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1. Introduction

The focus of the first works on Gromov hyperbolic spaces were finitely generated groups [1].
Initially, the main application of hyperbolic spaces were the automatic groups (see, e.g., [2]).
This concept appears also in some algorithmic problems (see [3] and the references therein).
Besides, they are useful in the study of secure transmission of information on the internet [4].

In [5], the equivalence of the hyperbolicity of graphs and negatively curved surfaces was
proved. The study of hyperbolic graphs is a topic of increasing interest (see, e.g., [4–28] and the
references therein).

If γ : [a, b] → X is a continuous curve in the metric space (X, d), γ is a geodesic if
LX(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every t, s ∈ [a, b]. We say that X is a geodesic metric space
if, for every x, y ∈ X, there exists a geodesic in X joining them. Let us denote by [xy] any geodesic
joining x and y (this notation is very convenient although it is ambiguous, recall that we do not assume
uniqueness of geodesics). Consequently, any geodesic metric space is connected.

G = (V(G), E(G)) will denote a non-trivial (V(E) 6= ∅) simple graph such that we have defined
a length function, denoted by LG or L, on the edges LG : E(G) → R+; the length of a path η =

{e1, e2, . . . , ek} is defined as LG(η) = ∑k
i=1 LG(ei). We assume that `(G) := sup

{
LG(e) | e ∈ E(G)

}
< ∞.

In order to consider a graph G as a geodesic metric space, identify (by an isometry I) any edge uv ∈ E(G)

with the interval [0, LG(uv)] in the real line; then, the real interval [0, LG(uv)] is isometric to the edge uv
(considered as a graph with a single edge). If x, y ∈ uv and ηxy denotes the segment contained in uv
joining x and y, we define the length of ηxy as LG(ηxy) = |I(x)− I(y)|. Thus, the points in G are the
vertices u ∈ V(G) and, in addition, the points in the interior of any edge uv ∈ E(G).
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We denote by dG or d the natural distance of the graph G. If x, y belong to different connected
components of G, then let us define dG(x, y) = ∞. In Section 3, we just consider graphs with every
edge of length 1. Otherwise, if a graph G has edges with different lengths, then we also assume that it is
locally finite. These properties guarantee that any connected component of G is a geodesic metric space.

If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics [x1x2], [x2x3] and
[x3x1] is a geodesic triangle that will be denoted by T = {x1, x2, x3} and we will say that x1, x2 and x3

are the vertices of T; we can also write T = {[x1x2], [x2x3], [x3x1]}. The triangle T is δ-thin if any side
of T is contained in the δ-neighborhood of the union of the two other sides. Let us denote by δ(T) the
sharp thin constant of the geodesic triangle T, i.e., δ(T) := inf{δ ≥ 0 | T is δ-thin}. We say that the
space X is δ-hyperbolic if every geodesic triangle in X is δ-thin. Let us define:

δ(X) := sup{δ(T) | T is a geodesic triangle in X}.

The geodesic metric space X is hyperbolic if it is δ-hyperbolic for some δ ≥ 0; then, X is hyperbolic
if and only if δ(X) < ∞. If Y is the union of geodesic metric spaces {Yi}i∈I , we define its hyperbolicity
constant by δ(Y) := supi∈I δ(Yi), and we say that Y is hyperbolic if δ(Y) < ∞.

To relate hyperbolicity with other properties of graphs is an interesting problem. The papers [6,9,28]
prove, respectively, that chordal, k-chordal and edge-chordal graphs are hyperbolic; these results are
improved in [23]. In addition, several authors have proved results on hyperbolicity for some particular
classes of graphs (see, e.g., [21,29–31]).

A geometric graph is a graph in which the vertices or edges are associated with geometric objects.
Two of the main classes of geometric graphs are Euclidean graphs and intersection graphs. A graph
is Euclidean if the vertices are points in Rn and the length of each edge connecting two vertices is
the Euclidean distance between them (this makes a lot of sense with the cities and roads analogy
commonly used to describe graphs). An intersection graph is a graph in which each vertex corresponds
with a set, and two vertices are connected by an edge if and only if their corresponding sets have
non-empty intersection. In this paper, we work with interval graphs (a class of intersection graphs)
and indifference graphs (a class of Euclidean graphs).

We say that G is an interval graph if it is the intersection graph of a family of intervals in R:
there is a vertex for each interval in the family, and an edge joins two vertices if and only if the their
corresponding intervals intersect. Usually, we consider that every edge of an interval graph has
length 1, but we also consider interval graphs whose edges have different lengths. It is well-known
that interval graphs are always chordal graphs [32,33]. The complements of interval graphs also
have interesting properties: they are comparability graphs [34], and the comparability relations are
the interval orders [32]. The theory of interval graphs was developed focused on its applications by
researchers at the RAND Corporation’s mathematics department (pp. ix–10, [35]).

An indifference graph is an interval graph whose vertices correspond to a set of intervals with
length 1, and the length of the corresponding edge to two unit intervals that intersect is the distance
between their midpoints. In addition, we can see an indifference graph as an Euclidean graph in R
constructed by taking the vertex set as a subset of R and two vertices are connected by an edge if and
only if they are within one unit from each other. Since it is a Euclidean graph, the length of each edge
connecting two vertices is the Euclidean distance between them. Indifference graphs possess several
interesting properties: connected indifference graphs have Hamiltonian paths [36]; an indifference
graph has a Hamiltonian cycle if and only if it is biconnected [37]. In the same direction, we consider
indifference graphs since for these graphs we can remove one of the hypothesis of a main theorem on
interval graphs (compare Theorem 8 and Corollary 6).

We would like to mention that Ref. [38] collects very rich results, especially those concerning
path properties, about interval graphs and unit interval graphs. It is well-known that interval graphs
(with a very weak hypothesis) and indifference graphs are hyperbolic. One of the main results in this
paper is Theorem 8, which provides a sharp upper bound of the hyperbolicity constant of interval
graphs verifying a very weak hypothesis. This result allows for obtaining bounds for the hyperbolicity
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constant of every indifference graph (Corollary 6) and the hyperbolicity constant of every interval
graph with edges of length 1 (Corollary 7). Moreover, Theorem 10 provides sharp bounds for the
hyperbolicity constant of the complement of any interval graph with edges of length 1. Note that it is
not usual to obtain such precise bounds for large classes of graphs. The main result in this paper is
Theorem 9, which allows for computing the hyperbolicity constant of every interval graph with edges
of length 1, by using geometric criteria.

2. Previous Results

We collect some previous results that will be useful along the paper.
A cycle is a path with different vertices, unless the last vertex, which is equal to the first one.

Lemma 1. ([39] Lemma 2.1) Let us consider a geodesic metric space X. If every geodesic triangle in X that is a
cycle is δ-thin, then X is δ-hyperbolic.

Corollary 1. In any geodesic metric space X,

δ(X) = sup
{

δ(T) | T is a geodesic triangle that is a cycle
}

.

Recall that a chordal graph is one in which all cycles of four or more vertices have a chord, which is
an edge that is not part of the cycle but connects two vertices of the cycle.

If C is a cycle in G and v ∈ V(G), we denote by degC(v) the degree of the vertex v in the subgraph
Γ induced by V(C) (note that Γ could contain edges that are not contained in C, and thus it is possible
to have degC(v) > 2).

Lemma 2. ([9] Lemma 2.2) Consider a chordal graph G and a cycle C in G with a, v, b ∈ C ∩ V(G) and
av, vb ∈ E(G). If ab /∈ E(G), then degC(v) ≥ 3.

Corollary 2. Consider a cycle C in a chordal graph G and v1, v2, v3 consecutive vertices in C. If degC(v2) = 2,
then v1v3 ∈ E(G). Consequently, if C has at least four vertices, then degC(v1) ≥ 3 and degC(v3) ≥ 3.

Let J(G) be the set of vertices and midpoints of edges in G. Consider the set T1 of geodesic
triangles T in G that are cycles and such that the three vertices of the triangle T belong to J(G), and
denote by δ1(G) the infimum of the constants λ such that every triangle in T1 is λ-thin.

Theorem 1. ([40] Theorem 2.5) For every graph G with edges of length 1, we have δ1(G) = δ(G).

The next result will narrow the possible values for the hyperbolicity constant.

Theorem 2. ([40] Theorem 2.6) If G is a hyperbolic graph with edges of length 1, then δ(G) is a multiple
of 1/4.

Theorem 3. ([40] Theorem 2.7) If G is a hyperbolic graph with edges of length 1, then there exists a geodesic
triangle T ∈ T1 such that δ(T) = δ(G).

In the following theorems, we study the graphs G with δ(G) < 1.

Theorem 4. ([41] Theorem 11) If G is a graph with edges of length 1 with δ(G) < 1, then we have either
δ(G) = 0 or δ(G) = 3/4. Furthermore,

• δ(G) = 0 if and only if G is a tree.
• δ(G) = 3/4 if and only if G is not a tree and every cycle in G has length 3.
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Corollary 3. A graph G with edges of length 1 satisfies δ(G) ≥ 1 if and only if there exists a cycle in G with
length at least 4.

In order to characterize from a geometric viewpoint the interval graphs with hyperbolicity constant 1,
we need the following result, which is a direct consequence of Theorems 2 and 4, and ([7] Theorem 4.14).

Theorem 5. Let G be any graph with edges of length 1. We have δ(G) = 1 if and only if δ(G) /∈ {0, 3/4} and,
for every cycle C in G and every x, y ∈ C ∩ J(G), we have d(x, y) ≤ 2.

Theorems 4 and 5 have the following consequences.

Corollary 4. Let G be any graph with edges of length 1. We have δ(G) ≤ 1 if and only if, for every cycle C in
G and every x, y ∈ C ∩ J(G), we have d(x, y) ≤ 2.

By Theorems 2 and 4, and ([7] Theorems 4.14 and 4.21), we have the following result.

Theorem 6. Let G be any graph with edges of length 1. If there exists a cycle in G with p, q ∈ V(G) and
d(p, q) ≥ 3, then δ(G) ≥ 3/2.

We will also need this last result.

Theorem 7. ([41] Theorem 30) If G is any graph with edges of length 1 and n vertices, then δ(G) ≤ n/4.

3. Interval Graphs and Hyperbolicity

Given a cycle C in an interval graph G, let {v1, . . . , vk} be the vertices in G with

C = v1v2 ∪ · · · ∪ vk−1vk ∪ vkv1.

Denote by {I1, . . . , Ik} the corresponding intervals to {v1, . . . , vk}. If Ij = [aj, bj], then let us define
the minimal interval of C as the interval Ij1 = [aj1 , bj1 ] with aj1 ≤ aj for every 1 ≤ j ≤ k and bj1 > bj
if aj = aj1 with 1 ≤ j ≤ k and j 6= j1, and the maximal interval of C as the interval Ij2 = [aj2 , bj2 ] with
bj2 ≥ bj for every 1 ≤ j ≤ k and aj2 < aj if bj = bj2 with 1 ≤ j ≤ k and j 6= j2. If i ∈ Z \ {1, 2, . . . , k},
1 ≤ j ≤ k and i = j (mod k), then we define vi := vj and Ii := Ij.

If H is a subgraph of G and w ∈ V(H), we denote by degH(w) the degree of the vertex w in the
subgraph induced by V(H).

For any graph G,
diam V(G) := sup

{
dG(v, w) | v, w ∈ V(G)

}
,

diam G := sup
{

dG(x, y) | x, y ∈ G
}

,

i.e., diam V(G) is the diameter of the set of vertices of G, and diam G is the diameter of the whole
graph G (recall that in order to have a geodesic metric space, G must contain both the vertices and the
points in the interior of any edge of G).

The following result is well-known.

Lemma 3. For any geodesic triangle T in a graph G, we have δ(T) ≤ (diam T)/2 ≤ L(T)/4.

Corollary 5. The inequalities

δ(G) ≤ 1
2

diam G ≤ 1
2
(

diam V(G) + `(G)
)

hold for every graph G.
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A graph G is length-proper if every edge is a geodesic. A large class of length-proper graphs are
the graphs with edges of length 1. Another important class of length-proper graphs are the following
geometric graphs: consider a discrete set V in an Euclidean space (or in a metric space) where we
consider two points connected by an edge if some criterium is satisfied. If we define the length of an
edge as the distance between its vertices, then we obtain a length-proper graph.

It is well-known that every interval graph is chordal. Hence, every length-proper interval graph
is hyperbolic. The following result is one of the main theorems in this paper, since it provides a
sharp inequality for the hyperbolicity constant of any length-proper interval graph. Recall that
`(G) := sup

{
LG(e) | e ∈ E(G)

}
.

Theorem 8. Every length-proper interval graph G satisfies the sharp inequality

δ(G) ≤ 3
2
`(G).

Proof. Consider a geodesic triangle T = {x, y, z} that is a cycle in G and p ∈ [xy]. Assume first that
T satisfies the following property:

if a, b ∈ V(G) ∩ [xy] and ab ∈ E(G), then ab ⊆ [xy]. (1)

Consider the consecutive vertices {v1, . . . , vk} in the cycle T, and their corresponding intervals
{I1, . . . , Ik}. As before, we denote by Ij1 and Ij2 the minimal and maximal intervals, respectively.

If k < 4, then L(T) ≤ 3`(G) and Lemma 3 gives:

d(p, [xz] ∪ [zy]) ≤ 1
4

L(T) ≤ 3
4
`(G). (2)

Assume now that k ≥ 4.
Case (A). Assume that p ∈ V(G). Let a, b ∈ V(G) with ap, bp ∈ E(G) and ap ∪ bp ⊂ T.
Case (A.1). If ab /∈ E(G), then Lemma 2 gives degT(p) ≥ 3, and there exists q ∈ V(G) ∩ T with

pq ∈ E(G) such that pq is not contained in T. By (1), q ∈ [xz] ∪ [zy] and so:

d(p, [xz] ∪ [zy]) ≤ d(p, q) = L(pq) ≤ `(G). (3)

Case (A.2). If ab ∈ E(G), then ab is not contained in T, since T is a cycle and k ≥ 4. By (1), {a, b}
is not contained in [xy], and:

d(p, [xz] ∪ [zy]) ≤ max
{

d(p, a), d(p, b)
}
= max

{
L(pa), L(pb)

}
≤ `(G). (4)

Case (B). Assume that p /∈ V(G). Let a, b ∈ V(G) with p ∈ ab ⊂ T and d(p, a) ≤ L(ab)/2 ≤ `(G)/2.
Corollary 2 gives that we have degT(a) ≥ 3 or degT(b) ≥ 3.

Case (B.1). Assume that degT(a) ≥ 3.
Case (B.1.1). If a /∈ [xy], then:

d(p, [xz] ∪ [zy]) ≤ d(p, a) ≤ 1
2
`(G). (5)

Case (B.1.2). Assume that a ∈ [xy]. Since degT(a) ≥ 3, there exists q ∈ V(G) ∩ T with aq ∈ E(G)

such that aq is not contained in T. By (1), q ∈ [xz] ∪ [zy] and so:

d(p, [xz] ∪ [zy]) ≤ d(p, a) + d(a, [xz] ∪ [zy]) ≤ d(p, a) + d(a, q)

= d(p, a) + L(aq) ≤ 1
2
`(G) + `(G) =

3
2
`(G).

(6)
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Case (B.2). Assume that degT(a) = 2 and degT(b) ≥ 3. Let α 6= b with α ∈ V(G), αa ∈ E(G) and
αa ⊂ T. Corollary 2 gives that we have αb ∈ E(G). By (1), we have that {α, b} is not contained in [xy],
and:

d(p, [xz] ∪ [zy]) ≤ max
{

d(p, α), d(p, b)
}
≤ max

{
d(p, a) + d(a, α), d(p, b)

}
≤ max

{1
2
`(G) + `(G), `(G)

}
=

3
2
`(G).

(7)

Inequalities (2)–(7) give in every case d(p, [xz] ∪ [zy]) ≤ 3`(G)/2.
Consider now a geodesic triangle T = {x, y, z} = { [xy], [xz], [yz]} that does not satisfy

property (1). We are going to obtain a new geodesic γ joining x and y such that the geodesic triangle
T′ = {γ, [xz], [yz]} satisfies (1).

Let us define inductively a finite sequence of geodesics {g0, g1, g2, . . . , gr} joining x and y in the
following way:

If j = 0, then g0 := [xy].
Assume that j ≥ 1. If the geodesic triangle {gj−1, [xz], [yz]} satisfies (1), then r = j − 1 and

the sequence stops. If {gj−1, [xz], [yz]} does not satisfy (1), then there exists a, b ∈ V(G) ∩ [xy]
such that ab ∈ E(G) and ab is not contained in [xy]. Denote by [ab] the geodesic joining a and b
contained in gj−1. Let us define gj := (gj−1 \ [ab]) ∪ ab. Note that gj ∩ V(G) ⊂ gj−1 ∩ V(G) and
|gj ∩V(G)| < |gj−1 ∩ V(G)|.

Since |gj ∩V(G)| < |gj−1 ∩V(G)| for any j ≥ 1, this sequence must finish with some geodesic gr

such that the geodesic triangle T′ := {gr, [xz], [yz]} satisfies (1). Thus, define γ := gr. Hence,

gr ∩V(G) ⊂ gr−1 ∩V(G) ⊂ · · · ⊂ g1 ∩V(G) ⊂ g0 ∩V(G),

and so γ ∩V(G) ⊂ [xy] ∩V(G).
Let us consider p ∈ [xy] ⊂ T.
If p ∈ γ ⊂ T′, then, by applying the previous argument to the geodesic triangle T′, we obtain

d(p, [xz] ∪ [zy]) ≤ 3`(G)/2. Assume that p /∈ γ.
Since γ ∩ V(G) ⊂ [xy] ∩ V(G), there exist v, w ∈ γ ∩ V(G) with vw ∈ E(G) such that, if [vw]

denotes the geodesic joining v and w contained in [xy], then:

p ∈ [vw], [vw] ∩ vw = {v, w}.

Since vw and [vw] are geodesics, we have L(vw) = L([vw]). Thus, we can define p′ ∈ γ as the
point in vw with d(p′, v) = d(p, v) and d(p′, w) = d(p, w). By applying the previous argument
to p′ and T′, we obtain d(p′, [xz] ∪ [zy]) ≤ 3`(G)/2. Since p′ belongs to the edge vw, we have
d(p′, [xz] ∪ [zy]) = d(p′, v) + d(v, [xz] ∪ [zy]) or d(p′, [xz] ∪ [zy]) = d(p′, w) + d(w, [xz] ∪ [zy]).
By symmetry, we can assume that d(p′, [xz]∪ [zy]) = d(p′, v) + d(v, [xz]∪ [zy]). Since d(p′, v) = d(p, v),
we have:

d(p, [xz]∪ [zy]) ≤ d(p, v) + d(v, [xz]∪ [zy]) = d(p′, v) + d(v, [xz]∪ [zy]) = d(p′, [xz]∪ [zy]) ≤ 3
2
`(G).

Finally, Corollary 1 gives δ(G) ≤ 3`(G)/2.
Proposition 1 below shows that the inequality is sharp.

Note that, if we remove the hypothesis `(G) < ∞, then there are non-hyperbolic length-proper
interval graphs: if Γ is any graph such that every cycle in Γ has exactly three vertices and
sup{L(C) | C is a cycle in Γ} = ∞, then Γ is a non-hyperbolic chordal graph. Some of these graphs Γ
are length-proper interval graphs.

Recall that every indifference graph is an Euclidean graph. Hence, every indifference graph G is a
length-proper graph and `(G) ≤ 1.

Theorem 8 has the following direct consequence.



Symmetry 2017, 9, 255 7 of 13

Corollary 6. Every indifference graph G satisfies the inequality:

δ(G) ≤ 3
2
`(G) ≤ 3

2
.

4. Interval Graphs with Edges of Length 1

Along this section, we just consider graphs with edges of length 1. This is a very usual class of
graphs. Note that every graph G with edges of length 1 is a length-proper graph with `(G) = 1.

The goal of this section is to compute the precise value of the hyperbolicity constant of every
interval graph with edges of length 1 (see Theorem 9). We wish to emphasize that it is unusual to be
able to compute the hyperbolicity constant of every graph in a large class of graphs. Let us start with a
direct consequence of Theorem 8.

Corollary 7. Every interval graph G with edges of length 1 satisfies the inequality:

δ(G) ≤ 3
2

.

First of all, we characterize the interval graphs with edges of length 1 and δ(G) = 3/2 in
Proposition 1 below. Furthermore, Proposition 1 shows that the inequality in Theorem 8 is sharp.

Let G be an interval graph. We say that G has the (3/2)-intersection property if there exists
two disjoint intervals I′ and I′′ corresponding to vertices in a cycle C in G such that there is no
corresponding interval I to a vertex in G with I ∩ I′ 6= ∅ and I ∩ I′′ 6= ∅.

Proposition 1. An interval graph G with edges of length 1 satisfies δ(G) = 3/2 if and only if G has the
(3/2)-intersection property.

Proof. Assume that G has the (3/2)-intersection property. Thus, there exist two disjoint corresponding
intervals I′ and I′′ to vertices in a cycle C in G such that there is no corresponding interval I to a vertex in
G with I ∩ I′ 6= ∅ and I ∩ I′′ 6= ∅. If v′ and v′′ are the corresponding vertices to I′ and I′′, respectively,
then v′, v′′ ∈ C and d(v′, v′′) ≥ 3. Thus, Theorem 6 gives δ(G) ≥ 3/2 and, since δ(G) ≤ 3/2 by
Corollary 7, we conclude δ(G) = 3/2.

Assume now that G does not have the (3/2)-intersection property. Seeking for a contradiction,
assume that δ(G) = 3/2. By Theorem 3, there exist a geodesic triangle T = {x, y, z} that is a
cycle in G and p ∈ [xy] such that d(p, [xz] ∪ [zy]) = δ(T) = δ(G) = 3/2 and x, y, z ∈ J(G).
Since d(p, {x, y}) ≥ d(p, [xz] ∪ [zy]) = 3/2, we have d(x, y) ≥ 3. Since G does not have the
(3/2)-intersection property, for each two disjoint corresponding intervals I′ and I′′ to vertices in
the cycle T, there exists a corresponding interval I to a vertex in G with I ∩ I′ 6= ∅ and I ∩ I′′ 6= ∅.
If v′ and v′′ are the corresponding vertices to I′ and I′′, respectively, then v′, v′′ ∈ T and d(v′, v′′) = 2.
We conclude that diam(T ∩V(G)) ≤ 2 and diam T ≤ 3. Since d(x, y) ≥ 3 with x, y ∈ J(G), we have
diam(T ∩ V(G)) = 2, diam T = 3, d(x, y) = 3, L([xy])/2 = d(p, x) = d(p, y) = d(p, [xz] ∪ [zy]) =

δ(T) = δ(G) = 3/2 and p is the midpoint of [xy]. Thus x, y ∈ J(G) \ V(G) and p ∈ V(G).
If x ∈ x1x2 ∈ E(G) and y ∈ y1y2 ∈ E(G), then d({x1, x2}, {y1, y2}) = 2. Let Ix1 , Ix2 , Iy1 , Iy2 , Ip be the
corresponding intervals to the vertices x1, x2, y1, y2, p, respectively. We can assume that x1, y1 ∈ [xy]
and thus Ix1 ∩ Ip 6= ∅ and Iy1 ∩ Ip 6= ∅ since d(x1, y1) = 2, Ix1 ∩ Iy1 = ∅. Thus, there exists
ζ ∈ Ip \ (Ix1 ∪ Iy1). Since [xy] ∩V(G) = {x1, p, y1} and T is a cycle containing x1, p, y1, by continuity,
there exists a corresponding interval J to a vertex v ∈ ([xz]∪ [zy])∩V(G) with ζ ∈ J. Thus, pv ∈ E(G)

and 3/2 = d(p, [xz] ∪ [zy]) ≤ d(p, v) = 1, which is a contradiction. Hence, δ(G) 6= 3/2.

Corollary 7 and Theorems 2 and 4 give that δ(G) ∈ {0, 3/4, 1, 5/4, 3/2} for every interval graph
G with edges of length 1. Proposition 1 characterizes the interval graphs with edges of length 1 and
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δ(G) = 3/2. In order to characterize the interval graphs with the other values of the hyperbolicity
constant, we need some definitions.

Let G be an interval graph.
We say that G has the 0-intersection property if, for every three corresponding intervals I′, I′′ and

I′′′ to vertices in G, we have I′ ∩ I′′ ∩ I′′′ = ∅.
G has the (3/4)-intersection property if it does not have the 0-intersection property and for

every four corresponding intervals I′, I′′, I′′′ and I′′′′ to vertices in G we have I′ ∩ I′′ ∩ I′′′ = ∅
or I′ ∩ I′′ ∩ I′′′′ = ∅.

By a couple of intervals in a cycle C of G, we mean the union of two non-disjoint intervals whose
corresponding vertices belong to C. We say that G has the 1-intersection property if it does not have the 0
and (3/4)-intersection properties and, for every cycle C in G, each interval and a couple of corresponding
intervals to vertices in C are not disjoint.

One can check that every chordal graph that has a cycle with length of at least four has a cycle
with length four and, since this cycle has a chord, it also has a cycle with length three.

Next, we provide a characterization of the interval graphs with hyperbolicity constant 0. It is
well-known that these are the caterpillar trees, see [42], but we prefer to characterize them by the
0-intersection property in Proposition 2 below, since it looks similar to the other intersection properties.

Proposition 2. An interval graph G with edges of length 1 satisfies δ(G) = 0 if and only if G has the
0-intersection property.

Proof. By Theorem 4, δ(G) = 0 if and only if G is a tree. Since every interval graph is chordal, G is not
a tree if and only if it contains a cycle with length 3, and this last condition holds if and only if there
exist three corresponding intervals I′, I′′ and I′′′ to vertices in G with I′ ∩ I′′ ∩ I′′′ 6= ∅. Hence, G has a
cycle if and only if it does not have the 0-intersection property.

Proposition 3. An interval graph G with edges of length 1 satisfies δ(G) = 3/4 if and only if G has the
(3/4)-intersection property.

Proof. By Theorem 4, δ(G) = 3/4 if and only if G is not a tree and every cycle in G has length
3. Proposition 2 gives that G is not a tree if and only if G does not have the 0-intersection
property. Therefore, it suffices to show that every cycle in G has length 3, if and only if for every
four corresponding intervals I′, I′′, I′′′ and I′′′′ to vertices in G, we have I′ ∩ I′′ ∩ I′′′ = ∅ or
I′ ∩ I′′ ∩ I′′′′ = ∅.

Since every interval graph is chordal, G has a cycle with length at least 4 if and only if it has a
cycle C with length 4 and this cycle has at least a chord.

Assume first that there exists such a cycle C. If I′, I′′, I′′′, I′′′′ are the corresponding intervals
to the vertices in C and I′, I′′ corresponds to vertices with a chord, and then I′ ∩ I′′ ∩ I′′′ 6= ∅ and
I′ ∩ I′′ ∩ I′′′′ 6= ∅.

Assume now that there are corresponding intervals I′, I′′, I′′′, I′′′′ to the vertices v′, v′′, v′′′, v′′′′ in
G with I′ ∩ I′′ ∩ I′′′ 6= ∅ and I′ ∩ I′′ ∩ I′′′′ 6= ∅. Thus, v′v′′′, v′′v′′′ ∈ E(G) and v′v′′′, v′′v′′′′ ∈ E(G),
and so v′v′′′ ∪ v′′′v′′ ∪ v′′v′′′′ ∪ v′′′′v′ is a cycle in G with length 4.

Proposition 4. An interval graph G with edges of length 1 satisfies δ(G) = 1 if and only if G has the
1-intersection property.

Proof. By Theorem 5, δ(G) = 1 if and only if δ(G) /∈ {0, 3/4}, and, for every cycle C in G and every
x, y ∈ C ∩ J(G), we have d(x, y) ≤ 2. Propositions 2 and 3 give that δ(G) /∈ {0, 3/4} if and only if G
does not have the 0 and (3/4)-intersection properties. Therefore, it suffices to show that for every
cycle C in G, we have d(x, y) ≤ 2 for every x, y ∈ C ∩ J(G) if and only if each interval and couple of
corresponding intervals to vertices in C are not disjoint.
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Fix a cycle C in G. Each interval and couple of corresponding intervals to vertices in C are not
disjoint if and only if d(x, y) ≤ 3/2 for every x ∈ C ∩V(G) and y ∈ C ∩ (J(G) \V(G)). Since every
point in C ∩ (J(G) \V(G)) has a point in C ∩V(G) at distance 1/2, this last condition is equivalent to
d(x, y) ≤ 2 for every x, y ∈ C ∩ J(G).

Finally, we collect the previous geometric characterizations in the following theorem. Note that
the characterization of δ(G) = 5/4 in Theorem 9 is much simpler than the one in [7]. Recall that to
characterize the graphs with hyperbolicity 3/2 is a very difficult task, as it was shown in ([7] Remark 4.19).

Theorem 9. Every interval graph G with edges of length 1 is hyperbolic and δ(G) ∈ {0, 3/4, 1, 5/4, 3/2}. Furthermore,

• δ(G) = 0 if and only if G has the 0-intersection property.
• δ(G) = 3/4 if and only if G has the (3/4)-intersection property.
• δ(G) = 1 if and only if G has the 1-intersection property.
• δ(G) = 5/4 if and only if G does not have the 0, 3/4, 1 and (3/2)-intersection properties.
• δ(G) = 3/2 if and only if G has the (3/2)-intersection property.

Complement of Interval Graphs

The complement G of the graph G is defined as the graph with V
(

G
)
= V(G) and such that

e ∈ E
(

G
)

if and only if e /∈ E(G). Recall that, for every disconnected graph G, we define δ(G) as the
supremum of δ(Gi), where Gi varies in the set of connected components of G.

We consider that the length of the edges of every complement graph is 1.
If Γ is a subgraph of G, we consider in Γ the inner metric obtained by the restriction of the metric

in G, that is:

dΓ(v, w) := inf
{

L(γ) | γ ⊂ Γ is a continuous curve joining v and w
}
≥ dG(v, w) .

Note that the inner metric dΓ is the usual metric if we consider the subgraph Γ as a graph.
Since the complements of interval graphs belong to the class of comparability graphs [34], it is

natural to also study the hyperbolicity constant of complements of interval graphs. In order to do it,
we need some preliminary results and the following technical lemma.

Lemma 4. Let G be an interval graph with edges of length 1, V(G) = {v1, . . . , vr} and corresponding
intervals {I1, . . . , Ir}. We have diam V(G) = 2 if and only if there exists an interval Ii with Ij ∩ Ii 6= ∅
for every 1 ≤ j ≤ r and diam V(G′) ≥ 2, where G′ is the corresponding interval graph to {I1, . . . , Ir} \ Ii.
Furthermore, if this is the case, then δ

(
G
)
= δ

(
G′
)
.

Proof. Assume that diam V(G) = 2. Let [aj, bj] = Ij for 1 ≤ j ≤ r. Consider integers 1 ≤ i1, i2 ≤ r satisfying:

bi1 ≤ bj, aj ≤ ai2 , for every 1 ≤ j ≤ r. (8)

Since diam V(G) = 2, we have bi1 < ai2 . Thus, dG(vi1 , vi2) = 2 and there exists i with vivi1 , vivi2 ∈
E(G). Hence, Ii1 ∩ Ii 6= ∅ and Ii2 ∩ Ii 6= ∅. Thus, (8) gives Ij ∩ Ii 6= ∅ for every 1 ≤ j ≤ r, and we
deduce dG(vj, vi) ≤ 1 for every 1 ≤ j ≤ r.

Seeking for a contradiction assume that diam V(G′) ≤ 1. Thus, dG(vj, vj′) ≤ dG′(vj, vj′) ≤ 1 for
every 1 ≤ j, j′ ≤ r with j, j′ 6= i. Furthermore, we have proved dG(vj, vi) ≤ 1 for every 1 ≤ j ≤ r.
Therefore, dG(vj, vj′) ≤ 1 for every 1 ≤ j, j′ ≤ r and we conclude diam V(G) ≤ 1, which is a
contradiction. Hence, diam V(G′) ≥ 2.

The converse implication is well-known.
Finally, since vjvi ∈ E(G) for every 1 ≤ j ≤ r with j 6= i, we have G = {vi} ∪ G′ and:

δ
(

G
)
= max

{
δ
(
{vi}

)
, δ
(

G′
)}

= max
{

0, δ
(

G′
)}

= δ
(

G′
)
.
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Note that it is not usual to obtain such close lower and upper bounds for a large class of graphs.
Some inequalities are not difficult to prove; the most difficult cases are the upper bound when
diam V(G) = 2 (recall that this is the more difficult case in the study of the complement of a graph),
and the lower bound when diam V(G) ≥ 4.

Theorem 10. Let G be any interval graph.

• If diam V(G) = 1, then δ
(

G
)
= 0.

• If 2 ≤ diam V(G) ≤ 3, then 0 ≤ δ
(

G
)
≤ 2.

• If diam V(G) ≥ 4, then 5/4 ≤ δ
(

G
)
≤ 3/2.

Furthermore, the lower bounds on δ
(

G
)

are sharp.

Proof. If diam V(G) = 1, then G is a complete graph. Thus, G is a union of isolated vertices
and δ

(
G
)
= 0.

Let us prove now the upper bounds.
It is well-known that if diam V(G) ≥ 3, then G is connected and diam V( G

)
≤ 3.

Therefore, Corollary 5 gives δ
(

G
)
≤ 2.

If diam V(G) ≥ 4, then ([43] Theorem 2.14) gives δ
(

G
)
≤ 3/2.

Assume now that diam V(G) = 2. By Lemma 4, there exists an interval graph G′ with
|V(G′)| = |V(G)| − 1, diam V(G′) ≥ 2 and δ

(
G
)
= δ

(
G′
)
. Let us define inductively a finite

sequence of interval graphs {G(0), G(1), G(2), . . . , G(k)} with:

δ
(

G(0)
)
= δ

(
G(1)

)
= δ

(
G(2)

)
= · · · = δ

(
G(k)

)
,

|V(G(j))| = |V(G(j−1))| − 1, for 0 < j ≤ k,

diam V(G(j)) ≥ 2, for 0 ≤ j ≤ k,

in the following way:
If j = 0, then G(0) := G.
If j = 1, then G(1) := G′.
Assume that j > 1. If diam V(G(j−1)) ≥ 3, then k = j − 1 and the sequence stops.

If diam V(G(j−1)) = 2, then Lemma 4 provides an interval graph (G(j−1))′ with:

|V((G(j−1))′)| = |V(G(j−1))| − 1, diam V((G(j−1))′) ≥ 2, δ
(

G(j−1)
)
= δ

(
(G(j−1))′

)
,

and we define G(j) := (G(j−1))′.
Since |V(G(j))| = |V(G(j−1))| − 1 for 0 < j ≤ k and the diameter of a graph with just a vertex is 0,

this sequence must finish with some graph G(k) satisfying diam V(G(k)) ≥ 3. Thus,

δ
(

G
)
= δ

(
G(0)

)
= δ

(
G(1)

)
= · · · = δ

(
G(k)

)
≤ 2.

We prove now that δ
(

G
)
≥ 5/4 if diam V(G) ≥ 4. Let us fix any graph G with diam V(G) ≥ 4.

Thus, there exists a geodesic [v0v4] = v0v1 ∪ v1v2 ∪ v2v3 ∪ v3v4 in G. If Γ is the subgraph of G
induced by {v0, v1, v2, v3, v3, v4}, then E(Γ) = {v0v2, v0v3, v0v4, v1v3, v1v4, v2v4}. Consider the cycle
C := v0v2 ∪ v2v4 ∪ v4v1 ∪ v1v3 ∪ v3v0 in Γ. If p is the midpoint of v0v2, then dΓ(v1, p) = 5/2 and
so Corollary 4 gives δ(Γ) > 1. Therefore, Theorem 2 gives δ(Γ) ≥ 5/4. Since Γ is an induced
subgraph of G, if g is a path in G joining vi and vj (0 ≤ i, j ≤ 4) and g is not contained in Γ, then
LG(g) ≥ 2. Since diamG V(Γ) = 2, we have dΓ(vj, vj) = dG(vj, vj) for every 0 ≤ i, j ≤ 4; consequently,
dΓ(x, y) = dG(x, y) for every x, y ∈ Γ, i.e., Γ is an isometric subgraph of G. Hence, the geodesic
triangles in Γ are also geodesic triangles in G, and we have δ

(
G
)
≥ δ(Γ) ≥ 5/4.
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Let us show now that the lower bounds on δ
(

G
)

are sharp. Recall that the path graph with
n vertices Pn is a graph with V(Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.

Consider the path graph with four vertices G = P4. Since G = P4, we have diam V(G) = 3 and
δ
(

G
)
= 0.

Consider the path graph with five vertices G = P5. Since diam V(G) = 4, we have δ
(

G
)
≥ 5/4.

Note that G has five vertices and thus Theorem 7 gives δ
(

G
)
≤ 5/4. Hence, we conclude δ

(
G
)
=

5/4.

Corollary 8. If G is any interval graph with edges of length 1, then

δ(G) δ
(

G
)
≤


0, if diam V(G) = 1,

3, if 2 ≤ diam V(G) ≤ 3,

9/4, if diam V(G) ≥ 4.

Note that we can not improve the trivial lower bound δ(G)δ(G) ≥ 0, since it is attained if G is
any tree.

Corollary 9. If G is any interval graph with edges of length 1, then

δ(G) + δ
(

G
)
≤


3/2, if diam V(G) = 1,

7/2, if 2 ≤ diam V(G) ≤ 3,

3, if diam V(G) ≥ 4.

In addition, δ(G) + δ
(

G
)
≥ 5/4 for every graph G with diam V(G) ≥ 4.

5. Conclusions

Gromov hyperbolicity is an interesting geometric property, and so it is natural to study it in the
context of geometric graphs. In this work we deal with interval and indifference graphs, which are
important classes of intersection and Euclidean graphs, respectively. It is well-known that interval
graphs (with a very weak hypothesis) and indifference graphs are hyperbolic. One of our main
results is Theorem 8, which provides a sharp upper bound of the hyperbolicity constant of interval
graphs verifying a very weak hypothesis. This result allows for obtaining bounds for the hyperbolicity
constant of every indifference graph (Corollary 6) and the hyperbolicity constant of every interval
graph with edges of length 1 (Corollary 7). Moreover, Theorem 10 provides sharp bounds for the
hyperbolicity constant of the complement of any interval graph with edges of length 1. Note that it
is not usual to obtain such precise bounds for large classes of graphs. Our main result is Theorem 9,
which provides the hyperbolicity constant of every interval graph with edges of length 1, by using
geometric criteria.
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