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Abstract: In this paper, the dual hesitant fuzzy rough set (DHFRS) is studied from the viewpoint
of assessment deviations. Firstly, according to the relationship between intuitionistic fuzzy set and
vague set, the DHFRS is transferred into a fuzzy set, where the membership of any given element to
it has multi-grouped values. By the idea of bootstrap sampling, a group of four sets are generated
to describe the membership degree on DHFRS, where the elements of the aforementioned sets are
all considered as assessment values. Secondly, the generated sets are dealt with by assessment
deviation theories, and specifically, two variables are proposed to describe the systematic and random
deviations of the sets. Thirdly, the true-value of the membership degree of any elements to the
set is estimated by a deviation-based dual hesitant fuzzy rough weighted aggregating operator.
Fourthly, a dual hesitant fuzzy rough pattern recognition approach based on assessment deviation
theories is proposed. Finally, an urban traffic modes recognition example is given to illustrate the
validity of the proposed theories on DHFRSs.

Keywords: hesitant fuzzy rough set; measurement error; approximation; observed value; pattern
recognition

1. Introduction

Rough set, first described by Pawlak [1], is a formal approximation of a crisp set in terms of a
pair of sets, which gives the lower and the upper approximations of an original set. In rough set theory,
the lower and the upper approximations are defined by an equivalence relation. In classical rough set
theory, the equivalence relation is described by crisp values. Nowadays, it has been described as fuzzy
sets [2], intuitionistic fuzzy sets [3] or hesitant fuzzy sets (HFS) [4], etc.

Moreover, as an extension of fuzzy set, HFS allows the membership degree of an element to
a set to have several possible values. Yang et al. [5] firstly explored the fusions of HFSs and rough
sets, and proposed some constructive and axiomatic approaches on hesitant fuzzy rough set (HFRS),
where the HFRS is presented to approximate the hesitant fuzzy target through a hesitant fuzzy relation.
Afterwards, Liang and Liu [6] proposed a risk decision making method based on decision-theoretic
rough sets under hesitant fuzzy environment. It is noteworthy that Liang and Liu [6] both think
and work creatively. Especially, it introduced HFSs into decision-theoretic rough sets and explored
their decision mechanisms. Furthermore, Zhang et al. [7] noticed the connection between HFRS and
intuitionistic fuzzy rough set, and proposed a novel rough set called dual hesitant fuzzy rough set
(DHFRS). DHFS, proposed by Zhu et al. [8], comprised not only the multi-grouped membership
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degrees, but also the multi-grouped non-membership degrees of an element to a set. By using a dual
hesitant fuzzy relation, Zhang et al. [7] firstly defined the lower and upper dual hesitant fuzzy rough
approximation operators with respect to a dual hesitant fuzzy approximation space, and introduced
some properties of this model.

According to the concept “depth” proposed by Hardy [9], “mathematical ideas are arranged
somehow in strata, the ideas in each stratum being linked by a complex of relations both among
themselves and with those above and below, the lower the stratum, the deeper the idea”. Obviously,
DHFRS is a “deep” extension of rough set while classical fuzzy rough set [10], intuitionistic fuzzy
rough sets [11] and HFRS [5] are all special cases of DHFRS. Therefore, it is fundamentally worthwhile
to study on DHFRS. This paper is sparkled by the aforementioned works and the dual hesitant
fuzzy rough information is studied from the viewpoint of assessment deviations. In assessment
deviation analysis, any given value is composed of the true-value plus some deviation values. Just like
measurement errors, deviations can be classified into three kinds: systematic deviations, random
deviations, and gross deviations [12]. Firstly, the DHFRS is transferred to a set of four sets which are
used to describe the degree of an element to a set; and then, to determine the deviations of the sets
apart from the true-value, differentiated strategy is used. The four sets are weighted according to
two parameters, where one quantifies the systematic deviations of the four sets, while the other one
quantifies the random deviations of them; subsequently, the true-value of the membership degree
of an element to a set is estimated by an operator; furthermore, a dual hesitant fuzzy rough pattern
recognition approach based on assessment deviation theories is proposed.

The rest of this paper is organized as follows. In Section 2, the concepts and the fundamental
properties of DHFSs and DHFRSs are reviewed. In Section 3, some assessment deviation analyses
on DHFRSs are given, and a mathematical model to point estimate the true-value of the membership
degree of an element to a set on DHFRSs is proposed. In Section 4, a dual hesitant fuzzy rough pattern
recognition approach based on assessment deviation theories is also proposed. In Section 5, an urban
traffic modes recognition example is given to illustrate the validity of the newly proposed dual hesitant
fuzzy rough pattern recognition approach on DHFRSs. Finally, some conclusions are given in Section 6.

2. Preliminaries

In this section, the concepts and the fundamental properties on HFSs, DHFSs and DHFRSs
are reviewed.

Definition 1. [4,13] Let X be a non-empty set, and a hesitant fuzzy set (HFS) on X be in terms of a function
that when applied to X returns a subset of [0, 1].

Xia and Xu [14] expressed the HFS by a mathematical symbol E = {〈x, hE(x)〉 | x ∈ X},
where hE(x) is a finite subset of the set [0, 1], denoting the possible membership degrees of the element
x ∈ X to the set E. For convenience, h = hE(x) is called a hesitant fuzzy element (HFE).

For any two HFEs h1 and h2, Torra [13] defined the union and the intersection of them, which are
denoted as h1 ∪ h2 = {hσ(s)

1 ∨ hσ(s)
2 |1 ≤ s ≤ k}, h1 ∩ h2 = {hσ(s)

1 ∧ hσ(s)
2 |1 ≤ s ≤ k}, respectively,

where hσ(s)
1 and hσ(s)

2 denote the sth largest value in h1 and h2, respectively. l(·) is denoted as cardinal
function, k = max{l(h1), l(h2)}. Especially, when h1 and h2 are two one-element sets, denote h1 = {h∗1},
h2 = {h∗2}, then, it gets h1 ∪ h2 = max{h∗1 , h∗2}, h1 ∩ h2 = min{h∗1 , h∗2}. When l(h1) 6= l(h2), the existed
methods usually extend the shorter one until both of them have the same cardinal number.

As an extension of HFS, Zhu et al. [8] defined the DHFS as follows.

Definition 2. [8] Let U be a non-empty and finite universe of discourse, then a DHFS D on U is described as

D = {〈x, hD(x), gD(x)〉|x ∈ U}, (1)
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where hD(x) and gD(x) are two finite subsets of the set [0, 1], denoting the possible membership degrees and
non-membership degrees of the element x ∈ U to the set D, respectively, with the conditions 0 ≤ γ, η ≤ 1,
and 0 ≤ γ+ + η+ ≤ 1 for all x ∈ U, γ ∈ hD(x), η ∈ gD(x), γ+ = max{γ|γ ∈ hD(x)}, η+ = max{η|η ∈
gD(x)}. For convenience, the pair d(x) = (hD(x), gD(x)) is called a DHF element (DHFE), and is denoted as
d = (h, g). The set of all DHFSs on U is denoted by DHF (U).

Inspired by the aforementioned two definitions, Zhang et al. [7] defined the dual hesitant fuzzy
relation as follows.

Definition 3. [7] Let U, V be two non-empty and finite universes. A DHF subset R
of the universe U ×V is called a DHF relation from U to V, namely, R is given by
R = {〈(x, y), hR(x, y), gR(x, y)〉|(x, y) ∈ U × V}, where hR, gR : U × V → 2[0,1] are two finite
subsets of the set [0, 1], denoting the possible membership degrees and non-membership degrees of the
relationship between x and y, respectively, with the conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ+, η+ ≤ 1,
where for all (x, y) ∈ U × V , γ ∈ hR(x, y), η ∈ gR(x, y), γ+ = max{γ|γ ∈ hR(x, y)},
η+ = max{η|η ∈ gR(x, y)}. In particular, if U = V , we call R a DHF relation on U.

Furthermore, Zhang et al. [7] defined the lower and upper DHF approximations on rough set
as follows.

Definition 4. [7] Let U, V be two non-empty and finite universes, and R be a DHF relation from U to V.
The triple (U, V,R) is called a DHF approximation space. For any A ∈ DHF(V), the lower and upper
approximations of A with respect to (U, V,R) are two DHF sets of U, which are defined as

R(A) = {〈x, hR(A)(x), gR(A)(x)〉|x ∈ U}, (2)

R(A) = {〈x, hR(A)(x), gR(A)(x)〉|x ∈ U}, (3)

where hR(A)(x) =
⋂

y∈V
{gR(x, y) ∪ hA(y)}, gR(A)(x) =

⋃
y∈V
{hR(x, y) ∩ gA(y)}, hR(A)(x) =⋃

y∈V
{hR(x, y) ∩ hA(y)}, and gR(A)(x) =

⋂
y∈V
{gR(x, y) ∪ gA(y)}. R(A) and R(A) are, respectively, called

the lower and upper approximations of A with respect to (U, V,R). The pair (R(A),R(A)) is called the DHF
rough set of A with respect to (U, V,R).

The union and intersection on HFSs which were introduced in Torra [13], Torra and Narukawa [4],
Xia and Xu [14] are defined as follows.

Definition 5. Let U be a nonempty and finite universe of discourse. For any two HFSs A and B on U, and for
all x ∈ U, the union and intersection of A and B is denoted as AdB and AeB , where

hAdB(x) = hA(x) Y hB(x) =
⋃

γ1∈hA(x),γ2∈hB(x)

{max{γ1, γ2}},

hAeB(x) = hA(x) Z hB(x) =
⋃

γ1∈hA(x),γ2∈hB(x)

{min{γ1, γ2}}.

3. Mathematical Methodologies

In this section, the dual hesitant fuzzy rough (DHFR) information is studied from the viewpoint
of assessment deviations, and a series of research results on DHFRSs are proposed.
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3.1. Assessment Deviation Analysis on DHFRSs

In general, to describe the membership and non-membership degrees of an element to a set in
DHF setting, DHFRS gives a lower and an upper DHF approximations which are defined by HFSs.
In the following, it will be proved that the lower and upper approximations can be re-defined by four
sets, and any element in the sets is used to describe the aforementioned membership degree.

Taking U, V defined in Definition 4, for example, assuming that R be a DHF relation from U
to V, for any A ∈ DHF(V), R(A) and R(A) are two DHF sets of U whose structures are shown as
Equations (2) and (3). Denote

hR(A)(x) = {hR(A)(x)1, hR(A)(x)2, · · · , hR(A)(x)l(hR(A)(x))}, (4)

gR(A)(x) = {gR(A)(x)1, gR(A)(x)2, · · · , gR(A)(x)l(gR(A)(x))}, (5)

hR(A)(x) = {hR(A)(x)1, hR(A)(x)2, · · · , hR(A)(x)l(hR(A)(x))}, (6)

gR(A)(x) = {gR(A)(x)1, gR(A)(x)2, · · · , gR(A)(x)l(gR(A)(x))}. (7)

According to the relationship between vague sets and intuitionistic fuzzy sets [15], R(A) and
R(A) can be re-defined as

R(A) = {x, [hR(A)(x), h′R(A)(x)]|x ∈ U}, (8)

R(A) = {x, [hR(A)(x), h′R(A)(x)]|x ∈ U}, (9)

where

h′R(A)(x) = {1− gR(A)(x)1, 1− gR(A)(x)2, · · · , 1− gR(A)(x)l(gR(A)(x))}, (10)

h′R(A)(x) = {1− gR(A)(x)1, 1− gR(A)(x)2, · · · , 1− gR(A)(x)l(gR(A)(x))}. (11)

From a statistical point of view, hR(A)(x), h′R(A)(x), hR(A)(x), and h′R(A)(x) all can be considered as
sets of observation points generated by bootstrap sampling, which are used to describe the membership
degree of A to x. In the following subsection, by analysing the assessment deviations between the
observation points and the true-value of the membership degree, a dual hesitant fuzzy rough weighted
aggregating (DHFRWA) operator is proposed.

3.2. Novel Findings on DHFRSs

The systematic and random assessment deviations of DHFRS are defined as follows.

Definition 6. Let U, V be two non-empty and finite universes, and R be a DHF relation from U to V.
For any A ∈ DHF(V), a set of four approximations of the membership degree of A to x is obtained as
S = {s1, s2, s3, s4}, where s1 = hR(A)(x), s2 = h′R(A)(x), s3 = hR(A)(x), s4 = h′R(A)(x). Denote the

true-value of the membership degree of A to x as Tx(A). Then, the Hamming, Euclidean, and the generalized
systematic assessment deviations of si(i = 1, 2, 3, 4) apart from Tx(A) are denoted as

eh11 = eh14 =
1

ls1,s4

ls1,s4
∑

j=1
|1− sσ(j)

1 − sσ(j)
4 |, (12)
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eh12 = eh13 =
1

ls2,s3

ls2,s3
∑

j=1
|1− sσ(j)

2 − sσ(j)
3 |, (13)

ee11 = ee14 =

(
1

ls1,s4

ls1,s4
∑

j=1
|1− sσ(j)

1 − sσ(j)
4 |2

) 1
2

, (14)

ee12 = ee13 =

(
1

ls2,s3

ls2,s3
∑

j=1
|1− sσ(j)

2 − sσ(j)
3 |2

) 1
2

, (15)

eg11 = eg14 =

(
1

ls1,s4

ls1,s4
∑

j=1
|1− sσ(j)

1 − sσ(j)
4 |λ

) 1
λ

, (16)

eg12 = eg13 =

(
1

ls2,s3

ls2,s3
∑

j=1
|1− sσ(j)

2 − sσ(j)
3 |λ

) 1
λ

, (17)

where l(·) is cardinal function, lsi1
,si2

= max
{

l(si1), l(si2)
}

, sσ(j)
i is the jth largest values in si;

whereas i, i1, i2 = 1, 2, 3, 4, and λ > 0. Besides, it is noteworthy that l(si1) 6= l(si2) holds in most
cases. To operate them correctly, one should extend the shorter one until the cardinal numbers of them are the
same. The random assessment deviations of s(i)(i = 1, 2, 3, 4) are denoted as

e2i =

√√√√√√
l(si)

∑
j=1

(
sσ(j)

i − 1
l(si)

l(si)

∑
j=1

sσ(j)
i

)2

l(si)− 1
(18)

In order to better understand the systematic and random assessment deviations on DHFRSs,
please refer to Figure 1. In Figure 1, A denotes any given DHFS, x denotes any given fuzzy concept.

Figure 1. The sketch map of systematic and random assessment deviations.

In the following, by referring to the measurement error theories [12], a DHFRWA operator is
proposed to aggregate the four sets on DHFRS.

Definition 7. Let U, V be two non-empty and finite universes, and R be a DHF relation from U to V.
For any A ∈ DHF(V), a set of four approximations of the membership degree of A to x is obtained as
S = {s1, s2, s3, s4}. The given systematic and random assessment deviations of s(i)(i = 1, 2, 3, 4) apart
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from Tx(A) are denoted as ei1 and ei2, respectively. Then, a generalized deviation index of si is denoted as
ei = ei1 + ei2, and two DHFRWA operators based on assessment deviations are denoted as

s∗1 =

 4
∑

i=1
(

(e1i + e2i)
−1

4
∑

i=1
(e1i + e2i)−1

· sσ(1)
i ),

4
∑

i=1
(

(e1i + e2i)
−1

4
∑

i=1
(e1i + e2i)−1

· sσ(2)
i ), · · · ,

4
∑

i=1
(

(e1i + e2i)
−1

4
∑

i=1
(e1i + e2i)−1

· sσ(ls)
i )

 , (19)

s∗2 =

 4
∑

i=1
(

(2− e1i − e2i)
4
∑

i=1
(2− e1i − e2i)

· sσ(1)
i ),

4
∑

i=1
(

(2− e1i − e2i)
4
∑

i=1
(2− e1i − e2i)

· sσ(2)
i ), · · · ,

4
∑

i=1
(

(2− e1i − e2i)
4
∑

i=1
(2− e1i − e2i)

· sσ(ls)
i )

 , (20)

where ls = max(l(s1), l(s2), l(s3), l(s4)). It is noteworthy that l(si) = l(sj)(i, j = 1, 2, 3, 4) doesn’t always
hold, to operate them correctly, one should extend the shorter one until all of them are the same.

Definition 8. Let u1 and u2 be two fuzzy concepts, and a be an arbitrary element. Let s1, s2, be two HFEs
representing the membership degrees of a to u1 and u2, respectively. Then, the possibility that u1 is superior to
u2 considering that a belongs to is denoted as

p12 =

ls1,s2
∑

σ(j)=1
H(sσ(j)

1 − sσ(j)
2 )

ls1,s2

, (21)

where H(·) is a Heaviside step function denoted as

H(x) =

{
1, x > 0,

0, x ≤ 0,
(22)

l(·) is cardinal function, ls1,s2 = max {l(s1), l(s2)}, sσ(j)
i (i = 1, 2) is the jth largest values in si. Besides,

in case that l(s1) 6= l(s2), one should extend the shorter one until both of them are the same.

In order to better understand the novel findings on DHFRSs, please refer to Figure 2.

Figure 2. The Information conversion from DHFRS to weighted average membership set.
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4. Main Results

Based on the aforementioned mathematical methods, a novel pattern recognition approach on
DHFRs is proposed as follows.

4.1. Novel Pattern Recognition Approach on DHFRs

In this subsection, a novel DHFR pattern recognition approach is proposed. Firstly, the weighted
membership degree sets of an object to different patterns are obtained by the DHFRWA operator
proposed in the previous subsection; subsequently, according to the comparative results of any two
degree sets generated by Definition 7, an pattern recognition result is obtained. In the following,
the approach is demonstrated by a mathematical model.

Suppose that there is a pattern recognition problem as follows. Let the universe
U = {u1, u2, · · · , um} be the pattern set, the universe V = {v1, v2, · · · , vn} be the symptom set,
and R(ui, vj) be an intuitionistic fuzzy relation from U to V. Suppose that there is an object A,
who has some symptoms in the universe V which is described as A = {〈vj, hA(vj), gA(vj)〉|vj ∈ V},
where hA(vj) and gA(vj) are two finite subsets of the set [0, 1], representing the possible membership
and non-membership degrees of A to the symptom vj. Then, an approach is proposed to determine
the suitable pattern in U that A belongs to.

Step 1 According to Equations (2) and (3), we calculate the lower and upper approximations R(A)
and R(A) of DHFSs A with respect to (U, V,R).

Step 2 By Definition 5, for any uk ∈ U(k = 1, 2, · · · , m), a set SA,uk
= {s1

A,uk
, s2

A,uk
, s3

A,uk
, s4

A,uk
} is

obtained to describe the membership degree of A to uk.
Step 3 By Equation (19) or Equation (20), a series of weighted membership degree sets are obtained

as s∗A,uk
(k = 1, 2, · · · , m).

Step 4 By Equation (21), for any k1, k2 = 1, 2, · · · , m, s∗A,uk1
and s∗A,uk2

are compared, and the

optimal pattern recognition that A belongs is obtained.

4.2. Supplement Explanations

(1) In classical intuitionistic fuzzy rough environments [16], Definitions 5 and 6 can be simplified
as follows.

Theorem 1. Let U, V be two non-empty finite universes, and R = {〈(x, y), µR(x, y), νR(x, y)〉|(x, y) ∈
U × V} be an intuitionistic fuzzy relation from U to V, where µR(x, y) ∈ [0, 1], νR(x, y) ∈ [0, 1],
denoting the membership degree and non-membership degree of the relationship between x and y, respectively,
and 0 ≤ µR(x, y), νR(x, y) ≤ 1, µR(x, y) + νR(x, y) ≤ 1. For any intuitionistic fuzzy set A =

{〈(y), µA(y), νA(y)〉|(y) ∈ V} on V, where µA(y) ∈ [0, 1], νA(y) ∈ [0, 1], denoting the membership
degree and non-membership degree of y to A, respectively, and 0 ≤ µA(y), νA(y) ≤ 1, µA(y) + νA(y) ≤ 1,
the lower and upper approximations of A with respect to (U, V, R) are two intuitionistic fuzzy sets on U,
which are denoted as R(A) = {〈x, µR(A)(x), νR(A)(x)〉|x ∈ U}, R(A) = {〈x, µR(A)(x), νR(A)(x)〉|x ∈ U},
where µR(A)(x) = min

y∈V
{max{νR(x, y), µA(y)}}, νR(A)(x) = max

y∈V
{min{µR(x, y), νA(y)}}, µR(A)(x) =

max
y∈V
{min{µR(x, y), µA(y)}}, and νR(A)(x) = min

y∈V
{max{νR(x, y) ∨ νA(y)}}. Then, it gets S =

{s1, s2, s3, s4}, where s1 = µR(A)(x), s2 = 1− νR(A)(x), s3 = µR(A)(x), s4 = 1− νR(A)(x).

By Theorem 1, the following conclusions can be obtained:

(i) Equation (18) is reduced to e2i = 0 for any i ∈ {1, 2, 3, 4};

(ii) Equation (19) is reduced to s∗1 =
4
∑

i=1
e−1

1i · (
4
∑

i=1
e−1

1i )
−1 · si;

(iii) Equation (20) is reduced to s∗2 =
4
∑

i=1
(2− e1i) · (

4
∑

i=1
(2− e1i))

−1 · si.
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(2) In classical hesitant fuzzy rough environments [17], Definitions 5 and 6 can be simplified.

Theorem 2. Let U, V be two non-empty finite universes, and R = {〈(x, y), hR(x, y)〉|(x, y) ∈ U × V}
be a hesitant fuzzy relation from U to V, where hR : U × V → 2[0,1] is a finite subset of the set [0, 1],
denoting the possible membership degrees of the relationship between x and y. For any hesitant fuzzy set
A = {〈(y), hR(y)〉|y ∈ V} on V, where hA : V → 2[0,1] is a finite subset of the set [0, 1], denoting
the membership degrees of y to A, then, the lower and upper approximations of A with respect to
(U, V, R) are two intuitionistic fuzzy sets on U, which are denoted as R(A) = {〈x, hR(A)(x)〉|x ∈ U},
R(A) = {〈x, hR(A)(x)〉|x ∈ U}, where hR(A)(x) = Zy∈V{hRc(x, y) Y hA(y)}, hR(A)(x) =

Yy∈V{hR(x, y) Z hA(y)}, x ∈ U. Then, it gets S = {s1, s2}, where s1 = hR(A)(x), s2 = hR(A)(x).

By Theorem 2, the following conclusions can be obtained:

(i) Equations (12)–(17) are reduced to eh1i = ee1i = eg1i = 0 for any i ∈ {1, 2};
(ii) Equations (19) and (20) are reduced to

s∗1 =

 2

∑
i=1

(
e−1

2i
2
∑

i=1
e−1

2i

· sσ(1)
i ),

2

∑
i=1

(
e−1

2i
2
∑

i=1
e−1

2i

· sσ(2)
i ), · · · ,

2

∑
i=1

(
e−1

2i
2
∑

i=1
e−1

2i

· sσ(ls)
i )

 , (23)

and

s∗2 =

 2

∑
i=1

(
(1− e2i)

2
∑

i=1
(1− e2i)

· sσ(1)
i ),

2

∑
i=1

(
(1− e2i)

2
∑

i=1
(1− e2i)

· sσ(2)
i ), · · · ,

2

∑
i=1

(
(1− e2i)

2
∑

i=1
(1− e2i)

· sσ(ls)
i )

 , (24)

respectively, where ls = max(l(s1), l(s2)).

(3) There are some important properties for Equations (19) and (20), which are as follows.

Theorem 3. For any i ∈ {1, 2, 3, 4}, 0 6 e1i + e2i 6 2. Denote

W1 =

{
(e11 + e21)

−1

4
∑

i=1
(e1i + e2i)−1

,
(e12 + e22)

−1

4
∑

i=1
(e1i + e2i)−1

,
(e13 + e23)

−1

4
∑

i=1
(e1i + e2i)−1

,
(e14 + e24)

−1

4
∑

i=1
(e1i + e2i)−1

}
,

W2 =

{
2− e11 − e21

4
∑

i=1
(2− e1i − e2i)

,
2− e12 − e22

4
∑

i=1
(2− e1i − e2i)

,
2− e13 − e23

4
∑

i=1
(2− e1i − e2i)

,
2− e14 − e24

4
∑

i=1
(2− e1i − e2i)

}
.

Then, by borrowing H(·) from Definition 7, it gets that

(i) If
4

∏
i=1

H(1− e1i − e2i) = 1, then, the variance of W1 is larger than which of W2;

(ii) If
4

∏
i=1

H(e1i + e2i − 1) = 1, then, the variance of W1 is smaller than which of W2;

(iii) If 1 6
4
∑

i=1
H(e1i + e2i − 1) < 4, then, the comparing between the variances of W1 and W2 is

inconclusive.

(iv) If
4

∏
i=1

(e1i + e2i) = 0, then, Equation (16) is invalid; if
4
∑

i=1
(2− e1i − e2i) = 0, then, Equation (17)

is invalid.
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By Theorem 3, decision-makers can operate flexibility in choose Equation (19) or Equation (20) to
aggregate s1, s2, s3, and s4.

In the following section, a travel choice problem is studied to show the effectiveness of the
proposed pattern recognition approach.

5. Illustrative Example

In this example, a traffic mode recognition problem in a certain district is studied where a new
travel mode, i.e., a kind of shared electric bicycle will be domained into this district. In the studied
district, residents go to work and live mainly relying on subway travel which locates within 5 km from
the their home or work units. At present, there are four kinds of travel modes which residents choose
to go to the station. For convenience, the modes are denoted as M = {M1, M2, M3, M4}, where M1

stands for “bicycle”, M2 stands for “electric bicycle”, M3 stands for “shared bicycle”, M4 stands for
“bus”. More details about “shared bicycle”, please refer to Schuijbroek et al. [18] and Chemla et al. [19].
Which classical traffic mode would be affected by the greatest extent when the shared electric bicycles
are put into the studied market? In the following, the question is analysed and solved by the novel
pattern recognition approach.

It is noteworthy that bicycles are made available for shared use to individuals on a very short
term basis in Mode M3. At present, there are mainly five factors which affect residents’ choice
behaviour. Also for convenience, the five factors are denoted as F = {F1, F2, F3, F4, F5}, where F1

stands for “travel time”, F2 stands for “travel expenses”, F3 stands for “weather factor”, F4 stands for
“comfortability”, F5 stands for “safety”, respectively. Besides, F2 and F3 are explained further as follows.
Firstly, the sunk cost of a bicycle and electric bicycle are around 500 Yuan, 2000 Yuan, respectively,
while the sunk cost of the shared bicycle and bus are all zero. Secondly, the travel cost of these four
modes is 0 Yuan/h, 0.2 Yuan/h, 0.9 Yuan/h and 2 Yuan/time, respectively. Thirdly, the deposit
for the mode M3 is 100 Yuan but zero for the other modes. Consistent with social investigations,
all the four traffic modes M1, M2, M3, M4 have their own advantages and disadvantages under the
aforementioned five factors in the studied district. For example, M1 shows better performances than
M2 under the factors F2 and F5, while M2 shows better performances than M1 under the factors F1 and
F4. Another example is that M4 shows better performances than M3 under the factors F3 and F5, while
M3 shows better performances than M4 under the factor F4.

In order to quantify the effect of these four traffic modes under five factors, our team make
a lot effort in social investigation from positive and negative sides. Thereafter, dual hesitant
fuzzy sets are used to aggregate the investigated information. Formally, denote R as the
knowledge-based relationship between A and F. Then, based on the aggregated investigated
information, R = {RMi ,Fj |i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5} is obtained, where

RM1,F1 = 〈(M1, F1), {0.35, 0.45, 0.55}, {0.25, 0.25, 0.35}〉, RM1,F2 = 〈(M1, F2), {0.60, 0.65, 0.70}, {0.10, 0.15, 0.25}〉,
RM1,F3 = 〈(M1, F3), {0.30, 0.35, 0.40}, {0.50, 0.55, 0.60}〉, RM1,F4 = 〈(M1, F4), {0.50, 0.55, 0.60}, {0.20, 0.25, 0.30}〉,
RM1,F5 = 〈(M1, F5), {0.55, 0.60, 0.65}, {0.20, 0.20, 0.25}〉, RM2,F1 = 〈(M2, F1), {0.65, 0.70, 0.70}, {0.10, 0.25, 0.30}〉,
RM2,F2 = 〈(M2, F2), {0.45, 0.50, 0.55}, {0.30, 0.35, 0.40}〉, RM2,F3 = 〈(M2, F3), {0.35, 0.40, 0.45}, {0.40, 0.50, 0.55}〉,
RM2,F4 = 〈(M2, F4), {0.60, 0.65, 0.70}, {0.20, 0.25, 0.30}〉, RM2,F5 = 〈(M2, F5), {0.35, 0.40, 0.45}, {0.45, 0.50, 0.55}〉,
RM3,F1 = 〈(M3, F1), {0.40, 0.50, 0.55}, {0.10, 0.20, 0.25}〉, RM3,F2 = 〈(M3, F2), {0.65, 0.70, 0.70}, {0.20, 0.25, 0.30}〉,
RM3,F3 = 〈(M3, F3), {0.45, 0.50, 0.50}, {0.25, 0.30, 0.40}〉, RM3,F4 = 〈(M3, F4), {0.65, 0.70, 0.70}, {0.20, 0.25, 0.30}〉,
RM3,F5 = 〈(M3, F5), {0.50, 0.60, 0.65}, {0.25, 0.30, 0.30}〉, RM4,F1 = 〈(M4, F1), {0.50, 0.55, 0.60}, {0.30, 0.35, 0.35}〉,
RM4,F2 = 〈(M4, F2), {0.65, 0.70, 0.75}, {0.10, 0.15, 0.20}〉, RM4,F3 = 〈(M4, F3), {0.70, 0.80, 0.80}, {0.10, 0.15, 0.20}〉,
RM4,F4 = 〈(M4, F4), {0.40, 0.50, 0.55}, {0.35, 0.40, 0.40}〉, RM4,F5 = 〈(M4, F5), {0.65, 0.70, 0.75}, {0.20, 0.25, 0.25}〉.
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In this study, the shared electric bicycle is denoted as M0. Also by questionnaire survey and
interview designed, the dual hesitant fuzzy relationship between M0 and F is obtained as

M0 =


〈F1, {0.65, 0.70, 0.75}, {0.10, 0.25, 0.25}〉
〈F2, {0.60, 0.70, 0.70}, {0.20, 0.25, 0.30}〉
〈F3, {0.35, 0.40, 0.45}, {0.40, 0.45, 0.50}〉
〈F4, {0.65, 0.70, 0.75}, {0.15, 0.20, 0.25}
〈F5, {0.40, 0.45, 0.50}, {0.45, 0.50, 0.50}〉

 .

when M0 is put into the market, which traffic mode would be affected by the greatest extent? In the
following, the aforementioned problem is solved by using the novel pattern recognition method.

Step 1 By Definition 4, the lower and upper approximations of each A0 with respect to (M, F,R)
can be obtained as

hR(M0)
(M1) = 〈{0.40, 0.45, 0.50}, {0.45, 0.50, 0.50}〉, hR(M0)

(M2) = 〈{0.40, 0.50, 0.55}, {0.35, 0.40, 0.45}〉,

hR(M0)
(M3) = 〈{0.35, 0.40, 0.45}, {0.45, 0.50, 0.50}〉, hR(M0)

(M4) = 〈{0.35, 0.40, 0.45}, {0.45, 0.50, 0.50}〉,

hR(M0)
(M1) = 〈{0.60, 0.65, 0.70}, {0.20, 0.25, 0.30}〉, hR(M0)

(M2) = 〈{0.65, 0.70, 0.70}, {0.10, 0.25, 0.30}〉,

hR(M0)
(M3) = 〈{0.65, 0.70, 0.70}, {0.10, 0.25, 0.25}〉, hR(M0)

(M4) = 〈{0.60, 0.70, 0.70}, {0.20, 0.25, 0.30}〉.

Step 2 By Definition 5, for any uk ∈ U(k = 1, 2, · · · , 5), a series of membership sets are obtained
as follows:

SM0,M1 = {(0.40, 0.45, 0.50), (0.50, 0.50, 0.55), (0.60, 0.65, 0.70), (0.70, 0.75, 0.80)},
SM0,M2 = {(0.40, 0.50, 0.55), (0.55, 0.60, 0.65), (0.65, 0.70, 0.70), (0.70, 0.75, 0.90)},
SM0,M3 = {(0.35, 0.40, 0.45), (0.50, 0.50, 0.55), (0.65, 0.70, 0.70), (0.75, 0.75, 0.90)},
SM0,M4 = {(0.35, 0.40, 0.45), (0.50, 0.50, 0.55), (0.60, 0.60, 0.70), (0.70, 0.75, 0.80)}.

Step 3 Take λ = 2, by Equation (19), a series of weighted membership degree sets are obtained
as follows:

S∗M0,M1
= {0.5487, 0.5842, 0.6342}, S∗M0,M2

= {0.5757, 0.6375, 0.6954},
S∗M0,M3

= {0.5585, 0.5842, 0.6409}, S∗M0,M4
= {0.5361, 0.5604, 0.6223}.

Step 4 For any k1, k2 ∈ {1, 2, 3, 4}, s∗A,uk1
and s∗A,uk2

are compared. From the comparison results,

it can be obtained that S∗M0,M2
� S∗M0,M3

� S∗M0,M1
� S∗M0,M4

. Therefore, when the shared electric
bicycles are put into the market, electric bicycle would be affected by the greatest extent among the
four kinds of classical traffic modes, followed closely by classical shared bicycle.

Besides, when Equation (19) is substituted by Equation (20) in Step 3, the same pattern recognition
results are obtained.

6. Conclusions

In this paper, the assessment deviations on DHFRSs are studied, and the said innovation points
are as follows.

(i) According to the relationship between intuitionistic fuzzy set and vague set, the DHFRS is
transferred into a fuzzy set where the membership of any given element to it has multi-grouped
values. And then, by the idea of bootstrap sampling, four sets are generated from the DHFRS
information, where the elements of any of the sets are considered as observation values of the
aforementioned membership degree.

(ii) By differentiated strategy, the four sets on DHFRSS are weighted by their assessment deviations
apart from the real-value of the membership degree on DHFRS, where the bigger the assessment
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deviation, the smaller the weight of its related set on DHFRS; the smaller the assessment deviation,
the bigger the weight of its related set on DHFRS.

(iii) The assessment deviations on the four sets are mainly determined by two parameters, where one
quantifies the systematic deviations of the four sets, and the other one quantifies the random
deviations of the sets. And then, the true-value of the membership degree of an element to the set
on DHFRS is estimated by a deviation-based DHFRWA operator.

(iv) A dual hesitant fuzzy rough pattern recognition approach based on the assessment deviation
analysis is proposed, and an illustrative example is given to verify the effectiveness of this
approach on DHFRSs.

In addition, there are many other methods to compare HFSs beyond Equation (17), and most of
them use the thoughts of “Analytic Hierarchy Process” for reference [20]. However, since the Analytic
Hierarchy Process is not the essence of this paper, it is not elaborated here.
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