
symmetryS S

Article

Image Recovery of an Infrared Sub-Imaging System
Based on Compressed Sensing

Yilin Jiang *, Qi Tong, Haiyan Wang, Zhigang Yang and Qingbo Ji

College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
heutongqi@163.com (Q.T.); wanghaiyan@hrbeu.edu.cn (H.W.); zgyang@hrbeu.edu.cn (Z.Y.);
jiqingbo@hrbeu.edu.cn (Q.J.)
* Correspondence: jiangyilin@hrbeu.edu.cn

Received: 26 September 2017; Accepted: 23 October 2017; Published: 2 November 2017

Abstract: An infrared (IR) sub-imaging system is composed of an optical scanning device and a single
IR detector, which provides the target location information to the servo system. Currently, further
improvement of positioning accuracy and imaging quality in the traditional rosette scanning guidance
mode is experiencing a bottleneck. The emergence of the compressed sensing (CS) technique
provides a new solution for this problem as it can recover a high-resolution IR image including
richer information with fewer sampling points. In this paper, the complementarity of the CS
framework and IR rosette sub-imaging system was analyzed. A new method to improve the
resolution of reconstructed IR images, multi-frame joint compressive imaging (MJCI), was proposed.
The simulation results revealed the potential of the CS technique when applied to the IR sub-imaging
system and demonstrated that the proposed method performed well for reconstruction.

Keywords: infrared (IR) sub-imaging system; optical scanning device; single infrared detector;
compressed sensing (CS); multi-frame joint compressive imaging (MJCI)

1. Introduction

Compressed sensing (CS) is an emerging technique that achieves sampling and compression
processing simultaneously [1–3]. According to CS theory, a sparse (or compressible) signal can be
recovered from incomplete linear measurements. Supposing that a signal x ∈ RN×1 can be represented
in a given standard orthogonal basis Ψ ∈ RN×N with K � N coefficients, the incomplete measurement
y ∈ RM×1 can be obtained from x using the measurement matrix Φ ∈ RM×N . Then, the original
signal can be perfectly recovered by solving an optimization problem. Most of the data will be
abandoned within the sampling process in CS theory when compared to the traditional sampling
method, which samples first and then compresses the data before transmission and storage. The CS
technique reduces the cost of front-end sampling and gives the complicated signal reconstruction task
to the powerful back-end computer. CS theory makes use of the novel idea that it is possible to recover
a signal with much fewer samples.

An infrared (IR) imaging guidance system was used to detect, identify, and track the target by
processing the thermal energy radiated from the target [4,5]. The development of the IR imaging
guidance technique can be divided into two generations. The first generation is optical scanning
sub-imaging guidance, which consists of an optical scanning device and a single or line detector [6] such
as the typical monochrome and dual-color multi-petal rosette scanning pattern. The second generation
is focal plane array (FPA) imaging guidance. The pace of IR imaging technique development partly
depends on the progress of the IR detector. IR detector technology has been developed from the unit
or the line array detector to the FPA detector. Performance, reliability, miniaturization, and uncooled
direction are increasing for the FPA; however, FPA imaging technology is not applicable in low-cost
scenarios as it is less cost-effective than optical scanning sub-imaging technology. Therefore, we
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studied the potential application of the CS technique to improve the imaging resolution of the
sub-imaging system.

An IR rosette scan sub-imaging system (IRSSIS) is a kind of IR sub-imaging system, and is the most
effective one when compared with other scanning methods. It has the advantages of high sensitivity,
long operating range, and effective suppression of background interference. Meanwhile, it also has
defects such as low resolution, high overlap rate, and blind area. The IRSSIS scans the total field of
view (TFOV) with a single IR detector using a rosette scanning pattern. The IR detector can receive the
radiation energy of the instantaneous field of view (IFOV), which is usually small. The smaller the
IFOV, the higher the imaging resolution. However, if the IFOV is designed to be too small, it cannot
cover the full space. Even if the IFOV is able to cover the entire field of view (FOV), the final image
obtained is of low-resolution, which is called a sub-image. Based on the existing seeker hardware
structure, CS theory offers a new way to recover a better quality image for the IRSSIS.

The IR imaging guidance technique has been an important development direction in the field
of precision guidance. The purpose of studying the potential application of the CS framework for
the IRSSIS was to reconstruct an IR image that contained more valuable information about targets,
which is beneficial for subsequent target detection, identification, and tracking work. On this issue,
other scholars have carried out related research [7–9]. In Reference [8], Uzeler et al. introduced the
rosette measurement matrix for single detector rosette scanning systems. Numerical simulations of the
proposed scheme showed that the rosette measurement matrix was feasible in reconstructing the IR
images captured by a long-wave IR camera and the synthetic IR images. Nevertheless, the quality of
the reconstructed IR image is subject to target location in the FOV.

In this paper, we further studied the possibility and recovery performance of the CS technique
applied to the IRSSIS. The IRSSIS works with only a single detector. There are several single-pixel
imaging applications based on CS theory [10–13], which reveal the potential of the compressive imaging
technique. In addition, a new compressive imaging method to improve the IR image resolution was
proposed. The numerical simulation results demonstrated that the proposed method could effectively
improve the resolution of the reconstructed IR image under the condition of less sampling points.

The remainder of this paper is organized as follows. Section 2 introduces the background
of CS theory and the IRSSIS. Section 3 presents an analysis of the CS technique applied to the
IRSSIS. Furthermore, the IFOV measurement matrix and the multi-frame joint compressive imaging
(MJCI) method are introduced. Section 4 presents some simulations to validate the MJCI method.
Section 5 concludes this paper.

2. Relevant Background

2.1. Compressed Sensing

CS is a novel sampling framework in signal processing introduced by Donoho and Candes [1–3].
CS suggests that a sparse signal can be recovered from fewer measurements, and aims to capture the
characteristics of the signal using fewer samples. Consider a signal x ∈ RN×1, which can be sparsely
represented over a fixed sparsity dictionary Ψ ∈ RN×N , Ψ , [ψ1ψ2ψ3 . . .ψN ].

x =
N

∑
k=1

ψksk ,Ψs (1)

where s ∈ RN×1 is the coefficient vector that represents x on Ψ. A vector x given by Equation (1) is
called the K-sparse signal if ‖s‖0 ≤ K. The sparsity of the signal is a priori condition of CS.

CS compresses the K-sparse signal x by a non-square matrix Φ ∈ RM×N , where K<M � N.
The output vector y ∈ RM×1 is called the measurement vector and Φ is called the measurement matrix,
y can be written as:

y = Φx = ΦΨs = Θs (2)
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where Θ is called the sensing matrix.
The original signal x can be recovered from y by solving the sparse expression ŝ, which satisfies

y = ΦΨŝ.

min
ŝ
‖ŝ‖l0 s.t. y = ΦΨŝ (3)

It is known that Equation (3) is generally NP-hard [14] and some feasible solutions are used.
These methods can be divided into two classes, one is to convert the l0-norm minimization into the
l1-norm minimization, given that the l0-norm minimization is equivalent to the l1-norm minimization
under certain conditions [15]. CS theory points out that the signal can be recovered by solving the
problem given in Equation (4) through the linear programming (LP) technique.

min
ŝ
‖ŝ‖l1 s.t. y = ΦΨŝ (4)

The other are the greedy algorithms such as orthogonal matching pursuit (OMP) [16] and
modifications have been proposed [17–19].

2.2. Infrared Rosette Scan Sub-Imaging System

The rosette scanning pattern of the IRSSIS is formed by two titled prisms or mirrors. When the two
optical elements rotate around the spin axis at different frequencies f1 and f2 in the opposite direction,
the IR detector can receive the thermal energy of the IFOV with a rosette pattern. Figure 1 shows the
typical optical scanning structure of the IRSSIS.
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The loci of the rosette scanning pattern can be represented in Cartesian coordinates by:{
x (t) = d

2 [cos (2π f1t + θ1) + cos (2π f2t + θ2)]

y (t) = d
2 [sin (2π f1t + θ1)− sin (2π f2t + θ2)]

(5)
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where d is the radius of the TFOV. θ1 and θ2 are the initial phases of the rotary drive motor of the two
optical elements. The IR detector receives the thermal radiation of the IFOV according to the rosette
scanning pattern. The size of the IFOV is defined as:

ω = (2π/N) d cos (π/∆N) (6)

where the number of petals in the rosette scanning pattern is N = N1 + N2, ∆N = N1−N2, N1 = f1/ fR,
N2 = f2/ fR, fR is the greatest common divisor of f1 and f2. Furthermore, the region of the IFOV
contains many pixels rather than one pixel. The background noise can be reduced greatly if the IFOV
is as small as possible. However, if the IFOV is too small, the scanning pattern may not cover the full
observation space.

The received thermal radiation is converted to electrical signal by the IR detector in the traditional
imaging mode. Then, a low-resolution sub-image is obtained after a series of signal processing
steps, which contains the possible location information and the shape characteristics of the target.
Subsequently, the IRSSIS will be transferred into the target detection, identification, and tracking mode.
A large number of samples are usually collected during the sampling process to acquire more reference
information, which increases the difficulty of real-time processing and wastes lots of resources in the
compression process. However, even so, the imaging resolution is not sufficient to meet the accuracy
requirements. The conventional approach in the IRSSIS is to face the bottleneck of improving the
imaging resolution.

3. Multi-Frame Joint Compressive Imaging Method

The measurement matrix is a key element in the CS framework which projects the desired high
dimensional signal onto a low dimensional signal. The general measurement matrix is the random
measurement matrix such as the random Gaussian measurement matrix, and the random Bernoulli
measurement matrix. The other is the deterministic measurement matrix, which has recently become
a hot research topic [20–22]. However, these two measurement matrices are mostly implemented by
the digital micro-mirror device (DMD), and the realization process is more complex. The research on
optical imaging systems based on a CS framework is in full swing [23–25]. In this paper, the proposed
measurement matrix can be implemented in another way in the form of light-machine scanning, which
is different from the traditional DMD and phase mask methods.

As previously mentioned, the single IR detector receives the radiation of the IFOV with a rosette
scanning pattern in the IRSSIS. Here, the IFOV is not one pixel, but a small area, and is related to the
optical system and the detector. Every radiation of the IFOV can be seen as one measurement data
corresponding to the total radiation intensity of a region. The compressed data can be obtained by
sampling the output signal of the IR detector. Finally, some recovery algorithms are used to reconstruct
the scene. While the construction of the measurement matrix in the IRSSIS is generated from the
optical scanning system itself, which realizes the application of the CS framework physically, and the
constructed measurement matrix is determined and is equally difficult to optimize. In other words,
the entire scanning process in the IRSSIS can be viewed as an observation behavior in CS. The physical
implementation of the measurement matrix usually is a thorny problem in CS theory, but this problem
is solved through optical scanning in the IRSSIS. On the other hand, the IRSSIS can obtain a better
resolution IR image by sampling only a small number of samples. It can be said that the two are just
a complementary relationship. The details of the measurement matrix construction and the MJCI
method are presented in the next subsection.

3.1. IFOV Measurement Matrix

In a traditional IRSSIS, the smaller the IFOV, the higher the imaging resolution. However, the
IFOV is too small to cover the entire observation space. On the contrary, the imaging resolution is
no longer subject to the IFOV size in the new rosette imaging manner based on CS, and the smaller
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IFOV means less computational complexity. In the rosette scanning pattern, every IFOV can form a
sub-matrix. Figure 2a shows a rosette scanning pattern with d = 64, f1 = 275 Hz, f2 = 175 Hz and
θ1 = θ2 = 0. The center position of each IFOV is assigned by Equation (5). The conventional diameter
of the IFOV is usually defined by Equation (6), which is about 16 pixels here. If the pixel location lies
in the region of the IFOV completely, the corresponding value of the sub-matrix is set to one. The pixel
value at the edge of the IFOV takes the proportion of the intersection. The remaining pixel values
are set to zero. Every IFOV produces a 128 × 128 sub-matrix and the sub-matrix forms the row of
the IFOV measurement matrix by the vectorization operation. This new observation using the IFOV
measurement matrix can be seen as a non-uniform block observation. The block size is determined by
the IFOV, and the block position depends on the number of samples. Figure 2b shows part of an IFOV
sub-matrix and the diameter of the IFOV is 15 pixels.
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To illustrate the construction of the IFOV measurement matrix more vividly, we describe it in a
mathematical way. Suppose that M samples are acquired in a frame of time. The instantaneous positions
of the samples can be derived from Equation (5). Every sample corresponds to a 128 × 128 sub-matrix
Φi (i = 1, 2, . . . , M), which contains an IFOV at different positions. A row vector ϕi can be obtained by
vectorizing a sub-matrix. We can obtain M row vectors in the same way (ϕ1, ϕ2, . . . , ϕM). The IFOV
measurement matrix Φ can be expressed as:

Φ =


ϕ1

ϕ2
...

ϕM

 =


vec (Φ1)

vec (Φ2)
...

vec (ΦM)

 (7)

3.2. Multi-Frame Joint Compressive Imaging

According to the trait of the rosette scanning pattern, the samples in the center of the TFOV
are denser than in the other regions. The reconstruction performance of the IR image is affected by
the target position in the FOV. The quality of the reconstructed IR image when the target locates
the center is better than in the other areas. To resolve this problem, this paper proposed the MJCI
scheme to improve the imaging quality, especially for situations that the target locates in the sparse
sampling areas.

The rosette scanning system itself has randomness. It can be observed from the loci of the rosette
scanning pattern that the instantaneous position of the IR detector in the FOV is related to the initial
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phases θ1 and θ2 except for the rotating frequencies f1 and f2. The rosette scanning pattern rotates a
certain angle in a direction when the initial phases θ1 and θ2 change. The proposed MJCI method is
derived from this feature. The loci of the rosette scanning pattern at any time t can be expressed in
polar coordinates by: {

r2 (t) = 1
2 d2{1 + cos[2π ( f1 + f2) t + (θ1 + θ2)]}

θ (t) = π ( f1 − f2) t + (θ1 − θ2)/2
(8)

It can be seen that when the polar radius r = d, the IFOV happens to be at the top of the rose petal
at this moment. Suppose that the initial phases of the current frame are θ1

′ and θ2
′, the rotation angle

with respect to the rosette scanning pattern in the previous frame is:

∆θ =
f1∆θ1 − f2∆θ2

f1 + f2
(9)

where ∆θ1 = θ1
′ − θ1, ∆θ2 = θ2

′ − θ2. Once f1, f2 are fixed, the rotation angle of the rosette
scanning pattern depends only on ∆θ1 and ∆θ2. Figure 3a shows the rosette scanning pattern with
d = 64, f1 = 275 Hz, f2 = 175 Hz and θ1 = θ2 = 0. Figure 3b shows the rosette scanning pattern with
the same parameter values d, f1, f2 and here θ1 = −0.3, θ2 = 0.1.
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Figure 3. Rosette scanning pattern with (a) 3000 samples, θ1 = θ2 = 0; and (b) 3000 samples,
θ1 = −0.3, θ2 = 0.1.

In the process of observing the FOV via the rosette scanning mode, the measurements could
contain more valuable information with a wider range of observations. The MJCI method can achieve
this through a multi-frame joint approach. If 3000 samples need to be collected in single-frame
compressive imaging, the 3000 samples can be obtained in batches by two or three frames in the
MJCI proposal. It is even more critical for this approach to obtain a wider range of observations.
Figure 4a shows the superimposed observation area of two frames with a total of 3000 samples.
Figure 4b shows the superimposed observation area of three frames with a total of 3000 samples.
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By comparing Figures 3 and 4, it can be seen that the observation range of two or three frames
was larger than that of one frame. Correspondingly, the IFOV can also be small on the basis of a wide
observation range without affecting the imaging quality. The superiority of the MJCI method is to
broaden the scope of observations and make the measurements contain more information. In addition,
it further reduces the number of samples required per frame. This new compressive imaging approach
can greatly improve the resolution of reconstructed IR images, especially for the target locates in
a non-central position of the FOV. Figure 5 shows the diagram of three-frame joint compressive
imaging framework.
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4. Simulations and Discussions

In this section, numerical simulations were conducted to validate the imaging performance of
the IFOV measurement matrices and MJCI scheme. The test IR images were 128 × 128 pixels in
size with 256 gray levels. The discrete cosine transform (DCT) matrix was chosen as the sparsity
basis. The generalized orthogonal matching pursuit (gOMP) algorithm was used to reconstruct the IR
image [26]. All simulations were run on a PC with a 2.1 GHz Intel Xeon CPU and Windows 7 system.
The algorithms were implemented in MATLAB.
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4.1. IFOV Measurement Matrices

In this subsection, we tested the IR image reconstruction performance of the IFOV measurement
matrix with different IFOV diameters. The IFOV measurement matrix construction is described
in Section 3.1. For comparison, a random Gaussian measurement matrix was performed in the
simulations. In addition, we observed the IR image reconstruction effect under different compression
ratios and different target positions, which could be used to illuminate the reconstruction ability of the
IFOV measurement matrices comprehensively. The results are shown in Figure 6.
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Figure 6. Images from the numerical simulations. (a) the test image; (b) the reconstructed images
with random Gaussian measurement matrix; (c) with ω = 16 IFOV measurement matrix; and (d) with
ω = 13 IFOV measurement matrix. From top to bottom: 1500, 2700, 4200, 1500, 2700, and 4200 samples,
respectively; weather condition, sunny day.
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It can be seen from Figure 6 that the reconstruction performance of the IFOV measurement
matrices were comparable to or even better than that of the random measurement matrices. In the
reconstructed images using the IFOV measurement matrix, although there was more noise, the target
resolution was higher and the target contour discernible. This phenomenon was more pronounced
when the target locates in the central position. When the target was on the edge, the IR image
reconstruction quality was poor and the target contour blurred. This result was determined by the
characteristics of the rosette scanning mode as there is a scanning blind spot in the four corners as
shown in Figure 3. The sampling in the central position was more intensive, so the reconstructed
image quality was better when the target was in the center. Moreover, the change in compression ratio
did not have a significant effect on the IR image reconstruction based on the special sampling method.
As seen in Figure 6, when the target locates on the edge, the reconstructed image quality could not
be improved by increasing the sampling points. Similarly, when the target was located in the center,
reducing the number of samples did not degrade the quality of the reconstructed image.

Furthermore, the influence of the IFOV measurement matrix with different diameters on IR image
reconstruction could be ignored, but the IFOV could not be too small. Simulation results showed that
only the single-frame compressive imaging mechanism was limited in some cases such as when the
target was in the corner. In general, the reconstruction performance of the IFOV measurement matrix
was satisfactory, even in the case of low sampling rates.

4.2. Multi-Frame Joint Compressive Imaging

To further improve the imaging resolution of the reconstructed IR image, the MJCI method was
proposed. In this subsection, two groups of simulations were performed to verify the reconstruction
performance of two-frame joint compressive imaging method and three-frame joint compressive
imaging method. The diameter of the IFOV measurement matrix was 11 pixels, and the initial phases
followed the Gaussian distribution. In this section, the target position in the FOV was also considered.
The results are shown in Figures 7 and 8, respectively.

As shown in Figures 7 and 8, the MJCI scheme was feasible and effective for IR image
reconstruction. The MJCI method reproduced high-quality IR images with much fewer samples
regardless of where the target was located in the FOV. At the same time, this method greatly reduced
the noise in the reconstructed images and obtained better resolution IR images when compared to the
single-frame compressive imaging approach shown in Figures 7 and 8. The function of noise reduction
was more obvious as the sampling point increased. The reconstruction performance of the random
measurement matrices was far less than the MJCI approach. In addition, the three-frame compressive
imaging method could effectively reduce the effect of edge noise versus the two-frame compressive
imaging method. It was observed from Figures 6–8 that all reconstructed IR images contained a large
amount of noise around them, which was due to the fact that there were few samples in these locations.
To further test the quality of the recovered IR images, the average peak signal-to-noise ratio (PSNR)
was used to quantify the recovery performance. The results are shown in Table 1 where it can be seen
that the PSNR values of the single-frame and multi-frame methods were comparable to the random
Gaussian matrix. However, the PSNR were not proportional to the number of samples in the MJCI
method, which was influenced by the recovery algorithm. The sparsity level of an image was uncertain,
so there was no effective algorithm for image reconstruction. Table 1 also shows that fewer samples
may have a better recovery result by the MJCI method.
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Figure 7. Images from the numerical simulations. (a) the test image; (b) the reconstructed images with 
random Gaussian measurement matrix; (c) with the IFOV measurement matrix; and (d) with two-
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Figure 7. Images from the numerical simulations. (a) the test image; (b) the reconstructed images with
random Gaussian measurement matrix; (c) with the IFOV measurement matrix; and (d) with two-frame
joint compressive imaging method. From top to bottom: 1500, 2700, 4200, 1500, 2700, 4200 samples,
respectively; weather condition, sunny day.
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In this paper, a new imaging fashion, termed MJCI, was presented to improve the imaging 
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IRSSIS and CS theory and reconstructed a better quality IR image. The introduced IFOV 
measurement matrix formed by the optical scanning system satisfied the measurement matrix 
conditions and the size of the IFOV could be appropriately reduced, which was useful for accelerating 
the IR image recovery. Numerical simulations showed that the MJCI method could be used to 
reconstruct the IR image and exhibited a better recovery performance when compared with the 
single-frame IFOV measurement matrices and random Gaussian measurement matrices. In addition, 
the proposed MJCI method could perfectly recover an IR image even when the target location was 

Figure 8. Images from the numerical simulations. (a) the test image; (b) the reconstructed images
with random Gaussian measurement matrix; (c) with the IFOV measurement matrix; and (d) with
three-frame joint compressive imaging method. From top to bottom: 1500, 2700, 4200, 1500, 2700, 4200,
1500, 2700, and 4200 samples, respectively; weather condition, sunny day.

Table 1. The average PSNR (dB) with different number of samples and different sampling method.

Sampling Method 1500 Samples 2700 Samples 4200 Samples

Gaussian 25.4 27.8 29.4
Single-frame 25.1 24.6 24.2

Two-frame joint 26.9 25.9 25.6
Three-frame joint 27.6 28.1 26.3

Table 2 shows the reconstruction time of the first test IR image in Section 4.2. From Table 2, it can
be observed that a reduction in IFOV size could accelerate the image recovery, but sometimes would
fail, such as the three-frame joint compressive imaging results when samples were 2700. The reason
was that the number of required indices when the IFOV size w = 11 was bigger than that when w = 15
in the image recovery process by the gOMP algorithm.

Table 2. The average reconstruction time (s) of test image with different number of samples and
different sampling method.

Sampling Method IFOV Size 1500 Samples 2700 Samples 4200 Samples

Two-frame joint w = 11 12.1 15.2 50.4
w = 15 13.3 45.1 58.4

Three-frame joint w = 11 11.7 89.4 34.9
w = 15 18.4 44.7 74.5

5. Conclusions

In this paper, a new imaging fashion, termed MJCI, was presented to improve the imaging
resolution for the IRSSIS. The new compressive imaging method combined the characteristics of the
IRSSIS and CS theory and reconstructed a better quality IR image. The introduced IFOV measurement
matrix formed by the optical scanning system satisfied the measurement matrix conditions and the
size of the IFOV could be appropriately reduced, which was useful for accelerating the IR image
recovery. Numerical simulations showed that the MJCI method could be used to reconstruct the
IR image and exhibited a better recovery performance when compared with the single-frame IFOV
measurement matrices and random Gaussian measurement matrices. In addition, the proposed MJCI
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method could perfectly recover an IR image even when the target location was not in the center of
the FOV. The application of CS theory to the IR imaging system remains promising and challenging,
and further research needs to be continued.
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