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Abstract: This paper discusses clock-comparison experiments, which may be used to test Lorentz
symmetry to an extremely high level of precision. We include a brief overview of theoretical
predictions for signals of Lorentz violation in clock-comparison experiments and summarize results
of experiments that have been performed to date.

Keywords: Lorentz violation; clock-comparison

1. Introduction

Einsteinian relativity [1] is founded on the idea that spacetime is symmetric under the Lorentz
group of transformations [2]. For several years in the early 20th century, it was reasonable to wonder
whether the laws of nature actually obey this symmetry. In other words, it was reasonable to ask,
“Was Einstein right?” We now know that the answer is unequivocally “yes” [3]. Relativity has been
tested thousands of times, and Einstein was far more right than wrong.

The appropriate question to ask now is, “Was Einstein perfect?”
Most physical laws only apply in a limited range of circumstances. They are not even

approximately correct outside their domain and have slight imperfections even in their effective
range. However, to date, there is no experimental evidence whatsoever that Lorentz symmetry is
violated in our universe [4]. Lorentz symmetry is thus rare among physical laws in that it currently
appears to be perfect. Still, this is no reason to ignore the idea of Lorentz violation. Rather, due to
the foundational nature of Lorentz symmetry among all modern physical theories and its apparent
perfection, it is imperative to probe Lorentz symmetry as carefully as possible.

The Lorentz-violating Standard-Model Extension (SME) [5–7] is a framework designed to
accommodate all plausible types of Lorentz violation. It allows systematic comparison of different
experiments and predicts classes of signals that could arise if Lorentz symmetry is broken in some way.

Over the past 20 years, hundreds of experiments have been performed and analyzed in the context
of the SME [4]. In this paper, we discuss clock-comparison experiments [8–26], a particular class of
experiments, which have yielded some of the highest sensitivity to Lorentz-violating effects in ordinary
matter [27].

We begin in Section 2 with a brief qualitative overview of clock-comparison experiments. We then
in Section 3 explain the derivation of the nonrelativistic Hamiltonian that describes Lorentz violation in
matter at low energies, such as in atomic systems. In Section 4, we describe a few useful assumptions
and approximations for evaluating energy-level shifts that result from the nonrelativistic Hamiltonian.
In Section 5, we express the energy-level shifts in terms of SME Lorentz-violation coefficients and
conventional atomic properties. Section 6 is concerned with the key combination of frequencies that
may most easily be used to achieve exquisitely high precision in clock-comparison tests. The time
variation of energy-level shifts that occurs in Earth- and space-based tests is discussed in Section 7.
Finally, we summarize the results of completed clock-comparison experiments in Section 8.
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2. Qualitative Outline of Clock-Comparison Experiments

In the context of this article, a “clock” is built from an atom in a uniform magnetic field ~B, as shown
in Figure 1. Due to the the Zeeman effect and the structure of the atom itself (possibly including
electron-nucleus interactions), each clock atom has a ladder of possible energy levels. The clock
frequency is given by the frequency associated with a transition between a pair of energy levels in the
atom, typically measured through emission or absorption of light.

photon

State 1

State 2

frequency ~ Energy 1 - Energy 2

B


Figure 1. Basic schematic of a typical atomic clock referenced in this paper. The clock’s frequency is
determined by a pair of energy levels of an atom in an applied magnetic field.

When considering Lorentz-violation tests, these clocks have three important facets:

1. Frequency measurements can probe atomic energy levels.
2. The applied magnetic field defines an orientation of the clock: the “clock axis”.
3. In conventional (i.e., Lorentz-symmetric) physics, the clock frequency is independent of the clock

axis and the clock velocity.

These points, especially the third, allow us to use atomic clocks to probe Lorentz violation.
Suppose that the frequency of a given clock is found to depend on its orientation. This implies a
violation of rotational symmetry. Since rotations form a subgroup of the Lorentz group, this then
implies a violation of Lorentz symmetry. Similarly, a clock frequency that depends on the clock’s
velocity would imply a violation of boost symmetry in the Lorentz group.

This, then, is the key connection between the Lorentz-violating standard-model extension and
clock-comparison experiments. If certain Lorentz-violation coefficients are nonzero, then some
atomic clocks will have frame-dependent energy-level shifts. The experiments seek such
frame-dependent shifts.

To date, no such frame-dependent shifts have been observed. All experiments thus place bounds
on (combinations of) SME coefficients. The remainder of this paper describes the predicted energy-level
shifts in detail and derives the resultant bounds on SME coefficients from existing experiments.

3. Derivation of Nonrelativistic Hamiltonian

For working with atomic states, we would like to find an appropriate nonrelativistic Hamiltonian
that describes SME effects at low energies. Our pathway to doing so is to start with a relativistic
Lagrangian, to use it to extract a relativistic Hamiltonian and, finally, to perform a Foldy–Wouthuysen
transformation. We initially calculate a nonrelativistic Hamiltonian for free fermions; in Section 4,
we discuss the sense in which the free-particle Hamiltonian may be used to describe low-energy effects
on bound particles.

Throughout this paper, we restrict attention to the minimal standard-model extension in flat
spacetime [6,7]. One of the primary postulates of this framework is that each free Dirac fermion of
mass m is described by a Lagrangian density of the form:
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L = 1
2 iψ̄Γν

↔
∂ν ψ− ψ̄Mψ, (1)

where Dirac matrices M and Γν are defined by:

M := m + aµγµ + bµγ5γµ + 1
2 Hµνσµν and

Γν := γν + cµνγµ + dµνγ5γµ + eν + i fνγ5 +
1
2 gλµνσλµ.

(2)

In the flat-spacetime limit of the minimal SME, the coefficients aµ, bµ, cµν, dµν, eν, fν, gλµν and Hµν

are fixed background tensors. They may arise, for example, as vacuum expectation values of dynamic
fields in some more fundamental theory [28]. We assume in this work that each component of each
coefficient tensor is much smaller than any other quantities of the same dimensions; specifically, we
assume that we may neglect any terms that are higher than first order in them.

Equation (1) and many others assume the following conventions: Spacetime coordinates
0, 1, 2, 3 are denoted by Greek indices, while spatial coordinates 1, 2, 3 are denoted by Latin indices
{j, k, . . . , q} near the middle of the alphabet. The (flat) spacetime metric is ηµν = diag(+1,−1,−1,−1),
and pj = −i∂j is the free-particle momentum operator. We use the Dirac representation of the
gamma matrices:

γ0 =

(
1 0
0 1

)
and γj =

(
0 σj

−σj 0

)
,

where the usual Pauli matrices are denoted by σj and 1 is the 2× 2 identity matrix. We define the
Levi–Civita symbol so that [σj, σk] = +2iεjk

lσ
l , which corresponds to the choice ε12

3 = +1.

3.1. Field Redefinition

We may apply the Euler–Lagrange equations to the Lagrangian Equation (1) and then arrange
the result into the form i∂tψ = Hnaiveψ to calculate a relativistic Hamiltonian Hnaive. However,
the Hamiltonian that results is non-Hermitian. Interpretation of a field governed by a non-Hermitian
Hamiltonian is possible [29], but problematic, so we take a different approach. The non-hermiticity

arises essentially from the appearance of the nonstandard terms involving
↔
∂0 in Lagrangian

Equation (1); it would not occur if cµ0 = dµ0 = e0 = f0 = gλµ0 = 0. We therefore perform a
field redefinition ψ = Aχ into a field basis where these coefficients are each zero before applying the
Euler-Lagrange equations. With the choice [30,31]:

ψ = Aχ =
[
1− 1

2 γ0(Γ0 − γ0)
]

χ, (3)

the field χ obeys conventional time evolution. Thus, the Hamiltonian extracted from i∂0χ = Hχ will
be Hermitian.

At the end of this process, the relativistic Hamiltonian takes the form:

H = m(γ0 + P + E +O), (4)

where:

mP := γ0γj pj,

mE :=
[

a0 −me0 + (−c0j − cj0)pj
]
+ γ0

[
−mc00 − ej pj

]
+γjγ5

[
mdj0 +

1
2 εkl

j Hkl − εlm
j(

1
2 glmk − ηkmgl00)pk

]
+γ0γjγ5

[
− bj − 1

2 mεkl
jgkl0 + (djk − d00ηjk)pk

]
, and

mO := γ5

[
− b0 + (d0j + dj0)pj

]
+ γ0γ5

[
− i f j pj

]
+γj

[
iH0j + (gj0k + gjk0)pk

]
+ γ0γj

[
aj − (cjk − c00ηjk)pk

]
.

(5)
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3.2. Foldy–Wouthuysen Transformation

At this point, it is best to do two fairly natural things: First, we think of our 4 × 4 matrices as
2 × 2 block matrices with each block being an ordinary 2 × 2 matrix. In this context, we incorporate

the specific set of gamma matrices stated earlier: γ0 =

(
1 0
0 1

)
and γj =

(
0 σj

−σj 0

)
. Once we

do this, several results follow.

1. The relativistic Hamiltonian is divided into block-diagonal and off-block-diagonal parts: mγ0 and
mE are block diagonal, while mP and mO are off block diagonal.

2. In the nonrelativistic limit, the upper two components of χ satisfy a version of the Schrödinger
equation with spin.

3. In the nonrelativistic limit, the lower two components of χ are smaller than the upper components
by a factor of |~p| /m.

4. The off-block-diagonal terms in the Hamiltonian couple the upper and lower components of
χ together. Such terms are unsuppressed by factors of |~p| /m, and so, we cannot immediately
neglect them.

If the lower components were not coupled to the upper components, then we could simply
disregard them in the nonrelativistic limit. This suggests the strategy of the Foldy–Wouthuysen
transformation [32]: transform to a basis in which:

1. The lower components of χ are still suppressed with respect to the upper components by multiple
factors of |~p| /m.

2. The Hamiltonian is approximately block diagonal. That is, the off-block-diagonal parts are
suppressed with respect to the upper-left block by multiple factors of |~p| /m.

Symbolically, we want to find a matrix S such that:

χ̃ = eiSχ,
χ̃1,2 � χ̃3,4, and

HNR = eiS He−iS =

(
BIG small

small irrelevant

)
.

(6)

A transformation that does the job is:

eiS = eγ0γ5φ, where tan 2φ =

∣∣γ5γ0~γ · ~p
∣∣

m
. (7)

This transformation may not be calculated exactly, but may be approximated to any desired order
in |~p| /m. Once we do so, the resulting Hamiltonian is given by an infinite power series in pj/m. In this
work, we apply Equation (7) with sufficient precision that the off-diagonal blocks and lower-right
block are smaller than the upper-left block by factors of (|~p| /m)3. We then keep only terms up to order
pj pk/m2, and therefore, we only need keep the upper-left 2× 2 block hNR for describing nonrelativistic
particles. The result is:

hNR = h0 + δh, (8)

where h0 = m + p2

2m is the conventional free-particle nonrelativistic Hamiltonian, and the
Lorentz-violating perturbation δh is given by:
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δh =
[

a0 −me0 −mc00

]
+
[
− aj + mej + m(c0j + cj0)

] pj
m +

[
m(−cjk − 1

2 c00δjk)
] pj pk

m2

+σq
{[
− bq + mdq0 − 1

2 εqkl gkl0 +
1
2 εqkl Hkl

]
+
[
b0δjq −m(dqj + d00δqj)−mεqlm(

1
2 gmlj + gm00δjl)− εqkl Hl0

] pj
m

+
[
mδkq(d0j + dj0)− 1

2 δkq(bj + mdj0 +
1
2 mε jmngmn0 +

1
2 ε jmnHmn

+ 1
2 δjk(bq +

1
2 mεqmngmn0)−mε jqm(gm0k + gmk0)

] pj pk
m2

}
.

(9)

This is the Hamiltonian that we may use to calculate perturbations to energy levels of electrons,
protons and neutrons in atoms.

4. Useful Assumptions and Approximations

4.1. Use of Free-Particle Perturbation

It is reasonable to be skeptical about the use of a free-particle Hamiltonian to study particles
bound in atoms. Stated more precisely, an ideal Hamiltonian would take the form:

hideal = hconv + δh + δhneglected, (10)

where hconv is the full conventional Hamiltonian including atomic forces, nuclear forces
and interactions with external fields; δh is the SME free-particle perturbation given above;
and δhneglected contains the SME perturbations to all interaction terms. We are omitting δhneglected.

The omitted piece δhneglected contains, for example, a term proportional to q~B ·~b. By dimensional
analysis, this term must also have a factor of m−2. The resulting terms for nuclear, atomic and external
magnetic fields are then suppressed by factors:(

qB
m2

)
nuclear

∼ 10−2,
(

qB
m2

)
atomic

∼ 10−5, and
(

qB
m2

)
external

∼ 10−10 (11)

relative to the free-particle terms involving~b. This indicates that such terms are much smaller than the
free-particle terms we are including.

We can make a somewhat more systematic argument as follows. The omitted piece δhneglected is
an analytic function of all quantities (except mass and angular momenta) around zero values, so it is
well approximated by a multivariable Taylor series in these quantities. Applying dimensional analysis
to possible terms suggests that each δhneglected term is suppressed with respect to the free-particle δh
terms, and therefore, we are keeping the largest effects.

4.2. Atomic and Nuclear Models

For unperturbed states of atoms, we use fairly rough approximations. First, we assume that
electrons, neutrons and protons fall into shells. Filled shells are spherically symmetric and therefore
insensitive to rotation-violating perturbations to leading order. We can therefore ignore all particles
that occupy filled shells.

In most of our analysis, we make an even rougher approximation with the Schmidt model.
This assumes that the dominant energy shift for each particle species comes from a single valence
electron, neutron and/or proton. It then requires that the single valence particle carry all of the nuclear
or electronic angular momentum.

For example, 133Cs contains 78 neutrons, 55 protons and 55 electrons. It has a nuclear spin I = 7/2
and an electronic spin of 1/2. According to our model, 133Cs is insensitive to neutron-associated
Lorentz violation. The proton-associated Lorentz-violating energy-level shift may be calculated by
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perturbing a single proton in a g7/2 state, and the electron-associated Lorentz-violating energy-level
shift may be calculated by perturbing a single electron in an s1/2 state.

This model is not sophisticated, and the results should be interpreted as correct only within an
order of magnitude (at best). Were Lorentz-violation to be observed in nature, then more detailed
analysis would be necessary. However, in the absence of observed Lorentz-violation, analysis that
identifies likely leading-order signals is sufficient.

Some work has been done in using a more realistic nuclear model to determine some energy shifts
with more precision [23]. More sophisticated modeling may reveal that an energy shift that appears to
be independent of a particular particle species in our simple model is in fact dependent on that species
in reality [27,33].

5. Energy-Level Shifts to Atoms

To calculate atomic energy-level shifts, we treat an atom as a collection of individual particles:

δhatom = ∑
w=e,p,n

Nw

∑
N=1

δhw,N , (12)

where w designates each particle species, Nw gives the number of each particle species present in a
given atom and δhw,N describes the Hamiltonian perturbation (9) acting on particle N of species w.
As usual with perturbation theory, the first-order energy-level shift to an atomic state |F, mF〉 is given
by the expectation value of δhatom in that state (F and mF here represent total atomic spin and spin
projection, respectively). In most cases, 〈δhatom〉 has only one or two nonzero terms due to our use of
nuclear and atomic Schmidt models.

Evaluation of the nonzero terms is aided greatly by the Wigner–Eckart theorem, which is stated
in terms of tensor operators T(r)

q (for example, the operator σ3 is the (r, q) = (1, 0) component of
rank-1tensor operator ~σ, σ1 + iσ2 is the (1,+1) component and σ1 − iσ2 is the (1,−1) component).
The theorem says that the matrix element of such an operator between states 〈F, m| and |F′, m′〉 is
given by:

〈
F, m

∣∣∣T(r)
q

∣∣∣ F′, m′
〉
=

(
CFm

rqF′m′

CFF
r0FF

)〈
F, F

∣∣∣T(r)
0

∣∣∣ F, F
〉

(13)

where CFm
rqF′m′ are the usual Clebsch–Gordon coefficients. This expression allows us to reduce the

calculation of expectation values for multiple related states to simple geometry (the Clebsch–Gordon
coefficients) and a single detailed expectation-value calculation.

Application of the Wigner–Eckart theorem to perturbation Hamiltonian Equation (9) then requires
δh to be expanded in the basis of rotational tensors. For example, the term bjσ

j may be written:

bjσ
j = b3σ3 + 1

2 (b1 − ib2)(σ
1 + iσ2) + 1

2 (b1 + ib2)(σ
1 − iσ2), (14)

where, as stated above, the operator σ3 is the (r, q) = (1, 0) component of rank-1 tensor operator
~σ, σ1 + iσ2 is the (1,+1) component and σ1 − iσ2 is the (1,−1) component.

Once we make this expansion in terms of tensor operators, many simplifications occur.
First, we need only do a single detailed calculation—the expectation value of the b3σ3 part in the
extreme state |F, mF = F〉—for the entire operator sum bjσ

j and multiple states. The expectation
values of the other parts in other states follow immediately from Equation (13). Next, only q = 0
components contribute nonzero values as F = F′ and mF = mF

′ for expectation values. Finally,
the relevant Clebsch–Gordon ratios for tensor operators that appear in our Hamiltonian perturbation
are fairly simple:(

CFm
00Fm

CFF
00FF

)
= 1,

(
CFm

10Fm
CFF

10FF

)
=

mF
F

, and

(
CFm

20Fm
CFF

20FF

)
=

3m2
F − F(F + 1)

3F2 − F(F + 1)
. (15)
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Putting these ideas together, we find that the expectation value of the entire perturbation
Hamiltonian δhatom in state |F, mF〉 can be written:

〈F, m |δhatom| F, m〉 =
(mF

F

)
Ed +

(
3m2

F − F(F + 1)
3F2 − F(F + 1)

)
Eq, (16)

where the dipole-type and quadrupole-type energy shifts:

Ed = ∑w=e,p,n

(
b̃w

3
〈
[σ3]w

〉
+ d̃w

3

〈
[p3 pjσ

j ]w

m2
w

〉
+ g̃w

d3

〈
[p3 pjσ

j−pj pjσ
3]w

2m2
w

〉)
,

Eq = ∑w=e,p,n

(
c̃w

q

〈
− [p2

1+p2
2−2p2

3]w
6m2

w

〉
+ g̃w

q

〈
[(p1σ2−p2σ1)p3]w

2m2
w

〉)
.

(17)

Each of these expectation values is taken in the state |F, mF = F〉. The tilde quantities are the
combinations of Lorentz-violation coefficients that may be probed with clock-comparison experiments
in ordinary matter:

b̃3 := b3 −md30 + mg120 − H12,
d̃3 := md03 +

1
2 md30 − 1

2 H12,
g̃d3 := m(g102 − g201 + g120)− b3,
c̃q := m(c11 + c22 − 2c33), and
g̃q := m(g101 + g202 − 2g303).

(18)

Note that there is a separate set of these for each particle species even though the explicit index is
not shown.

The effects of these energy shifts are qualitatively summarized in Figure 2 with the example
of a F = 3/2 multiplet. As illustrated in the figure, the most relevant quantities for comparison to
experiment are transition frequencies, which are each proportional to a difference of energies. Note that
dipole-type shifts are qualitatively similar to Zeeman splitting in that transitions between adjacent
energy levels have equal frequencies. Quadrupole-type shifts are qualitatively different: if they are
nonzero, then what appears to be a single peak in the spectrum is actually a triple peak with peak
separation of size Eq. Investigations of this effect [8,9] were early inspiration for some of the modern
clock-comparison experiments.

E0

E0

E0

F=3/2

mF=−3/2

mF=+3/2

mF=+1/2

mF=−1/2
E0+Ed

E0+Ed

E0+Ed

F=3/2

mF=−3/2

mF=+3/2

mF=+1/2

mF=−1/2 E0+Eq

E0−Eq

E0

Conventional
Zeeman splitting

Dipole-type
shifts

Quadrupole-type
shifts

F=3/2

mF=−3/2

mF=+3/2

mF=+1/2

mF=−1/2

Figure 2. Qualitative comparison of energy-level shifts to a F = 3/2 multiplet from the conventional
Zeeman effect and from dipole- and quadrupole-type Lorentz-violating operators.

6. Relating Theory to Experiments

A key technique for achieving high sensitivity to Lorentz-violation is watching for frequency
changes as a clock’s orientation and/or velocity changes. There are two large difficulties with this.
First, it is impossible to tell whether a single clock’s frequency varies or not. Second, Earth’s magnetic
field can mimic Lorentz-violation: as a clock moves through Earth’s field, its frequency can vary with
orientation and velocity even in conventional physics through the Zeeman effect.
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Both of these problems can be solved through the introduction of the quantity ω] [34]. Consider
two co-located clocks P and Q with frequencies ωP and ωQ. We wish to find a combination of these
frequencies that is identically zero in conventional physics and that varies with orientation/velocity in
the SME.

First, write each frequency in the form:

ω = f (B) + δω, (19)

where f (B) is the conventional frequency as a function of the applied magnetic field and δω is the
Lorentz-violating perturbation to this frequency. For example, f (B) might be expressed as gµBB∆m
for a purely electronic transition, and δω is a linear combination of Lorentz-violation tilde coefficients
b̃3, . . . , g̃q. We may think of Beff := f−1(ω) as an effective magnetic field measured by each clock,
and hence, f−1 may be called a magnetometer function.

The combination ω] is then defined to be:

ω] := ωP − fP

[
f−1
Q (ωQ)

]
. (20)

The theoretical value of this quantity may be seen by expanding the magnetometer functions in
Taylor series about B = 0, with the result:

ω] = δωP − vδωQ, (21)

where:

v =
(d fP/dB)
(d fQ/dB)

∣∣∣∣
B=0

(22)

is proportional to the ratio of the gyromagnetic ratios for the individual frequencies. This ω] is clearly
zero in conventional physics since each δω is a linear combination of Lorentz-violation coefficients.

For example, suppose both clocks involve purely electronic transitions as described above.
Then, f−1

Q (ωQ) = B +
δωQ

gQµB∆mQ
. When this is plugged into Equation (20), the Lorentz-respecting terms

cancel, and we find ω] = δωP − gP∆mP
gQ∆mQ

δωQ.

The experimental value of ω] may be seen by considering two possible experimental strategies.
For the first strategy, measure both ωP and ωQ. Plug the results into ω] = ωP − fP[ f−1

Q (ωQ)] and
compare the result to the theoretical prediction ω] = δωP − vδωQ. This strategy could work in
principle, but it requires exquisitely precise knowledge of the functions fP and fQ to achieve high
sensitivity.

It is better to achieve high sensitivity without needing to know the magnetometer functions
explicitly. For the second strategy [13], force frequency ωQ to be constant, e.g., through the application
of a feedback magnetic field, and measure changes in ωP. Then, the term fP[ f−1

Q (ωQ)] is automatically
constant, and so, ωP alone contains all of the orientation/velocity dependence of ω]. Thus,

ωP = δωP − vδωQ + (irrelevant constant). (23)

We cannot know the value of the last piece without exquisite knowledge of fP and fQ, but it is
constant and so irrelevant for clock-comparison tests. In conclusion, using the second strategy with
ω] implies that orientation/velocity dependence in ωP is sensitive purely to honest Lorentz-violating
effects and fP, fQ do not need to be known with much precision.
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7. Time Variation

Most clock-comparison experiments to date have been conducted by probing the frequencies of
interest as Earth rotates. We discuss the resulting time dependence of ω] in this section. We also discuss
the possibility of conducting a clock-comparison experiment on an orbiting platform, which could
hold several significant advantages over Earth-based tests.

7.1. Earth-Based Experiments

The background tensor fields aµ, . . . , Hµν themselves are commonly assumed to not vary with
time or position. However, the laboratory frame changes orientation and velocity as Earth rotates,
and therefore, the components of the background fields in the Earth-based reference frame vary.
To extract the nature of the variation, it is useful to consider two different reference frames [27,34],
as illustrated in Figure 3.

ΩtΩt

χ

χ

= Earth’s rotation axisẐ

X̂

Ŷ

x̂

ŷ

= Quantization axis
of experiment

ẑ

Figure 3. Definition of two coordinate frames, one Sun-centered and nonrotating, the other fixed on
Earth’s surface. We have drawn the frames as though they had the same origin.

In the nonrotating frame, the origin lies at the center of the Sun. The Ẑ axis is defined to be parallel
to Earth’s rotation axis; the X̂ axis points toward the vernal equinox on the celestial sphere; and we
choose Ŷ := Ẑ × X̂ so that the system is right-handed. When necessary, time T in the nonrotating
frame is conventionally chosen so that T = 0 at the vernal equinox in the year 2000. This frame is
approximately inertial on time scales of thousands of years. Note that the XY plane coincides with
Earth’s equatorial plane.

In the Earth-based frame, the origin lies at the location of the atoms involved. The ẑ axis lies along
the quantization axis of the experiment. If ẑ is parallel to Ẑ, then the clock orientations do not actually
vary as Earth rotates, and so, there is no experimental signal. We therefore assume that ẑ makes a
nonzero angle χ with Ẑ. Then, z rotates around Z at Earth’s sidereal frequency Ω ≈ 2π

(23 h 56 min) .

We choose time t = 0 to be any convenient time such that ẑ lies between +X̂ and +Ẑ. We then
pick x̂ at t = 0 to lie in the X̂− Ẑ plane, to be perpendicular to ẑ and to make an acute angle with +X̂.
Finally, we choose ŷ := ẑ× x̂ so that the Earth-based frame is also right-handed. Note that x̂ maintains
a constant angle χ with the XY plane and ŷ lies in the XY plane at all times.

Even though the frames’ origins are distinct, they are shown coincident in Figure 3 for the ease
of comparison.
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Given these frames, the time dependence of each Lorentz-violation coefficient may be made
explicit. The combinations that appear in dipole-type energy shifts are:

b̃3 = b̃Z cos χ + b̃X sin χ cos Ωt + b̃Y sin χ sin Ωt,
d̃3 = d̃Z cos χ + d̃X sin χ cos Ωt + d̃Y sin χ sin Ωt, and

g̃d3 = g̃DZ cos χ + g̃DX sin χ cos Ωt + g̃DY sin χ sin Ωt
(24)

while the combinations that appear in quadrupole-type energy shifts are:

c̃q = c̃Q(
3
2 cos2 χ− 1

2 )−
3
2 c̃Y sin 2χ cos Ωt− 3

2 c̃X sin 2χ sin Ωt
− 3

2 c̃− sin2 χ cos 2Ωt− 3
2 c̃Z sin2 χ sin 2Ωt and

g̃q = g̃Q(
3
2 cos2 χ− 1

2 )−
3
2 g̃Y sin 2χ cos Ωt− 3

2 g̃X sin 2χ sin Ωt
− 3

2 g̃− sin2 χ cos 2Ωt− 3
2 g̃TZ sin2 χ sin 2Ωt.

(25)

The nonrotating-frame tilde quantities b̃Z, . . . , g̃TZ that appear in these expressions are linear
combinations of Cartesian components of SME coefficients bX, . . . , gYTX in the nonrotating frame.
They are defined explicitly in the data tables [4]. Note that a few of the tilde-combinations
received names different from their originals [27] when boost effects were no longer neglected [34].
The particular name changes were c̃Q,X 7→ c̃Y, c̃Q,Y 7→ c̃X, c̃XY 7→ c̃Z, g̃Q,X 7→ g̃Y, g̃Q,Y 7→ g̃X
and g̃XY 7→ g̃TZ.

Note that the dipole-type shifts have unsuppressed variation at Earth’s sidereal frequency Ω,
while the quadrupole-type shifts have unsuppressed variation at both Ω and 2 Ω. These are the only
time dependencies that appear if we approximate the lab’s speed vlab with respect to Earth’s center and
Earth’s speed vEarth with respect to the Sun to be zero. If we were to keep terms of first order in each
v/c, then we would find additional contributions. Time-like nonrotating-frame components would
contribute to sidereal variation suppressed by vlab/c ∼ 10−6 and/or vEarth/c ∼ 10−4. Both time-like
nonrotating-frame components and dipole-type shifts would also contribute to twice-sidereal variation,
also suppressed by vlab/c and/or vEarth/c. We do not explicitly show these contributions in the current
work, but they may be found elsewhere [34].

The dominant time dependencies are qualitatively summarized in Figure 4.
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Figure 4. Time variation of frequencies in an example F = 3/2 system. At the top, the variation of
conventional frequencies are shown for comparison, followed by variation of dipole-type energy shifts
in the center and quadrupole-type energy shifts at the bottom. Effects that are suppressed by factors of
v/c have been neglected.
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7.2. Space-Based Experiments

No space-based clock-comparison experiments have been performed to date. However,
if performed, then experiments placed on Earth-orbiting satellites could have several advantages
over experiments bound to Earth’s surface [34,35].

The first advantage is due to the freedom of satellite orbit orientation. Most surface-based
experiments are forced to rotate around the same axis, Earth’s rotational axis. Energy shifts depend
on relative orientations; for example, the dominant shift δωb associated with~b is proportional to the
dot product between~b and the clock axis. If~b happens to lie along Earth’s rotation axis, then δωb is
constant as Earth rotates and therefore undetectable in Earth-based clock-comparison experiments.
Equivalently, we may say that Earth-based experiments are only sensitive to effects that are orthogonal
to Earth’s rotation axis. On the other hand, space-based experiments may rotate around arbitrary axes
and, therefore, may be sensitive to effects with any orientation.

The second main advantage of a satellite-based experiment would rely on the short orbital periods
of many satellites. For an Earth-based experiment, a single rotation requires an entire (sidereal) day,
and so, 16 rotations require 16 days to pass. Clock stability is often difficult to maintain for extended
times, so 16 continual rotations may be difficult to measure. Many satellites have much shorter orbital
periods. For example, a satellite in low Earth orbit has a period of about 90 min, and so, a space-based
experiment may collect 16 rotations worth of data in just a single day.

The third advantage is connected with relative speeds. Several contributions to time-varying
energy shifts are suppressed by a factor of about 2× 10−6 due to the low speed of Earth’s surface with
respect to its center. Similar effects in satellites are suppressed less. For example, an experiment in low
Earth orbit would have these boost effects suppressed by only about 3× 10−5, a 15-fold improvement
in sensitivity.

Satellite-based experiments could also have several other technical advantages. For example,
satellites spend most of their time in free fall, so effective gravitational effects are only about 10−6-times
as strong as on Earth’s surface. This is advantageous for fountain clocks and possibly other types.
There is also likely to be less vibrational noise due to the isolation of satellites from outside influences.

The time variation of energy shifts in space-based experiments would be similar to the variation
in Earth-based experiments with Earth’s sidereal frequency replaced by the satellite’s orbital frequency.
However, explicit expressions for time variation of the energy shifts are much more complicated due to
the many possible configurations of satellite orbits and the increased relevance of boost effects. We do
not include any such explicit formulas here, but they may be found elsewhere [34].

8. Results of Completed Experiments

Table 1 lists the results of 16 completed clock-comparison experiments. Due to the difficulty
in precisely calculating many nuclear and atomic expectation values, most bounds listed should be
viewed as having an uncertainty of about one order of magnitude.

Many bounds include linear combinations of multiple SME tilde-coefficients. In Table 1, we simply
assume that a bound on a combination implies a bound on each of the tilde-coefficients that appears.
If one desires more rigorous isolation of coefficients, it is sometimes possible to combine results from
multiple bounds to extract stronger bounds on the individual tilde-coefficients [36] or even separate
different parts within the tilde-coefficients [37]. Due to the ongoing nature of Lorentz-violation tests,
there are likely to be more opportunities of this nature in the next few years.

The given bounds are all stated in terms of the minimal standard-model extension. However,
they may sometimes be applied to other theoretical frameworks for which the minimal SME may be
an effective approximation [38,39].
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Table 1. List of completed clock-comparison experiments to date with very rough bounds accomplished.
The first two columns identify the experiment. The third column lists the atomic species involved. The
fourth column states which SME tilde-coefficients appear in bounds. In most cases, each bound is
placed on a linear combination of these coefficients with weights of order one. The final column gives
the order-of-magnitude of the bound placed on the tilde coefficients listed, each of which has units of
GeV. For example, the first row states that the experiment of Prestage et al. published in 1985 compared
transitions in beryllium and hydrogen atoms. It bounded c̃X and c̃Y associated with the neutron to
each be smaller than about 10−25 GeV.

Experiment Ref. Atom(s) Coefficients Bounded log10

(
Bound
GeV

)
Prestage et al. 1985 [10] 9Be+, 1H n : c̃X , c̃Y −25

Lamoreaux et al. 1986 [11] 201Hg, 199Hg n : c̃−, c̃Z −27
Chupp et al. 1989 [12] 21Ne, 3He n : c̃−, c̃Z −27

Berglund et al. 1995 [13] 199Hg, 133Cs e : b̃X , b̃Y ; p : b̃X , b̃Y −27
e : d̃X , d̃Y , g̃D,X , g̃D,Y −22
p : d̃X , d̃Y , g̃D,X , g̃D,Y −25

n : b̃X , b̃Y −30
n : d̃X , d̃Y , g̃D,X , g̃D,Y −28

Bear et al. 2000 [14] 129Xe, 3He n : b̃X , b̃X −31
Phillips et al. 2001 [15] 1H p : b̃X , b̃Y −27

Humphrey et al. 2003 [16] 1H e : b̃X , b̃Y ; p : b̃X , b̃Y −27
Canè et al. 2004 [17] 129Xe, 3He n : b̃X , b̃Y −31

n : d̃X , d̃Y , g̃D,X , g̃D,Y −29
n : b̃T , d̃−, d̃+, d̃Q, d̃YZ, g̃c, g̃T −27

n : d̃XY , H̃XT , H̃YT , H̃ZT −27

Wolf et al. 2006 [18] 133Cs p : c̃Q −23
p : c̃−, c̃X , c̃Y , c̃Z −25

p : c̃TX , c̃TY , c̃TZ; n : c̃− −21
p : c̃TT −16
n : c̃Q −20

n : c̃X , c̃Y , c̃Z −22
n : c̃TX , c̃TY −18

n : c̃TZ −19
n : c̃TT −13

Kornack et al. 2008 [19] K, 3He e : b̃X , b̃Y −28
p : b̃X , b̃Y ; n : b̃X , b̃Y −31

Brown et al. 2010 [20] K, 3He p : b̃X , b̃Y −32
n : b̃X , b̃Y −33

Gemmel et al. 2010 [21] 3He, 129Xe n : b̃X , b̃Y −32
Smiciklas et al. 2011 [22,23] 21Ne, Rb p : c̃X , c̃Y , c̃Z, c̃− −29

[22] 21Ne, Rb n : c̃X , c̃Y , c̃Z, c̃− −29
Peck et al. 2012 [24] 199Hg, 133Cs p : b̃X , b̃Y −30

Hohensee et al. 2013 [25] Dy e : c̃−, c̃X , c̃Y , c̃Z −17
e : c̃TX , c̃TY , c̃TZ −14

e : c̃TT −8
p : b̃Z, d̃X , d̃Y , g̃DX , g̃DY −28
n : b̃Z, d̃X , d̃Y , g̃DX , g̃DY −29

n : b̃X , b̃Y −31
Allmendinger et al. 2014 [26] 3He, 129Xe n : b̃X , b̃Y −34
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