
σ ; DN

σ (x)/DN
c, σ(x) < e12/α+1/(2σ2)] > 1− 2−100.

2.5. Sampling Technique

According to [31], if one takes a so-called noise vector from a Gaussian distribution and adds this
vector to a lattice, then one can obtain a distribution that is statistically close to uniform one. Based on
this, Gentry et al. [20] presented a sampling algorithm and a trapdoor generation algorithm by using
the Gaussian sampling technique over general lattices. To reduce the private key size, Ducas et al. [26]
improved Gentry et al.’s scheme to propose a particular sampling algorithm over NTRU lattices that
can produce short trapdoor by using a short basis B f , g of Λh, q which is generated by TrapGen in the
previous subsection. In our scheme, we will use Ducas et al.’s technique to produce the private key
of a user by the short basis B f , g without leaking any information of B f , g. Ducas et al.’s trapdoor
generation algorithm has the following properties.

Lemma 5. Given a prime q, an N-dimensional lattice Λ, a short basis B f , g, if s ≥ ‖B̃ f ,g‖ω(
√

log N) and
0 < ε < 1, where B̃ f , g denotes B f , g ’s Gram-Schmidt orthogonalization, we have

Pr[‖x− c‖ > s
√

N] ≤ 1 + ε

1− ε
2−N for any c ∈ RN and x← DN

c,s .

and, there is an algorithm SampleGau(B f , g, s, c) which produces a distribution statistically close to DN
c,s [26].
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2.6. Rejection Sampling Algorithm

Lyubashevsky [22] proposed the rejection sampling technique to sign a message in lattice-based
cryptography. This technique is simple and needs just a few matrix-vector multiplications and rejection
samplings. Indeed, Lyubashevsky’s signing algorithm [22] is different from the one proposed by
Micciancio and Peikert [33] even though both algorithms employ similar public keys. The main
difference is that Lyubashevsky produces a signature by using the rejection sampling instead of the
hash-and-sign technique. Moreover, the sizes of both signature and private key in Lyubashevsky’s
scheme are smaller than those in Micciancio and Peikert’s scheme under the same security level. Here,
we explain the workings of Lyubashevsky’s rejection sampling technique. A signer first selects a
private key S which is an m× k matrix of random integers of absolute value at most d. And then the
signer chooses an n×m matrix A of random integers in Zq and computes the other matrix T = AS.
The signer’s associated public key consists of A and T. In addition, a cryptographic hash function
H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ λ} is selected, where λ is constant. In the sign procedure,
the signer takes her/his private key S, public key A and a message µ as input, and returns a signature
(z, c). Upon receiving a signature (z, c), a verifier validates the signature using the public keys A and
T. The setup, sign and verify procedures of the rejection sampling technique are presented in the
following Algorithm 1.

Algorithm 1: Rejection Sampling Technique

Setup(n, λ, m, k)
H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ λ} , λ is constant.
Private Key: S← {−d, . . . , 0, . . . , d}m×k .
Verification Key: A← Zn×m

q , T = AS .
Sign(A, S, µ):

1. y← Dm
σ .

2. c = H(Ay, µ).
3. z = Sc + y.

4. Output the pair (z, c) with the probability min
[

Dm
σ (z)

M·Dm
Sc, σ(z)

, 1
]

, where M = O(1).

Verify(A, T, z, c, µ):
Accept it if both conditions ‖z‖ ≤ 2σ

√
m and c = H(Az− Tc, µ) hold.

Here, we present the main concept of the signing algorithm. The rejection sampling technique is
to enable the distribution of the signature (z, c) independent of the secret key S. Thus, we would like to
obtain a target distribution z from Dm

σ , but z in the signing algorithm comes from the distribution Dm
Sc, σ.

For an appropriately-chosen value M and a standard deviation σ, e.g. M = 2.72 and σ = 15,157 [22], the
signing algorithm will output a valid signature satisfying both ‖z‖ ≤ 2σ

√
m and c = H(Az− Tc, µ)

with probability approximately 1/M. And the distribution of z is statistically close to the distribution
chosen from Dm

σ .

2.7. Hardness Assumptions

In this section, we present the short integer solution (SIS) problem over lattices as the security
assumption. The difficulty of solving the SIS problem is equivalent to the difficulty of the worst case of
solving the short independent vector problem (SIVP) with an approximation polynomial factor [34].
The SIS problem and its assumption are defined as follows.
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Definition 6. Let q and β, respectively, be a positive integer and a real number, and f1, f2, . . . , fm be polynomials
chosen uniformly and independently from Rq. The SISq ,m,β problem over lattices is to find m non-zero integers

r1, r2, . . . , rm that satisfy two conditions
m
∑

i=1
ri fi = 0 mod q and ‖(r1, r2, . . . , rm)‖ ≤ β.

Definition 7 (SIS assumption). Given a real number β, a positive integer q, and m polynomials f1, f2, . . . , fm

chosen uniformly and independently from Rq, there exists no probabilistic polynomial-time adversary A with
non-negligible probability for solving the SIS problem. The successful probability (advantage) of the adversary A
is presented as

AdvA = Pr[A(< b, q, f1, f2, . . . , fm >) = (r1, r2, . . . , rm) : ‖(r1, r2, . . . , rm)‖ ≤ β].

As stated in Lemma 3, the distribution of h = g/f is statistically close to the uniform distribution
of Rq [35]. Hence, the SIS problem on NTRU lattice is to find a pair (z1, z2) such that z1 + h ∗ z2 = 0
and ‖(z1, z2)‖ ≤ β.

3. Syntax and Security Model of RCLS

The framework of RCLS scheme is identical to that of the RCLS schemes in [14,15]. In an RCLS
scheme, there are three roles, namely, a key generation center (KGC), signers and verifiers. An RCLS
scheme consists of eight algorithms that are defined as follows.

Definition 8. An RCLS scheme contains eight algorithms:

- Setup (N): The algorithm is probabilistic and performed by an KGC. The algorithm takes as input
a security parameter N, it returns the public parameters Parms and a system secret key SKGC.
SKGC is kept secret by the KGC and Parms are made public.

- Partial private key extract (ID): This deterministic algorithm is performed by the KGC. Upon
receiving the identity ID of a user, the KGC produces the user’s partial private key DID and the
first partial public key PID that are returned to the user.

- Time key update (ID, t): This deterministic algorithm is performed by the KGC. Upon receiving the
identity ID of a user and a time period t, the KGC produces the time update key TID ,t of the user
and returns it to the user.

- Set secret value (ID): This probabilistic algorithm is performed by a user with ID. The user randomly
selects a secret value SID, with which the user computes the second partial public key RID.

- Set private key (DID, TID ,t, SID): This deterministic algorithm is performed by a user with ID. The
private key SKID = (DID, TID ,t, SID) is set by the user.

- Set public key (PID, RID): This deterministic algorithm is performed by a user with ID. The public
key PKID = (PID, RID) is set by the user, where PID and RID are the first partial and the second
partial public keys respectively.

- Sign (ID, SKID, µ, t): This probabilistic algorithm is performed by a user with ID. It takes as input
the private key SKID of the user, a message µ and a time period t, and returns a signature ζ on µ.

- Verify (ID, PKID, µ, ζ, t): This deterministic algorithm is performed by a verifier (or receiver).
It takes as input the public key PKID of a user with ID, a message µ, a time period t, and a
signature ζ and it returns “accept” if the signature ζ is validated. Otherwise, it returns “reject”.

By the security model of RCLS schemes in [14,15], adversaries have three types that are presented
as follows.

• Type I adversary (outsider): The adversary knows the time update key and the secret value of
any entity, which are respectively obtained by listening the public channel and replacing the
associated public key.
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• Type II adversary (honest-but-curious KGC): The adversary may produce the partial private key
and time update key of any entity, but it does not know the associated secret value.

• Type III adversary (revoked user): The adversary owns the partial private key and knows the
associated secret value, but it does not get the current time update key.

Definition 9. We say that an RCLS scheme has existential unforgeability against adaptive chosen message
attacks (RCLS-UF-ACMA) if a PPT adversary A with a non-negligible advantage wins the following
RCLS-UF-ACMA game, which is cooperatively performed by A and a challenger C.

- Setup. The setup algorithm is performed by the challenger C to produce public parameters Parms
and the system secret key SKGC. SKGC is kept secret for C. It is worth mentioning, that if the
adversary A is Type II, SKGC is sent to A. Note that for Type I and III adversaries, the KGC
plays as the role of the challenger C. For Type II adversary, the honest-but-curious KGC is the
adversary A.

- Queries: A may issue a number of different queries to C adaptively as follows. It is worth
mentioning, that Type II adversary has the system secret key SKGC so that it may compute the
partial private key and time update key of any entity.

• Partial private key extract queries (ID). Upon receiving the identity ID of a user, C performs the
partial private key extract algorithm to produce and return the user’s partial private key DID
to A.

• Time key update queries (ID, t). Upon receiving the identity ID of a user and a time period t,
the C performs the time key update algorithm to produce and return the time update key TID ,t

to A.
• Secret value queries (ID). Given a user’s ID, C performs the set secret value algorithm to produce

and return the secret value SID to A.
• Public key queries (ID). Upon receiving the identity ID of a user, C returns PKID to A.
• Public key replacement queries (ID, PK′ID). Upon receiving the identity ID of a user and a new

public key PK′ID, C records this replacement.
• Sign queries (ID, PKID, µ, t). Upon receiving ID and PKID of a user, a message µ and a time

period t. C plays the role of the signer and performs the sign algorithm to produce a valid
signature ζ on µ and returns ζ to A.

- Forgery: Assume that the adversary A produces (ID*, PKID∗, µ*, ζ*, t*). It is worth mentioning,
that ID* is the target identity. It is said that A wins the RCLS-UF-ACMA game when the following
situations hold:

• (ID*, µ*, t*) was never issued in the sign queries.
• The verify algorithm on (ID*, PKID∗, µ*, ζ*, t*) outputs “accept”.
• If A is of Type I adversary, the partial private key extract queries on ID* was never issued.
• If A is of Type II adversary, ID* was never issued in the secret value and public key

replacement queries.
• If A is of Type III adversary, the time key update queries on (ID*, t*) was never issued.

4. Concrete RCLS Scheme over Lattices

As defined in Definition 8 in Section 4, an RCLS scheme consists of eight algorithms. Here, we
propose an efficient lattice-based RCLS scheme. Eight algorithms are presented as follows:

- Setup: Let s > 0, σ > 0, and λ be a positive integer and N be a security parameter, the KGC chooses a
prime q. Then, the KGC runs TrapGen(q, N) of Lemma 3 in Section 2.3 to obtain ( f , g), h = g ∗ f−1,
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‖ f ‖ < s
√

N, and ‖g‖ < s
√

N with short basis B =

[
C(g) −C( f )
C(G) −C(F)

]
of Λh, q, where f, g, F,

GεRq. Furthermore, the KGC sets the system secret key SKGC as B and selects two system public
keys a1, a2 ∈ ZN

q and three hash functions H0, H1 : {0, 1}∗ → ZN
q and H2: ZN

q ×ZN
q ×{0, 1}*→{v:

vε{−1, 0, 1}N, ‖v‖1≤ λ}, where ‖v‖1 denotes the amount of nonzero elements of the vector v.
The public parameters are Parms = < N, s, α, λ, q, h, a1, a2, H0, H1, H2>.

- Partial private key extract: Upon receiving the identity IDε{0, 1}* of a user, the KGC produces
the partial private key (s1, s2) such that s1 + h ∗ s2 = PID and ‖(s1, s2)‖ < s

√
2N by running

SampleGau(B, s, (PID, 0)) of Lemma 5 in Section 2.5, where PID = H0(ID) ∈ ZN
q is the first

partial public key. The KGC returns the partial private key DID = (s1, s2) to the user securely.
Note that Lyubashevsky et al. [36] have shown that if one knows (h, PID), recovering (s1, s2) is
still hard.

- Time key update: Upon receiving the identity ID of a non-revoked user and a time period t, the
KGC produces the time update key (s3, s4) such that s3 + h ∗ s4 = TID and ‖(s3, s4)‖ < s

√
2N by

running SampleGau(B, s, (TID, 0)) of Lemma 5 in Section 2.5, where TID = H1(ID, t) ∈ ZN
q . The

KGC then sends the time update key TID ,t = (s3, s4) to the user by using a public channel.
- Set secret value: The user with ID randomly chooses a secret value SID = (s5, s6) uniformly

from {−d, . . . , 0, . . . , d}, where 1 ≤ d ≤ 31. Meanwhile, the second partial public key is RID =

a1 ∗ s5 + a2 ∗ s6.
- Set private key: The user with ID may set the private key SKID = (DID, TID ,t, SID).
- Set public key: The user with ID may set the public key PKID = (PID, RID).
- Sign: A signer with the private key SKID takes as input a message µε{0,1}*, the signer

randomly and independently selects y1, y2, y3, y4, y5, y6 by the distribution DN
σ , and computes

the following values:

c = H2(y1 + h ∗ y2, y3 + h ∗ y4, a1 ∗ y5 + a2 ∗ y6, µ);

z1 = y1 + s1 ∗ c; z2 = y2 + s2 ∗ c; z3 = y3 + s3 ∗ c;

z4 = y4 + s4 ∗ c; z5 = y5 + s5 ∗ c; z6 = y6 + s6 ∗ c,

where ‖(z1, z2, z3, z4, z5, z6)‖ ≤ 2σ
√

6N. If no such (z1, z2, z3, z4, z5, z6) is produced, repeat
this algorithm. The above procedure is the rejection sampling technique. Finally, there exists
a constant M = O(1) such that the user can produce a signature (z1, z2, z3, z4, z5, z6, c) with
probability min

(
D6N

σ (z)/MD6N
v,σ(z), 1

)
which is similar to the ring variants of Lyubashevsky’s

scheme [22], where

z = [z1
T
∣∣∣∣∣∣z2

T
∣∣∣∣∣∣z3

T
∣∣∣∣∣∣z4

T
∣∣∣∣∣∣z5

T
∣∣∣∣∣∣z6

T ]
T

and
v = [(s1 ∗ c)T

∣∣∣∣∣∣(s2 ∗ c)T
∣∣∣∣∣∣(s3 ∗ c)T

∣∣∣∣∣∣(s4 ∗ c)T
∣∣∣∣∣∣(s5 ∗ c)T

∣∣∣∣∣∣(s6 ∗ c)T ]
T

.

- Verify: Given a signature (z1, z2, z3, z4, z5, z6, c) for a user’s ID on a message µ, a verifier needs to
validate the signature by the equality

c = H2(z1 + h ∗ z2 − PID ∗ c, z3 + h ∗ z4 − TID ∗ c, a1 ∗ z5 + a2 ∗ z6 − RID ∗ c, µ).

The verify algorithm returns “accept” if the checking equality holds. Otherwise, it returns “reject”.
The correctness of the checking equality follows by

(z1 + h ∗ z2 − PID ∗ c, z3 + h ∗ z4 − TID ∗ c, a1 ∗ z5 + a2 ∗ z6 − RID ∗ c)

= (y1 + s1 ∗ c + h ∗ (y2 + s2 ∗ c)− (s1 + h ∗ s2) ∗ c, y3 + s3 ∗ c + h ∗ (y4 + s4 ∗ c)− (s3 + h ∗ s4) ∗ c,
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a1 ∗ (y5 + s5 ∗ c) + a2 ∗ (y6 + s6 ∗ c)− (a1 ∗ s5 + a2 ∗ s6) ∗ c)

= (y1 + h ∗ y2, y3 + h ∗ y4, a1 ∗ y5 + a2 ∗ y6).

5. Security Analysis

In the following, we demonstrate that our lattice-based RCLS scheme is secure against both Type
I adversary (outsider) and Type III adversary (revoked user) in Theorem 1 while the security against
Type II adversary (honest-but-curious KGC) is proven in Theorem 2. The proof technique of both
theorems employs the rejection sampling technique in [22] and the Forking lemma in [37].

Theorem 1. Let three hash functions H0, H1 and H2 be random oracles and N be the security parameter.
Assume that a PPT adversary A (Types I and III) can break our lattice-based RCLS scheme with non-negligible
probability ε. Thus, an algorithm C is constructed to resolve the SIS problem with non-negligible probability
(1− 2−ω(logN))ε.

Proof. Let q be a prime, N be a positive integer and λ, s, σ > 0. Let the algorithm C be a challenger who
receives a random instance (q, 2N, 2λs

√
2N + 4σ

√
2N) of the SIS problem. In the following, we will

show how the challenger C can compute a non-zero vector solution (u1, u2) ∈ R2
q of the SIS problem

by using A. Here, A (Type I or Type III adversary) interacts with C as defined in the RCLS-UF-ACMA
game of Definition 9.

- Setup. The challenger C randomly chooses polynomials a1, a2, hεRq and controls the random
oracles H0, H1 and H2. The public parameters Parms = <N, s, α, λ, q, h, a1, a2, H0, H1, H2> are sent
to A. Meanwhile, C maintains several initially empty lists L0, L1, L2 and LS.

- Queries. A can adaptively issue several queries to C as follows:

• H0 queries: Let L0 consist of tuples of the form < IDi, DIDi , PIDi >. Upon receiving a query
with IDi from A, C produces a response to this query as follows.

1. Search IDi in L0. If it is found, the same answer in L0 is returned to A because the query
has been ever issued.

2. Otherwise, select si1, si2 ∈ DN
s at random such that ‖(si1, si2)‖ < s

√
2N and compute

the polynomial PIDi = si1 + h ∗ si2. Then PIDi is sent to A and < IDi, DIDi =

(si1, si2), PIDi > is added in the list L0.

• H1 queries: Let L1 consist of tuples of the form < IDi, t, T1i, TID,t >. Upon receiving a query
with (IDi, t) from A, C produces a response to this query as follows.

1. Search (IDi, t) in L1. If it is found, the same answer in L1 is returned to A because the
query has been ever issued.

2. Otherwise, select si3, si4 ∈ DN
s at random such that ‖(si3, si4)‖ < s

√
2N and compute

the polynomial T1i = si3 + h ∗ si4. Then T1i is sent to A and < IDi, t, T1i, TID,t > is
added in the list L1.

• H2 queries: Let L2 consist of tuples of the form <wj, xj, vj, µj, cj>. Upon receiving a query
with (wj, vj, xj, µj) from A, C produces a response to this query as follows.

1. Search (wj, vj, xj, µj) in L2. If it is found, the same answer in L2 is returned to A because
the query has been ever issued.

2. Otherwise, randomly select cj ∈ ZN
q . Then cj is sent to A and <wj, xj, vj, mj, cj> is

added in the list L2.

• Partial private key queries: A issues this query along with IDi, C produces a response to this
query as follows.
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1. Search IDi in L0. If it is found, the same answer in L0 is returned to A because the query
has been ever issued.

2. Otherwise, issue the H0 query to obtain the tuple < IDi, DIDi , PIDi >. Then, return
DIDi to A.

• Time key update queries: A issues this query along with (IDi, t), C produces a response to this
query as follows.

1. Search (IDi, t) in L1. If it is found, the same answer in L1 is returned to A because the
query has been ever issued.

2. Otherwise, issue the H1 query to obtain the tuple < IDi, t, T1i, TID,t >. Then, return
T1i to A.

• Secret value queries: Let LS consist of tuples of the form < IDi, SIDi , RIDi >. Upon receiving
a query with IDi from A, C produces a response to this query as follows.

1. Search IDi in LS. If it is found, the same answer in LS is returned to A because the
query has been ever issued.

2. Otherwise, randomly select si5, si6 ∈ {−d, . . . , 0, . . . , d}, where 1 ≤ d ≤ 31, and
compute the polynomial RIDi = a1 ∗ si5 + a2 ∗ si6. Then SIDi = (si5, si6) is sent to A
and < IDi, SIDi , RIDi > is added in the list LS.

• Public key queries: A issues this query along with IDi, C produces a response to this query
as follows.

1. Search IDi in L0 and LS. If it is found, which means that the query has been ever issued,
then C returns A with the same answer PKIDi = (PIDi , RIDi ), where PIDi and RIDi are
taken from L0 and LS, respectively.

2. Otherwise, issue the H0 query and Secret value query to obtain PIDi and RIDi . Then
PKIDi = (PIDi , RIDi ) is sent to A.

• Public key replacement queries: A issues this query along with a new public key PK′ IDi
=

(P′ IDi
, R′ IDi

) of IDi to replace the old public key PKIDi = (PIDi , RIDi ), C replaces the PIDi

in L0 with P′ IDi
and the RIDi in LS with R′ IDi

.

• Sign queries: Upon receiving a request from A along with a message µj , a time period t and
(IDi, PKIDi ), where PKIDi = (PIDi , RIDi ), the challenger C makes the following steps to
produce a valid signature.

1. Search IDi in L0, L1 and LS, respectively, to obtain < IDi, DIDi , PIDi >,
< IDi, t, T1i, TID,t > and < IDi, SIDi , RIDi >.

2. Randomly choose cjε{v: vε{−1, 0, 1}N, ‖v‖1 ≤ λ} and z1, z2, z3, z4, z5, z6∈ DN
σ with

‖(z1, z2, z3, z4, z5, z6)‖ ≤ 2σ
√

6N. Then, compute wj = z1 + h ∗ z2 − PIDi ∗ cj, vj =

z3 + h ∗ z4 − T1i ∗ cj and xj = a1 ∗ z5 + a2 ∗ z6 − RIDi ∗ cj.

3. Add < wj, vj, xj, µj, cj> in the list L2 and send the signature (z1, z2, z3, z4, z5, z6, cj) on µj
to A.

Note that the signature ζ = (z1, z2, z3, z4, z5, z6, cj) is valid because it may satisfy the
following equality:

cj = H2(z1 + h ∗ z2 − PIDi ∗ cj, z3 + h ∗ z4 − T1i ∗ cj, a1 ∗ z5 + a2 ∗ z6 − RIDi ∗ cj, µj) = H2(wj, vj, xj, mj).

Therefore, when the adversary A issues the Sign query, the challenger C can output a
valid signature even though C does not possess the valid secret key or time update key.

- Forgery: After making all the queries needed, the adversary A forges a signature tuple
(z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, c∗) on message µ* for ID* at time period t*.



Symmetry 2017, 9, 242 12 of 17

When A successfully forges a valid signature (z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, c∗), the challenger C
uses the Forking lemma [37] and replays A with different hash value of H2 queries to produce
another valid signature (z′1, z′2, z′3, z′4, z′5, z′6, c′) such that c* 6= c' by the same random tape. Because
(z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, c∗) and (z′1, z′2, z′3, z′4, z′5, z′6, c′) are two valid signatures on the message µ*

for (ID*, PKID∗, t*), we can obtain the equality

H2(z1
∗ + h ∗ z2

∗ − PID∗ ∗ c∗, z3
∗ + h ∗ z4

∗ − T1i∗ ∗ c∗, a1 ∗ z5
∗ + a2 ∗ z6

∗ − RID∗ ∗ c∗, µ∗)

= H2(z′1 + h ∗ z′2 − PID∗ ∗ c′, z′3 + h ∗ z′4 − T1i∗ ∗ c′, a1 ∗ z5
∗ + a2 ∗ z6

∗ − RID∗ ∗ c′, µ∗),

which reduces to
z1
∗ + h ∗ z2

∗ − PID∗ ∗ c∗ = z′1 + h ∗ z′2 − PID∗ ∗ c′.

Since PID∗ = s1 + h ∗ s2, we arrive at

z1
∗ + h ∗ z2

∗ − (s1 + h ∗ s2) ∗ c∗ = z′1 + h ∗ z′2 − (s1 + h ∗ s2) ∗ c′

z1
∗ − z′1 − s1(c∗ − c′) + h ∗ (z2

∗ − z′2 − s2(c∗ − c′)) = 0

(1, h) ∗ (z1
∗ − z′1 − s1(c∗ − c′), z2

∗ − z′2 − s2(c∗ − c′)) = 0.

Then, the challenger C sets (u1, u2) = (z1
∗ − z′1 − s1(c∗ − c′), z2

∗ − z′2 − s2(c∗ − c′)).
If ‖(z∗1 − z1

′, z∗2 − z2
′)‖ ≤ 4σ

√
2N and ‖(s1, s2)‖ ≤ s

√
2N with overwhelming probability, we

can obtain ‖(u1, u2)‖ ≤ 2λs
√

2N + 4σ
√

2N. As stated in Lemma 3, the distribution of h = g/f is
statistically close to the uniform distribution of Rq [35]. The SIS problem on NTRU lattice is to find
a pair (u1, u2)εR2

q such that u1 + h ∗ u2 = 0 and ‖(u1, u2)‖ ≤ β, where β is 2λs
√

2N + 4σ
√

2N. Since
the adversary A does not know the system secret key B generated by g, fεRq and has generated such a
pair (u1, u2), we say that the adversary A solves the SIS problem. According to the same probability
analysis in [22], if the adversary A can break our lattice-based RCLS scheme with non-negligible
probability ε. Then, we can construct an algorithm C to solve the SIS problem with non-negligible
probability (1− 2−ω(logN))ε. �

Theorem 2. Let three hash functions H0, H1 and H2 be random oracles and N be the security parameter.
Assume that an PPT adversary A (Types II) can break our lattice-based RCLS scheme with non-negligible
probability ε. Thus, an algorithm C is constructed to resolve the SIS problem with non-negligible probability
(1− 2−ω(logN))ε.

Proof. Let q be a prime, N be a positive integer and λ, s, σ > 0. Let the algorithm C be a challenger
who receives a random instance (q, 2N, 2λd

√
2N + 4σ

√
2N) of the SIS problem. In the following,

we will show how C can compute a non-zero vector solution (u1, u2) of the SIS problem by using A.
Here, A (Type II adversary) interacts with the challenger C as defined in the RCLS-UF-ACMA game of
Definition 9.

- Setup. The challenger C performs the Setup algorithm of our lattice-based RCLS scheme to set
SKGC = B and Parms = <N, s, α, λ, q, h, a1, a2, H0, H1, H2>, where three hash functions H0, H1 and
H2 are random oracles. The system secret key and Parms are then sent to A. Having the system
secret key SKGC, C can compute the partial private key DID, time update key TID,t, and partial
public key PID of any user with IDi without issuing the other queries. Meanwhile, C maintains
several initially empty lists L0, L1, L2 and LS.

- Queries. A can adaptively issue several queries to C as follows:

• H0 queries: Let L0 consist of tuples of the form < IDi, DIDi , PIDi >. Upon receiving a query
with IDi from A, C produces a response to this query as follows.
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1. Search IDi in L0. If it is found, the same answer in L0 is returned to A because the query
has been ever issued.

2. Otherwise, randomly select a PIDi ∈ ZN
q and run the algorithm SampleGau(B, s, (PIDi ,

0)) to obtain si1, si2 ∈ DN
s such that ‖(si1, si2)‖ < s

√
2N. Then PIDi is sent to A and

< IDi, DIDi = (si1, si2), PIDi > is added in the list L0.

• H1 queries: Let L1 consist of tuples of the form < IDi, t, T1i, TID,t >. Upon receiving a query
with (IDi, t) from A, C produces a response to this query as follows.

1. Search (IDi, t) in L1. If it is found, the same answer in L1 is returned to A because the
query has been ever issued.

2. Otherwise, select si3, si4 ∈ DN
s at random such that ‖(si3, si4)‖ < s

√
2N and compute

the polynomial T1i = si3 + h ∗ si4. Then T1i is sent to A and < IDi, t, T1i, TID,t > is
added in the list L1.

• H2 queries: Let L2 consist of tuples of the form <wj, xj, vj, µj, cj>. Upon receiving a query
with (wj, vj, xj, µj) from A, C produces a response to this query as follows.

1. Search (wj, vj, xj, µj) in L2. If it is found, the same answer in L2 is returned to A because
the query has been ever issued.

2. Otherwise, randomly select cj ∈ ZN
q . Then cj is sent to A and <wj, vj, xj, µj, cj> is

added in the list L2.

• Secret value queries: Let LS consist of tuples of the form < IDi, SIDi , RIDi >. Upon receiving
a query with IDi from A, C produces a response to this query as follows.

1. Search IDi in LS. If it is found, the same answer in LS is returned to A because the
query has been ever issued.

2. Otherwise, randomly select si5, si6 ∈ {−d, . . . , 0, . . . , d}, where 1 ≤ d ≤ 31, and
compute the polynomial RIDi = a1 ∗ si5 + a2 ∗ si6. Then SIDi = (si5, si6) is sent to A
and < IDi, SIDi , RIDi > is added in LS.

• Public key queries: A issues this query along with IDi, C produces a response to this query as
follows.

1. Search IDi in L0 and LS. If it is found, which means that the query has been ever issued,
then C returns A with the same answer PKIDi = (PIDi , RIDi ), where PIDi and RIDi are
taken from L0 and LS, respectively.

2. Otherwise, issue the H0 queries and Secret value queries to obtain PIDi and RIDi . Then
PKIDi = (PIDi , RIDi ) is sent to A.

• Public key replacement queries: A issues this query along with a new public key PK′ IDi
=

(P′ IDi
, R′ IDi

) of IDi to replace the old public key PKIDi = (PIDi , RIDi ), C replaces the PIDi

in L0 with P′ IDi
and the RIDi in LS with R′ IDi

.

• Sign queries: Upon receiving a query from A along with (µj, IDi, PKIDi ) at time period
t, where PKIDi = (PIDi , RIDi ), the challenger C makes the following steps to produce a
valid signature.

1. Search IDi in L0, L1 and LS, respectively, to obtain < IDi, DIDi , PIDi >,
< IDi, t, T1i, TID,t > and < IDi, SIDi , RIDi >.

2. Randomly choose cjε{v:vε{−1, 0, 1}N, ‖v‖1 ≤ λ} and z1, z2, z3, z4, z5, z6∈ DN
σ with

‖(z1, z2, z3, z4, z5, z6)‖ ≤ 2σ
√

6N. Then, compute wj = z1 + h ∗ z2 − PIDi ∗ cj, vj =

z3 + h ∗ z4 − T1i ∗ cj and xj = a1 ∗ z5 + a2 ∗ z6 − RIDi ∗ cj.

3. Add <wj, vj, xj, µj, cj> in the list L1 and send the signature (z1, z2, z3, z4, z5, z6, cj) on µj
to A.
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Finally, as in the proof of Theorem 1, the signature (z1, z2, z3, z4, z5, z6, cj) is valid and
can pass the verification.

- Forgery: After making all the queries needed, the adversary A forges a valid signature tuple
(z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, c∗) on message µ* for ID* at time period t*.

When A successfully forges a valid signature (z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, c∗), the challenger C
uses the Forking lemma [37] and replays A with different hash value of H2 queries to produce
another valid signature (z′1, z′2, z′3, z′4, z′5, z′6, c′) such that c* 6= c′ by the same random type. Because
(z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, c∗) and (z′1, z′2, z′3, z′4, z′5, z′6, c′) are two valid signatures for (µ*, ID*, PKID∗),
we can obtain the equation

H2(z1
∗ + h ∗ z2

∗ − PID∗ ∗ c∗, z3
∗ + h ∗ z4

∗ − T1i∗ ∗ c∗, a1 ∗ z5
∗ + a2 ∗ z6

∗ − RID∗ ∗ c∗, µ∗)

= H2(z′1 + h ∗ z′2 − PID∗ ∗ c′, z′3 + h ∗ z′4 − T1i∗ ∗ c′, a1 ∗ z5
∗ + a2 ∗ z6

∗ − RID∗ ∗ c′, µ∗),

which reduces to

a1 ∗ z5
∗ + a2 ∗ z6

∗ − RID∗ ∗ c∗ = a1 ∗ z′5 + a2 ∗ z′6 − RID∗ ∗ c′.

Since RID∗ = a1 ∗ s5 + a2 ∗ s6, we arrive at

a1 ∗ z5
∗ + a2 ∗ z6

∗ − (a1 ∗ s5 + a2 ∗ s6) ∗ c∗ = a1 ∗ z′5 + a2 ∗ z′6 − (a1 ∗ s5 + a2 ∗ s6) ∗ c′

a1 ∗ (z5
∗ − z′5) + a2 ∗ (z6

∗ − z′6)− a1 ∗ s5(c∗ − c′)− a2 ∗ s6(c∗ − c′) = 0
a1 ∗ (z5

∗ − z′5 − s5(c∗ − c′)) + a2 ∗ (z6
∗ − z′6 − s6(c∗ − c′)) = 0

(a1, a2) ∗ (z5
∗ − z′5 − s5(c∗ − c′), z6

∗ − z′6 − s6(c∗ − c′) ) = 0

Let (u1, u2) = (z5
∗ − z′5 − s5(c∗ − c′), z6

∗ − z′6 − s6(c∗ − c′)).
If ‖(z∗5 − z5

′, z∗6 − z6
′)‖ ≤ 4σ

√
2N and ‖(s5, s6)‖ ≤ 2dλ

√
2N with overwhelming probability,

we can obtain ‖(u1, u2)‖ ≤ 2dλ
√

2N + 4σ
√

2N. As stated in Lemma 3, the distribution of h = g/f is
statistically close to the uniform distribution of Rq [35]. The SIS problem on NTRU lattice is to find
a pair (u1, u2)εR2

q such that u1 + h ∗ u2 = 0 and ‖(u1, u2)‖ ≤ β, where β is 2λs
√

2N + 4σ
√

2N. Since
the adversary A does not know the system secret key B generated by g, fεRq and has generated such
a pair (u1, u2), we say that the adversary A solves the SIS problem. According to the same probability
analysis in [22], if the adversary A can break our lattice-based RCLS scheme with non-negligible
probability ε. Then, we can construct an algorithm C to solve the SIS problem with non-negligible
probability (1− 2−ω(logN))ε. �

6. Comparisons

To show the advantages of the proposed RCLS scheme, we make the comparisons between
the previous schemes and ours. For convenience, we define the following notations to count the
computational costs.

• Ts: The required time of performing a sampling operation Dσ.
• Tm: The required time of performing a multiplication operation.
• Ta: The required time of performing an addition/subtraction operation.

Table 1 demonstrates comparisons between Tian and Huang’s CLS scheme ([30]) and the proposed
RCLS scheme in terms of lattice type, public key setting, averting key escrow problem, private key size,
signature length, the computation costs of signing and verifying processes. Tian and Huang’s CLS
scheme is constructed under the certificateless public key settings to solve the key escrow problem,
but it does not address the revocation problem. Our RCLS scheme resolves both the revocation and
key escrow problems. For the usage of Lattices, Tian and Huang’s CLS scheme uses the GPV lattice
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in [20] to generate the private key of a user. It is worth mentioning, that the related parameters in
Table 1 have the following relationships: m1 > 2Nlogq, m2 > 64 + Nlogq, ŝ1 =

√
m1ω(

√
log N),

ŝ2 =
√

m2ω(
√

log N), s = N5/2√2qω(
√

log N), σ̂ = 12ŝλm1, σ = 12λsN. In Table 2, we choose
concrete parameters: N = 512, q = 226, k = 512, d = 31, λ = 14, m1 = 38,400, m2 = 25,600 and make the
comparisons of instances in bit-length. According to Tables 1 and 2, for both the private key size,
signature length, the computation costs of signing and verifying processes, our RCLS scheme is better
than Tian and Huang’s CLS scheme. Our scheme adopts public channels to send the periodic time
update keys.

Indeed, the signing processes of all three schemes mentioned above employ the same the rejection
sampling technique in Lyubashevsky’s scheme [22] to produce signatures. Here, lets discuss the
rejection probability in the signing process. If the rejection probability is too large, the performance
of generating signatures may be inefficient. In our scheme, the signer can produce a useful signature
(z1, z2, z3, z4, z5, z6, c) with probability min

(
D6N

σ (z)/MD6N
v,σ(z), 1

)
. That is, the signer with probability

(1− 2−100)/M may output a useful signature by Lemma 4. According to the specific parameters
N = 512, q ≈ 226, k = 512 and d = 31 in [22], the M value is about 7.4. Hence, the performance of signing
process still remains efficiency.

Table 1. Comparisons among previously proposed RIBS, CLS schemes and ours.

Properties Tian and Huang’s CLS Scheme Our RCLS Scheme

Lattice type GPV lattice NTRU lattice
Public-key setting CLS RCLS

Revocable functionality No Public channel
Averting key escrow problem Yes Yes

Private key size 2m1k log(ŝ1
√

m1)+2m2k log(ŝ2
√

m2) 6N log(s
√

N)
Signature length (m1 + m2)log(12σ̂) + λ(logk+1) 6Nlog(12σ) + λ(logN+1)

Computational cost of signing (m1 + m2)(Ts + 2NTm + Ta) 6NTs + 9N(Tm + Ta)
Computational cost of verifying 2N(m1 + m2)Tm + 2NTa 7NTm + 6NTa

Table 2. Comparisons of concrete instances in bit-length.

Bit-Length Tian and Huang’s CLS Scheme Our RCLS Scheme

Private key size 595,222,811 127,749
Signature length 2,026,680 175,312

7. Conclusions

In this paper, we proposed the first provably secure RCLS scheme with a public channel over
lattices, which possesses existential unforgeability against adaptive chosen-message attacks. Under
the SIS assumption and in the random oracle model, we formally established the security of our
lattice-based RCLS scheme for three types of adversaries, namely, outside adversary, honest-but-curious
KGC and revoked user. By performance analysis and comparisons, we have demonstrated that the
proposed lattice-based RCLS scheme is better than the previously proposed lattice-based CLS scheme,
in terms of private key size, signature length, the security property and the revocation mechanism.
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