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Abstract: In this paper, some new operations and basic properties of picture fuzzy relations are
intensively studied. First, a new inclusion relation (called type-2 inclusion relation) of picture fuzzy
relations is introduced, as well as the corresponding type-2 union, type-2 intersection and type-2
complement operations. Second, the notions of anti-reflexive kernel, symmetric kernel, reflexive
closure and symmetric closure of a picture fuzzy relation are introduced and their properties are
explored. Moreover, a new method to solve picture fuzzy comprehensive evaluation problems is
proposed by defining the new composition operation of picture fuzzy relations, and the picture fuzzy
comprehensive evaluation model is built. Finally, an application example (about investment risk) of
picture fuzzy comprehensive evaluation is given, and the effective experiment results are obtained.
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1. Introduction

We meet many concepts in our everyday life. Most of them are vague than precise, and uncertainty
is a common research topic of many branches of science (economics, engineering, environment,
management science, medical science, and so on). However, uncertainty is an unintelligible expression
without a straightforward description, and many theories were established, such as probability theory,
fuzzy set theory [1–3], intuitionistic fuzzy set theory [4], hesitant fuzzy set theory [5–8], soft set
theory [9–12], rough set theory [13–17], granular computing [18–27], et al.

Although an intuitionistic fuzzy set has been successfully applied in different areas, but there
are situations that cannot be represented by it in real life, such as voting, we may face human
opinions involving more answers of the type: yes, abstain, no and refusal. Thus, in 2013, B. C.
Cuong proposed a new concept named picture fuzzy sets (PFSs) [28–30], which is an extension of fuzzy
sets and intuitionistic fuzzy sets. Picture fuzzy sets give three degrees of an element named degree of
positive membership, degree of neutral membership and degree of negative membership, respectively.
The picture fuzzy set solved the voting problem successfully, and is applied to clustering [31],
fuzzy inference [32], and decision-making [33,34].

Relations are a suitable tool for describing correspondences between objects. Crisp relations
have served well in mathematical theories. However, there are some problems that can’t be solved
through classic relationships, such as the relationship of two objects being vague. Therefore, after the
fuzzy set was defined, the definition of fuzzy relations was also proposed by Zadeh in paper [1] as
an extension of classic relationship. Then, some scholars study it and used it widely in many fields,
such as decision making, clustering analysis [35–38], fuzzy comprehensive evaluation [39–41] and so
on. Fuzzy relations can model vagueness; however, they cannot model uncertainty: there is no means
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to attribute reliability information to the membership degrees. Intuitionistic fuzzy sets, as defined by
Atanassov [4], gave us a way to incorporate uncertainty in an additional degree. Burillo and Bustince
gave the definition of intuitionistic fuzzy relations [42,43] and discussed some properties of them.
Intuitionistic fuzzy relations are intuitionistic fuzzy sets in a Cartesian product of universes. In 2005,
Lei et al. further researched intuitionistic fuzzy relations and composition operation of intuitionistic
fuzzy relations [44]. Yang proposed the definition of kernels and closures of intuitionistic fuzzy
relations and proved fourteen theorems of intuitionistic fuzzy relations [45]. B. C. Cuong proposed the
notion of picture fuzzy relations and studied their operations and properties [28,29].

The rest of this paper is structured as follows. In Section 2, some basic notions and operations
of picture fuzzy sets and picture fuzzy relations are provided. In Section 3, type-2 union, type-2
intersection, and type-2 complement operations of picture fuzzy relations are well described and
their properties are studied. In Sections 4 and 5, kernels and closures of a picture fuzzy relation
are discussed. Their computational formulas and some properties are also obtained. Meanwhile,
some examples are given. In Section 6, a new composition operation of picture fuzzy relations is
investigated. Furthermore, according to the new composition operation, a new method to solve picture
fuzzy comprehensive evaluation problems is proposed, and we also prove that this method is doable
by an application example. The last section summarizes the conclusions.

2. Preliminary

2.1. Some Basic Concepts

In this section, several basic concepts and operations about picture fuzzy sets and picture fuzzy
relations are provided.

Definition 1. An intuitionistic fuzzy set (IFS) A on the universe X is an object of the form A = {(x, µA(x),
νA(x)) | x ∈ X}, where µA(x) ∈ [0, 1] is called the “degree of membership of x in A”, νA(x) ∈ [0, 1] is called
the “degree of non-membership of x in A”, and where µA(x) and νA(x) satisfy µA(x) + νA(x) ≤ 1 for all x ∈ X.
In this paper, let IFS(X) denote the sets of all the intuitionistic fuzzy sets on X [4].

Definition 2. A picture fuzzy set A on the universe X is an object of the form

A = {(x, µA(x), ηA(x), νA(x))|x ∈ X },

where µA(x) ∈ [0, 1] is called the “degree of positive membership of x in A”, ηA(x) ∈ [0, 1] is called the
“degree of neutral membership of x in A”, and νA(x) ∈ [0, 1] is called the “degree of negative membership
of x in A”, and µA(x), ηA(x), νA(x) satisfy µA(x) + ηA(x) + νA(x) ≤ 1, for all x ∈ X. Then, ∀ x ∈ X,
1 − (µA(x) + ηA(x) + νA(x)) is called the “degree of refusal membership of x in A”. Let PFS(X) denote the set of
all the picture fuzzy sets on a universe X [28].

Definition 3. A picture fuzzy relation is a picture fuzzy subset of X × Y i.e., R given by

R = {((x, y), µR(x, y), ηR(x, y), νR(x, y))|x ∈ X, y ∈ Y},

where µR: X × Y→ [0, 1], ηR: X × Y→ [0, 1], and νR: X × Y→ [0, 1] satisfy the condition 0 ≤ µR(x, y)
+ ηR(x, y) + νR(x, y) ≤ 1, for every (x, y) ∈ X × Y. PFR(X × Y) the set of all the picture fuzzy relations in
X × Y is denoted [29].

Definition 4. Let R ∈ PFR(X× Y). We define the inverse relation R−1 between Y and X: µR
−1(y, x) = µR(x, y),

ηR
−1(y, x) = ηR(x, y), νR

−1(y, x) = νR(x, y), ∀ (x, y) ∈ X × Y [29].
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Definition 5. Let R and P be two picture fuzzy relations between X and Y, for every (x, y) ∈ X × Y we
define [29]:

(1) R ⊆ P iff µR(x, y) ≤ µP(x, y), ηR(x, y) ≤ ηP(x, y), νR(x, y) ≥ νP(x, y);
(2) R ∪ P = {((x, y), µR(x, y) ∨ µP(x, y), ηR(x, y) ∧ ηP(x, y), νR(x, y) ∧ νP(x, y)) | x ∈ X, y ∈ Y};
(3) R ∩ P = {((x, y), µR(x, y) ∧ µP(x, y), ηR(x, y) ∧ ηP(x, y), νR(x, y) ∨ νP(x, y)) | x ∈ X, y ∈ Y};
(4) Rc = {((x, y), νR(x, y), ηR(x, y), µR(x, y)) | x ∈ X, y ∈ Y}.

Proposition 1. Let R, P, Q ∈ PFR(X × Y). Then [29],

(a) (R−1)−1 = R;
(b) R ⊆ P⇒ R−1 ⊆ P−1;
(c1) (R ∪ P)−1 = R−1 ∪ P−1;
(c2) (R ∩ P)−1 = R−1 ∩ P−1;
(d1) R ∩ (P ∪ Q) = (R ∩ P) ∪ (R ∩ Q);
(d2) R ∪ (P ∩ Q) = (R ∪ P) ∩ (R ∪ Q);
(e) R ∩ P ⊆ R, R ∩ P ⊆ P;
(f 1) If (R ⊇ P) and (R ⊇ Q), then R ⊇ P ∪ Q;
(f 2) If (R ⊆ P) and (R ⊆ Q), then R ⊆ P ∩ Q.

Definition 6. Let E ∈ PFR(X × Y) and P ∈ PFR(Y × Z). Max-min composed relation PCE ∈ PFR(X × Z) is
called to the one defined by [29]:

PCE = {((x, z), µPCE(x, z), ηPCE(x, z), νPCE(x, z))|x ∈ X, z ∈ Z},

where ∀ (x, z) ∈ X × Z:
µPCE(x, z) = ∨

y
(µE(x, y) ∧ µP(y, z));

ηPCE(x, z) = ∧
y
(ηE(x, y) ∧ ηP(y, z));

νPCE(x, z) = ∧
y
(νE(x, y) ∨ νP(y, z)).

Definition 7. Let α = (µα, ηα, να, ρα) be a picture fuzzy number, µα + ηα + να ≤ 1, ρα = 1 − µα − ηα − να.
The score function S can be defined as S(α) = µα − να, and the accuracy function H is given by H(α) = µα + ηα

+ να, which S(α) ∈ [−1, 1], H(α) ∈ [0, 1]. Then, for two picture fuzzy numbers α and β [33],

(1) if S(α) > S(β), then α is superior to β, denoted by α � β;
(2) if S(α) = S(β), then

(i) if H(α) = H(β), implies that α is equivalent to β, denoted by α ~ β;
(ii) if H(α) > H(β), implied that α is superior to β, denoted by α � β.

We also use voting as a good example to explain the above definition, where S(α) = µα − να

represents goal difference and H(α) = µα + ηα + να can be interpreted as the effective degree of voting.
When S(α) increases, we can know that there are more people who vote for α and people who vote
against α become less. When H(α) increases, we can know that there are more people who vote for
or against α and people who refuse to vote become less. Therefore, H(α) depicts the effective degree
of voting.
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2.2. On Inclusion Relation of Picture Fuzzy Relations

Similar with [30], we consider the set D* defined by:

D∗ =
{

x = (x1, x2, x3)
∣∣∣x ∈ [0, 1]3, x1 + x2 + x3 ≤ 1

}
.

From now on, we will assume that if x, y ∈ D*, then x1, x2 and x3 denote, respectively, the first,
the second and the third component of x, i.e., x = (x1, x2, x3). We denote the units of D* by 1D* = (1, 0, 0)
and 0D* = (0, 0, 1), respectively.

Obviously, for every picture fuzzy set:

A = {(x, µA(x), ηA(x), νA(x))|x ∈ X }.

It corresponds with a D*-fuzzy set, i.e., a mapping:

A : X → D∗ : x 7→ (µA(x), ηA(x), νA(x)).

The original inclusion relation of picture fuzzy relations is based on the following order relation
on D*: ∀ x, y ∈ D*,

x ≤1 y⇔ (x1 ≤ y1) ∧ (x2 ≤ y2) ∧ (x3 ≥ y3).

The above “∧“ denote “and”. In this paper, above “≤1” is called type-1 order relation and the
original inclusion relation of picture fuzzy relations is called a type-1 inclusion relation, and denoted
as the following:

R ⊆1 P iff (∀ (x, y) ∈ X × Y, µR(x, y) ≤ µP(x, y), ηR(x, y) ≤ ηP(x, y), νR(x, y) ≥ νP(x, y)).

Accordingly, the union, intersection and complement operations in Definition 5 are called type-1
union, intersection and complement, and denoted as the following:

R ∪1 P = {((x, y), µR(x, y) ∨ µP(x, y), ηR(x, y) ∧ ηP(x, y), νR(x, y) ∧ νP(x, y)) | x ∈ X, y ∈ Y}
= {((x, y), (µR(x, y), ηR(x, y), νR(x, y)) ∨1 (µP(x, y), ηP(x, y), νP(x, y))) | x ∈ X, y ∈ Y};

R ∩1 P = {((x, y), µR(x, y) ∧ µP(x, y), ηR(x, y) ∧ ηP(x, y), νR(x, y) ∨ νP(x, y))} | x ∈ X, y ∈ Y}
= {((x, y), (µR(x, y), ηR(x, y), νR(x, y)) ∧1 (µP(x, y), ηP(x, y), νP(x, y))) | x ∈ X, y ∈ Y};

Rc1 = {((x, y), νR(x, y), ηR(x, y), µR(x, y)) | x ∈ X, y ∈ Y} = {((x, y), (µR(x, y), ηR(x, y),
νR(x, y))c1 ) | x ∈ X, y ∈ Y}.

Now, we introduce a new inclusion of picture fuzzy relations, and call it type-2 inclusion of
picture fuzzy relations.

Definition 8. Let R and P be two picture fuzzy relations between X and Y. The type-2 inclusion relation is
defined as follows: R⊆2 P if and only if ∀ (x, y) ∈ X× Y, (µR(x, y) < µP(x, y), νR(x, y)≥ νP(x, y)), or (µR(x, y)
= µP(x, y), νR(x, y) > νP(x, y)), or (µR(x, y) = µP(x, y), νR(x, y) = νP(x, y) and ηR(x, y) ≤ ηP(x, y)).

In fact, type-2 inclusion relation is based on the following order relation on D* (see [5], and it is
called a type-2 order relation in this paper):

x ≤2 y⇔ ((x1 < y1) ∧ (x3 ≥ y3)) ∨ ((x1 = y1) ∧ (x3 > y3)) ∨ ((x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2)).

The above “∧“ denote “and”, “∨“ denote “or”.
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Remark 1. In order not to cause confusion, the type-2 order relation on D* is denoted by “≤2”, it is different
from [30].

Note that, if for any x, y ∈ D* that neither x ≤2 y nor y ≤2 x, then x and y are incomparable,
denoted as x||≤2 y.

3. New Operations and Properties of Picture Fuzzy Relations

In this section, we introduce some new operations named type-2 inclusion, type-2 union, type-2
intersection and type-2 complement operation of picture fuzzy relations and study their properties.

For any picture fuzzy relations R and P on X × Y, by Definition 8, we have:

R ⊆2 P if and only if ∀ (x, y) ∈ X × Y, (µR(x, y), ηR(x, y), νR(x, y)) ≤2 (µP(x, y), ηP(x, y), νP(x, y)).

From this, we can get the following proposition.

Proposition 2. Let R, P and Q be picture fuzzy relations on X × Y, then

(1) R ⊆2 R;
(2) (R ⊆2 P, P ⊆2 R)⇒ R = P;
(3) (R ⊆2 P, P ⊆2 Q)⇒ R ⊆2 Q.

Definition 9. For every two PFRs R and P, the type-2 union, type-2 intersection, type-2 complement operators
are defined as follows:

(1) R ∪2 P =
{((x, y), µR(x, y), ηR(x, y), νR(x, y))|(x, y) ∈ X×Y }, i f P ⊆2 R
{((x, y), µP(x, y), ηP(x, y), νP(x, y))|(x, y) ∈ X×Y } , i f R ⊆2 P
{((x, y), µR(x, y) ∨ µP(x, y), 0, νR(x, y) ∧ νP(x, y))|(x, y) ∈ X×Y }, else;

(2) R ∩2 P = 
{((x, y), µR(x, y), ηR(x, y), νR(x, y))|(x, y) ∈ X×Y }, i f R ⊆2 P
{((x, y), µP(x, y), ηP(x, y), νP(x, y))|(x, y) ∈ X×Y } , i f P ⊆2 R
{((x, y), µR(x, y) ∧ µP(x, y), 1− (µR(x, y) ∧ µP(x, y))−
(νR(x, y) ∨ νP(x, y)), νR(x, y) ∨ νP(x, y))|(x, y) ∈ X×Y }, else;

(3) co(R) = Rc2 =

{((x, y), νR(x, y), 1− µR(x, y)− ηR(x, y)− νR(x, y), µR(x, y))|(x, y) ∈ X×Y }.

It is easy to verify that the type-2 union and type-2 intersection of PFRs satisfy commutative law
and associative law.

Example 1. Let X = {x1, x2}, Y = {y1, y2}. A picture fuzzy relation R in X × Y is given in Table 1.
By Definitions 5 and 9, we can compute R−1 and Rc2 , which are given in Tables 2 and 3, respectively.

Table 1. A picture fuzzy relation R.

R y1 y2

x1 (0.3, 0.2, 0.1) (0.5, 0.1, 0.3)
x2 (0.2, 0.6, 0.2) (0.2, 0.1, 0.5)
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Table 2. The inverse R−1 of R.

R−1 y1 y2

x1 (0.3, 0.2, 0.1) (0.2, 0.6, 0.2)
x2 (0.5, 0.1, 0.3) (0.2, 0.1, 0.5)

Table 3. The complement Rc2 of R.

Rc2 y1 y2

x1 (0.1, 0.6, 0.3) (0.2, 0, 0.2)
x2 (0.3, 0.2, 0.5) (0.5, 0.3, 0.2)

Definition 10. Let R ∈ PFR(X × Y).

(1) If ∀ (x, y) ∈ X × Y, µR(x, y) = ηR(x, y) = 0 and νR(x, y) = 1, then R is called a null PFR, denoted by ∅N.
(2) If ∀ (x, y) ∈ X × Y, µR(x, y) = 1 and ηR(x, y) = νR(x, y) = 0, then R is called an absolute PFR,

denoted by UN.

(3) If ∀ (x, y) ∈ X× Y, µR(x, y) =

{
1, x = y
0, x 6= y

, ηR(x, y) = 0 and νR(x, y) =

{
0, x = y
1, x 6= y

, then R

is called an identity PFR, denoted by IdN.

According the Definitions 9 and 10, we can get the Type-2 complement of IdN denoted by (IdN)c2

is a PFR satisfying: ∀ (x, y) ∈ X × Y,

µ(IdN)c2 (x, y) =

{
0, x = y
1, x 6= y

, η(IdN)c2 (x, y) = 0, ν(IdN)c2 (x, y) =

{
1, x = y
0, x 6= y

.

Definition 11. Let R ∈ PFR(X × Y).

(1) If ∀ x ∈ X, µR(x, x) = 1 and ηR(x, x) = νR(x, x) = 0, then R is called a reflexive PFR.
(2) If ∀ (x, y) ∈ X × Y, µR(x, y) = µR(y, x), ηR(x, y) = ηR(y, x), νR(x, y) = νR(y, x), then R is called a

symmetric PFR.
(3) If ∀ x ∈ X, µR(x, x) = ηR(x, x) = 0 and νR(x, x) = 1, then R is called an anti-reflexive PFR.

Proposition 3. Type-2 union and type-2 intersection of PFRs don’t satisfy distributive law, which means that
∀ R, P, Q ∈ PFR(X × Y):

(1) (R ∩2 P) ∪2 Q 6= (R ∪2 Q) ∩2 (P ∪2 Q),
(2) (R ∪2 P) ∩2 Q 6= (R ∩2 Q) ∪2 (P ∩2 Q).

Example 2. X = {x1, x2}, Y = {y1, y2}. Picture fuzzy relations R, P, Q in X × Y are given in Tables 1, 4 and 5.
Then (R ∩2 P) ∪2 Q, (R ∪2 Q) ∩2 (P ∪2 Q), (R ∪2 P) ∩2 Q, (R ∩2 Q) ∪2 (P ∩2 Q) in X × Y are given in
Tables 6–9. Furthermore, according to Tables 6–9, we can get the conclusion of Propositions 3 (1) and (2).

Table 4. A picture fuzzy relation P.

P y1 y2

x1 (0.5, 0.2, 0.3) (0.3, 0.2, 0.4)
x2 (0.6, 0.1, 0.2) (0.7, 0.1, 0.1)
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Table 5. A picture fuzzy relation Q.

Q y1 y2

x1 (0.4, 0.1, 0.2) (0.2, 0.1, 0.1)
x2 (0.2, 0.2, 0.5) (0.1, 0.4, 0.2)

Table 6. The picture fuzzy relation (R ∩2 P) ∪2 Q.

(R ∩2 P) ∪2 Q y1 y2

x1 (0.4, 0.1, 0.2) (0.3, 0, 0.1)
x2 (0.2, 0.6, 0.2) (0.2, 0, 0.2)

Table 7. The picture fuzzy relation (R ∩2 Q) ∪2 (P ∩2 Q).

(R ∩2 Q) ∪2 (P ∩2 Q) y1 y2

x1 (0.4, 0.4, 0.2) (0.3, 0, 0.1)
x2 (0.2, 0.6, 0.2) (0.2, 0, 0.2)

Table 8. The picture fuzzy relation (R ∪2 P) ∩2 Q.

(R ∪2 P) ∩2 Q y1 y2

x1 (0.4, 0.1, 0.2) (0.2, 0.5, 0.3)
x2 (0.2, 0.2, 0.5) (0.1, 0.4, 0.2)

Table 9. The picture fuzzy relation (R ∩2 Q) ∪2 (P ∩2 Q).

(R ∩2 Q) ∪2 (P ∩2 Q) y1 y2

x1 (0.4, 0, 0.2) (0.2, 0.5, 0.3)
x2 (0.2, 0.2, 0.5) (0.1, 0.4, 0.2)

Proposition 4. Let R, P, Q ∈ PFR(X × Y). Then, we have

(1) R is symmetric iff R = R−1;
(2) (Rc2 )−1 = (R−1)c2 ;
(3) (Rc2 )c2 = R, (R−1)−1 = R;
(4) R ⊆2 R ∪2 P, P ⊆2 R ∪2 P;
(5) R ∩2 P ⊆2 R, R ∩2 P ⊆2 P;
(6) If R ⊆2 P, then R−1 ⊆2 P−1;
(7) If R ⊆2 P and Q ⊆2 P, then R ∪2 Q ⊆2 P;
(8) If P ⊆2 R and P ⊆2 Q, then P ⊆2 R ∩2 Q;
(9) If R ⊆2 P, then R ∪2 P = P, R ∩2 P = R;
(10) (R ∪2 P)−1 = R−1 ∪2 P−1, (R ∩2 P)−1 = R−1 ∩2 P−1;
(11) (R ∪2 P)c2 = Rc2 ∩2 Pc2 , (R ∩2 P)c2 = Rc2 ∪2 Pc2 .

Proof. Clearly, Labels (1) and (3)–(9) is hold. We only show Labels (2), (10) and (11).
(2) ∀ (x, y) ∈ X × Y, µ(R

c2 )
−1(x, y) = µR

c2 (y, x) = νR(y, x) = νR
−1(x, y) = µ(R

−1
)
c2 (x, y); ν(R

c2 )
−1(x, y)

= νR
c2 (y, x) = µR(y, x) = µR

−1(x, y) = ν(R
−1

)
c2 (x, y); η(R

c2 )
−1(x, y) = ηR

c2 (y, x) = 1 − µR(y, x) − ηR(y, x) −
νR(y, x) = 1 − µR

−1(x, y) − ηR
−1(x, y) − νR

−1(x, y) = η(R
−1

)
c2 (x, y).
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Therefore (Rc2 )−1 = (R−1)c2 .
(10) If R ⊆2 P, then R−1 ⊆2 P−1, so (R ∪2 P)−1 = P−1 = R−1 ∪2 P−1; If P ⊆2 R, then P−1 ⊆2 R−1,

so (R ∪2 P)−1 = R−1 = R−1 ∪2 P−1; If neither R ⊆2 P nor P ⊆2 R, then (R ∪2 P)−1 = {((x, y), µR(x, y) ∨
µP(x, y), 0, νR(x, y) ∧ νP(x, y)) | (x, y) ∈ X × Y }−1 = {((y, x), µR

−1(x, y) ∨ µP
−1(x, y), 0, νR

−1(x, y) ∧
νP
−1(x, y)) | (x, y) ∈ X × Y }, R −1 ∪2 P −1 = {((y, x), µR

−1(x, y), ηR
−1(x, y), νR

−1(x, y)) | (x, y) ∈ X ×
Y } ∪2 {((y, x), µP

−1(x, y), ηP
−1(x, y), νP

−1(x, y)) | (x, y) ∈ X × Y } = {((y, x), µR
−1(x, y) ∨ µP

−1(x, y), 0,
νR
−1(x, y) ∧ νP

−1(x, y)) | (x, y) ∈ X × Y } = (R ∪2 P)−1. Hence, (R ∪2 P)−1 = R−1 ∪2 P−1. Similarly,
we can show (R ∩2 P)−1 = R−1 ∩2 P−1.

(11) If R ⊆2 P, then Pc2 ⊆2 Rc2 , so (R ∪2 P)c2 = Pc2 = Rc2 ∩2 Pc2 ; If P ⊆2 R, then Rc2 ⊆2 Pc2 ,
so (R ∪2 P)c2 = Rc2 = Rc2 ∩2 Pc2 ; If neither R ⊆2 P nor P ⊆2 R, then neither Rc2 ⊆2 Pc2 nor Pc2 ⊆2 Rc2

and (R ∪2 P)c2 = {((x, y), νR(x, y) ∧ νP(x, y), 1 – (µR(x, y) ∨ µP(x, y)) – (νR(x, y) ∧ νP(x, y)), µR(x, y) ∨
µP(x, y)) | (x, y) ∈ X × Y }, Rc2 ∩2 Pc2 = {((x, y), νR(x, y), 1 – µR(x, y) – ηR(x, y) – νR(x, y), µR(x, y)) | (x,
y) ∈ X × Y } ∩2 {((x, y), νP(x, y), 1 – µP(x, y) – ηP(x, y) – νP(x, y), µP(x, y)) | (x, y) ∈ X × Y } = {((x, y),
νR(x, y) ∧ νP(x, y), 1 – (µR(x, y) ∨ µP(x, y)) – (νR(x, y) ∧ νP(x, y)), µR(x, y) ∨ µP(x, y)) | (x, y) ∈ X × Y }.
Hence, (R ∪2 P)c2 = Rc2 ∩2 Pc2 . Similarly, we can get (R ∩2 P)c2 = Rc2 ∪2 Pc2 .
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4. Kernels of Picture Fuzzy Relations

In this section, we will give the definition of anti-reflexive kernel and symmetric kernel about a
PFR, and then study their properties.

Definition 12. Let R ∈ PFR(X × Y).

(1) The maximal anti-reflexive PFR contained in R is called anti-reflexive kernel of R, denoted by ar(R).
(2) The maximal symmetric PFR contained in R is called symmetric kernel of R, denoted by s(R).

Proposition 5. Let R ∈ PFR(X × Y). Then,

(1) ar(R) = R ∩2 (IdN)c2 .
(2) s(R) = R ∩2 R−1.

Proof. (1) By Proposition 3 (5), R ∩2 (IdN)c2 ⊆2 R. According the definition of IdN, ∀ x ∈ X, we have
µIdN(x, x) = 1 and ηIdN(x, x) = νIdN(x, x) = 0, then µ(IdN)

c2 (x, x) = η(IdN)
c2 (x, x) = 0 and ν(IdN)

c2 (x, x) = 1.
Hence, µ(IdN)

c2 (x, x) ≤ µR(x, x), ν(IdN)
c2 (x, x) ≥ νR(x, x), η(IdN)

c2 (x, x) ≤ ηR(x, x). Therefore, (IdN)c2 ⊆2

R, µR∩2(IdN)
c2 (x, x) = ηR∩2(IdN)

c2 (x, x) = 0 and νR∩2(IdN)
c2 (x, x) = 1. According to Definition 11 (3), R ∩2

(IdN)c2 is an anti-reflexive PFR.
Suppose P is an anti-reflexive PFR and P ⊆2 R. Obviously, P ⊆2 (IdN)c2 . Hence, P ⊆2 R ∩2 (IdN)c2 .

Therefore, ar(R) = R ∩2 (IdN)c2 .
(2) By Proposition 3 (3) and Label (10), (R ∩2 R−1)−1 = R−1 ∩2 (R−1)−1 = R−1 ∩2 R = R ∩2 R−1,

which implies that R ∩2 R−1 is a symmetric PFR. According to Proposition 3 (5), R ∩2 R−1 ⊆2 R.
Suppose P is a symmetric PFR and P⊆2 R. By Proposition 3 (6), P−1 ⊆2 R−1. Then, by Proposition 3

(1) and (5), P = P−1 ⊆2 R ∩2 R−1. Therefore, s(R) = R ∩2 R−1.
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Example 3. Let X = Y = {z1, z2, z3}. A picture fuzzy relation R in X × Y is given in Table 10. By Proposition 5,
we can obtain ar(R) and s(R), which are given in Tables 11 and 12, respectively.

Table 10. A picture fuzzy relation R.

R z1 z2 z3

z1 (0.3, 0.2, 0.1) (0.5, 0.1, 0.3) (0.3, 0.2, 0.4)
z2 (0.2, 0.6, 0.2) (0.2, 0.1, 0.5) (0.6, 0.1, 0.2)
z3 (0.7, 0.1, 0.1) (0.4, 0.1, 0.2) (0.2, 0.2, 0.5)
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Table 11. The anti-reflexive kernel ar(R) of R.

ar(R) z1 z2 z3

z1 (0, 0, 1) (0.5, 0.1, 0.3) (0.3, 0.2, 0.4)
z2 (0.2, 0.6, 0.2) (0, 0, 1) (0.6, 0.1, 0.2)
z3 (0.7, 0.1, 0.1) (0.4, 0.1, 0.2) (0, 0, 1)

Table 12. The symmetric kernel s(R) of R.

s(R) z1 z2 z3

z1 (0.3, 0.2, 0.1) (0.2, 0.5, 0.3) (0.3, 0.2, 0.4)
z2 (0.2, 0.5, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.2)
z3 (0.3, 0.2, 0.4) (0.4, 0.1, 0.2) (0.2, 0.2, 0.5)

Proposition 6. The anti-reflexive kernel operator ar of the PFR has the following properties:

(1) ar(∅N) = ∅N, ar((IdN)c2 ) = (IdN)c2 ;
(2) ∀ R ∈ PFR(X × Y), ar(R) ⊆2 R;
(3) ∀ R, P ∈ PFR(X × Y), ar(R ∪2 P) = ar(R) ∪2 ar(P), ar(R ∩2 P) = ar(R) ∩2 ar(P);
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then ar(R) ⊆2 ar(P);
(5) ∀ R ∈ PFR(X × Y), ar(ar(R)) = ar(R).

Proof. (1) By the definition of ∅N, we can get ∅N ⊆2 (IdN)c2 . Therefore, ar(∅N) = ∅N ∩2 (IdN)c2 = ∅N.
ar((IdN)c2 ) = (IdN)c2 ∩2 (IdN)c2 = (IdN)c2 .

(2) ∀ R ∈ PFR(X × Y), by Proposition 5 (1) and Proposition 3 (5), ar(R) = R ∩2 (IdN)c2 ⊆2 R.
(3) ar(R ∪2 P) = (R ∪2 P) ∩2 (IdN)c2 , ar(R) ∪2 ar(P) = (R ∩2 (IdN)c2 ) ∪2 (P ∩2 (IdN)c2 ). ∀ (x, y) ∈ X ×

Y, when x = y, (IdN)c2 = {((x, y), 0, 0, 1) | (x, y) ∈ X × Y }, so (IdN)c2 ⊆2 R, (IdN)c2 ⊆2 P, then ar(R ∪2 P)
= ar(R) ∪2 ar(P) = (IdN)c2 ; when x 6= y, (IdN)c2 = {((x, y), 1, 0, 0) | (x, y) ∈ X × Y }, so R ⊆2 (IdN)c2 , P ⊆2

(IdN)c2 , then ar(R ∪2 P) = ar(R) ∪2 ar(P) = R ∪2 P. Hence, ar(R ∪2 P) = ar(R) ∪2 ar(P). ar(R ∩2 P) = (R ∩2

P) ∩2 (IdN)c2 = ((R ∩2 (IdN)c2 ) ∩2 (P ∩2 (IdN)c2 ) = ar(R) ∩2 ar(P).
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, by Label (3) and Proposition 3 (4) and Label (9), ar(R) ⊆2 ar(R)

∪2 ar(P) = ar(R ∪2 P) = ar(P).
(5) ∀ R ∈ PFR(X × Y), by Proposition 5 (1), ar(R) = R ∩2 (IdN)c2 . Hence, ar(ar(R)) = ar(R ∩2 (IdN)c2 )

= (R ∩2 (IdN)c2 ) ∩2 (IdN)c2 = R ∩2 (IdN)c2 = ar(R).
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Proposition 7. The symmetric kernel operator s of the PFR has the following properties:

(1) s(∅N) = ∅N, s(UN) = UN, s(IdN) = IdN;
(2) ∀ R ∈ PFR(X × Y), s(R) ⊆2 R;
(3) ∀ R, P ∈ PFR(X × Y), s(R ∩2 P) = s(R) ∩2 s(P);
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then s(R) ⊆2 s(P);
(5) ∀ R ∈ PFR(X × Y), s(s(R)) = s(R).

Proof. (1) By the Definition 10 and Proposition 5, we have s(∅N) = ∅N, s(UN) = UN, s(IdN) = IdN.
(2) ∀ R ∈ PFR(X × Y), by Proposition 5 (2) and Proposition 3 (5), s(R) = R ∩2 R −1 ⊆2 R.
(3) ∀ R, P ∈ PFR(X × Y), by Proposition 5 (2) and Proposition 3 (10), we have
s(R ∩2 P) = (R ∩2 P) ∩2 (R ∩2 P)−1 = (R ∩2 P) ∩2 (R−1 ∩2 P−1) = (R ∩2 R−1) ∩2 (P ∩2 P−1) = s(R)

∩2 s(P).
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, by Label (3) and Proposition 3 (5) and (9), s(R) = s(R ∩2 P) =

s(R) ∩2 s(P) ⊆2 s(P).
(5) ∀ R ∈ PFR(X × Y), by Proposition 5 (2), we have
s(s(R)) = s(R ∩2 R −1) = (R ∩2 R−1) ∩2 (R ∩2 R−1)−1 = R ∩2 R−1 = s(R).
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5. Closures of Picture Fuzzy Relations

In this section, we give the concepts of reflexive closure and symmetric closure of a PFR, and
investigate their properties.

Definition 13. Let R ∈ PFR(X × Y). If O ∈ PFR(X × Y) satisfies the following conditions:

(1) O is reflexive;
(2) R ⊆2 O;
(3) ∀ E ∈ PFR(X × Y), if E is reflexive and R ⊆2 E, then O ⊆2 E.

Then, O is called reflexive closure of R, denoted by r(R).

Definition 14. Let R ∈ PFR(X × Y). If O ∈ PFR(X × Y) satisfies the following conditions:

(1) O is symmetric;
(2) R ⊆2 O;
(3) ∀ E ∈ PFR(X × Y), if E is symmetric and R ⊆2 E, then O ⊆2 E.

Then, O is called symmetric closure of R, denoted by s(R).

Proposition 8. Let R ∈ PFR(X × Y). Then,

(1) r(R) = R ∪2 IdN.
(2) s(R) = R ∪2 R−1.

Proof. (1) By Proposition 3 (4), R ⊆2 R ∪2 IdN, IdN ⊆2 R ∪2 IdN. According the definition of IdN,
∀ x ∈ X, we have µIdN(x, x) = 1 and ηIdN(x, x) = νIdN(x, x) = 0. Hence, µR(x, x) < µIdN(x, x), νR(x, x) ≥
νIdN(x, x), ηIdN(x, x) ≤ ηR(x, x) or µR(x, x) = µIdN(x, x) = 1, νR(x, x) = νIdN(x, x) = 0, ηIdN(x, x) = ηR(x, x) =
0. Therefore, R ⊆2 IdN or R = IdN, so µR∪2IdN(x, x) = 1 and ηR∪2IdN(x, x) = νR∪2IdN(x, x) = 0. According
to Definition 11 (1), R ∪2 IdN is a reflexive PFR.

Suppose P is a reflexive PFR and R ⊆2 P. Obviously, IdN ⊆2 P. Hence, R ∪2 IdN ⊆2 P. Therefore,
r(R)= R ∪2 IdN.

(2) By Proposition 3 (3) and Label (10), (R ∪2 R−1)−1 = R−1 ∪2 (R−1)−1 = R−1 ∪2 R = R ∪2 R−1,
which implies that R ∪2 R−1 is a symmetric PFR. According to Proposition 3 (4), R ⊆2 R ∪2 R −1.

Suppose P is a symmetric PFR and R⊆2 P. By Proposition 3 (6), R−1 ⊆2 P−1. Then, by Proposition
3 (1) and Label (7), R ∪2 R−1 ⊆2 P = P−1. Therefore, s(R) = R ∪2 R−1.
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Example 4. Consider X, Y and R given in Example 3. By Proposition 8, we can obtain r (R) and s(R), which are
given in Tables 13 and 14, respectively.

Table 13. The reflexive closure r (R) of R.

r(R) z1 z2 z3

z1 (1, 0, 0) (0.5, 0.1, 0.3) (0.3, 0.2, 0.4)
z2 (0.2, 0.6, 0.2) (1, 0, 0) (0.6, 0.1, 0.2)
z3 (0.7, 0.1, 0.1) (0.4, 0.1, 0.2) (1, 0, 0)

Table 14. The symmetric closure s (R) of R.

s(R) z1 z2 z3

z1 (0.3, 0.2, 0.1) (0.5, 0, 0.2) (0.7, 0.1, 0.1)
z2 (0.5, 0, 0.2) (0.2, 0.1, 0.5) (0.6, 0.1, 0.2)
z3 (0.7, 0.1, 0.1) (0.6, 0.1, 0.2) (0.2, 0.2, 0.5)
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Proposition 9. The reflexive closure operator r has the following properties:

(1) r(UN) = UN, r(IdN) = IdN;
(2) ∀ R ∈ PFR(X × Y), R ⊆2 r(R);
(3) ∀ R, P ∈ PFR(X × Y), r(R ∪2 P) = r(R) ∪2 r(P), r(R ∩2 P) = r(R) ∩2 r(P);
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then r(R) ⊆2 r(P);
(5) ∀ R ∈ PFR(X × Y), r(r(R)) = r(R).

Proof. (1) By Definition 10, we can get IdN ⊆2 UN. Therefore, r(UN) = UN. r(IdN) = IdN ∪2 IdN = IdN.
(2) ∀ R ∈ PFR(X × Y), by Proposition 3 (4), we have R ⊆2 R ∪2 IdN = r(R).
(3) ∀ R, P ∈ PFR(X × Y),
r(R ∪2 P) = (R ∪2 P) ∪2 IdN = (R ∪2 IdN) ∪2 (P ∪2 IdN) = r(R) ∪2 r(P); r(R ∩2 P) = (R ∩2 P) ∪2 IdN,

r(R) ∩2 r(P) = (R ∪2 IdN) ∩2 (P ∪2 IdN), ∀ (x, y) ∈ X × Y, when x = y, then by the definition of IdN,
we can get R ⊆2 IdN or R = IdN, also we can get P ⊆2 IdN or P = IdN, when x 6= y, then we can get IdN
⊆2 R or R = IdN, also we can get IdN ⊆2 P or P = IdN. If R ⊆2 IdN and P ⊆2 IdN, then R ∩2 P ⊆2 IdN,
so r(R ∩2 P) = IdN = (R ∪2 IdN) ∩2 (P ∪2 IdN) = r(R) ∩2 r(P). If R = IdN and P ⊆2 IdN, then r(R ∩2 P) =
IdN = (R ∪2 IdN) ∩2 (P ∪2 IdN) = r(R) ∩2 r(P). If R ⊆2 IdN and P = IdN, then r(R ∩2 P) = IdN = (R ∪2 IdN)
∩2 (P ∪2 IdN) = r(R) ∩2 r(P). If R = IdN and P = IdN, then r(R ∩2 P) = R = P = IdN = (R ∪2 IdN) ∩2 (P ∪2

IdN) = r(R) ∩2 r(P). If IdN ⊆2 R and IdN ⊆2 P, then by Proposition 3 (8), we have IdN ⊆2 R ∩2 P, so r(R
∩2 P) = R ∩2 P = (R ∪2 IdN) ∩2 (P ∪2 IdN) = r(R) ∩2 r(P). If IdN = R and IdN ⊆2 P, then r(R ∩2 P) = IdN =
R = (R ∪2 IdN) ∩2 (P ∪2 IdN) = r(R) ∩2 r(P). If IdN ⊆2 R and IdN = P, then r(R ∩2 P) = IdN = P = (R ∪2

IdN) ∩2 (P ∪2 IdN) = r(R) ∩2 r(P).
Hence, r(R ∩2 P) = r(R) ∩2 r(P).
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, by Label (3) and Proposition 3 (4) and Label (9), we have r (R)

⊆2 r(R) ∪2 r(P) = r(R ∪2 P) = r(P).
(5) ∀ R ∈ PFR(X × Y),
r(r(R)) = (r(R)) ∪2 IdN = (R ∪2 IdN) ∪2 IdN = R ∪2 IdN = r(R).
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Proposition 10. The symmetric closure operator s has the following properties:

(1) s(∅N) = ∅N, s(UN) = UN, s(IdN) = IdN;
(2) ∀ R ∈ PFR(X × Y), R ⊆2 s(R);
(3) ∀ R, P ∈ PFR(X × Y), s(R ∪2 P) = s(R) ∪2 s(P);
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then s(R) ⊆2 s(P);
(5) ∀ R ∈ PFR(X × Y), s(s(R)) = s(R);

Proof. (1) By the symmetry of ∅N, UN and IdN, we have s(∅N) = ∅N, s(UN) = UN, s(IdN) = IdN.
(2) ∀ R ∈ PFR(X × Y), by the Proposition 8 (2), R ⊆2 R ∪2 R−1 = s(R).
(3) ∀ R, P ∈ PFR(X × Y), by Proposition 8 (2) and Proposition 3 (10), we have
s(R ∪2 P) = (R ∪2 P) ∪2 (R ∪2 P)−1 = (R ∪2 R−1) ∪2 (P ∪2 P−1) = s(R) ∪2 s(P).
(4) ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, by Label (3) and Proposition 3 (4) and (9), s(R) ⊆2 s(R) ∪2 s(P)

= s(R ∪2 P) = s(P).
(5) ∀ R ∈ PFR(X × Y),
s(s(R)) = s(R ∪2 R−1) = (R ∪2 R−1) ∪2 (R ∪2 R−1)−1 = R ∪2 R−1 = s(R).
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Proposition 11. ∀ R ∈ PFR(X × Y), we have

(1) (r(Rc2 ))c2 = ar(R);
(2) ar (r(R)) = ar(R).
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Proof. (1) By Proposition 8 (1), r(Rc2 ) = Rc2 ∪2 IdN. By Proposition 3 (11) and Proposition 5 (1),

(r(Rc2))c2 = (Rc2 ∪2 IdN)
c2 = (Rc2)c2 ∩2 (IdN)

c2 = R ∩2 (IdN)
c2 = ar(R).

(2) By Propositions 5 and 8, ∀ (x, y) ∈ X × Y,

ar(r(R)) = ar(R ∪2 IdN) = (R ∪2 IdN) ∩2 (IdN)
c2 ,

(i) If x = y and R = IdN, then (IdN)c2 ⊆2 IdN, so ar (r(R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2 (IdN)c2

= ar(R);
(ii) If x = y and R = (IdN)c2 , then (IdN)c2 ⊆2 IdN, so ar (r(R)) = (R ∪2 IdN) ∩2 (IdN)c2 = IdN ∩2

(IdN)c2 = (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
(iii) If x = y and (IdN)c2 ⊆2 R ⊆2 IdN, then (IdN)c2 ⊆2 IdN, so ar (r(R)) = (R ∪2 IdN) ∩2 (IdN)c2 =

IdN ∩2 (IdN)c2 = (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
(iv) If x 6= y and R = IdN, then IdN ⊆2 (IdN)c2 , so ar (r(R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2 (IdN)c2

= ar(R);
(v) If x 6= y and R = (IdN)c2 , then IdN ⊆2 (IdN)c2 , so ar (r(R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2

(IdN)c2 = ar(R);
(vi) If x 6= y and IdN ⊆2 R ⊆2 (IdN)c2 , then IdN ⊆2 (IdN)c2 , so ar (r(R)) = (R ∪2 IdN) ∩2 (IdN)c2

= R ∩2 (IdN)c2 = ar(R);

Hence, ar (r(R)) = ar(R).
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Proposition 12. ∀ R ∈ PFR(X × Y), we have

(1) (s(Rc2 ))c2 = s(R);
(2) s(s(R)) = s(R);
(3) s(s(R)) = s(R).

Proof. (1) By Proposition 8 (2), s(Rc2 ) = Rc2 ∪2 (Rc2 )−1. By Proposition 3 (10) and Proposition 5 (2),
we have

(s(Rc2 ))c2 = (Rc2 ∪2 (Rc2 )−1)c2 = ((Rc2 )c2 ) ∩2 (((Rc2 )−1)c2 ) = R ∩2 R −1 = s(R).
(2) s(s(R)) = s(R ∩2 R−1) = (R ∩2 R −1) ∪2 (R ∩2 R−1)−1 = R ∩2 R−1 = s(R).
(3) s(s(R)) = s(R ∪2 R−1) = (R ∪2 R−1) ∩2 (R ∪2 R−1)−1 = R ∪2 R−1 = s(R).
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6. Picture Fuzzy Comprehensive Evaluation

In this section, we defined a new composition operation of picture fuzzy relations, and according to
the new composition, we give a picture fuzzy comprehensive evaluation model about risk investment.

Definition 15. Let R ∈ PFR(X × Y) and P ∈ PFR(Y × Z). Then, the composition of P and R is defined by

R ◦ P = {((x, z), µR◦P(x, z), ηR◦P(x, z), νR◦P(x, z)) | (x, z) ∈ X × Z)},

where ∀ (x, z) ∈ X × Z
(R ◦ P)(x, z) = ∪2

y∈Y
(R(x, y) ∩2 P(y, z)),

µ(R◦P)(x, z) = ∨2
y∈Y
{µR(x, y) ∧2 µP(y, z)},

ν(R◦P)(x, z) = ∧2
y∈Y
{νR(x, y) ∨2 νP(y, z)},

whenever
0 ≤ µR◦P(x, z) + ηR◦P(x, z) + νR◦P(x, z) ≤ 1, ∀ (x, z) ∈ X × Z.
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Definition 16. Let A = {A1, A2, . . . , An} ∈ PFS(X) and R ∈ PFR(X× Y), where Ai (i = 1, 2, . . . , n) is picture
fuzzy set and

R =


r11 r12 · · · r1s
r21 r22 · · · r2s
· · · · · · · · · · · ·
rn1 rn2 · · · rns

;

Then, the composition of A and R is defined by

A ◦ R = (B1, B2, · · · , Bs) =

((
n
∨2
k=1

(Ak ∧2 rk1)

)
,
(

n
∨2
k=1

(Ak ∧2 rk2)

)
, · · · ,

(
n
∨2
k=1

(Ak ∧2 rks)

))
,

where rij and Bj are picture fuzzy sets, i = {1, 2, . . . , n}, j = {1, 2, . . . , s}.

6.1. Picture Fuzzy Comprehensive Evaluation Model

Next, we will give the procedure of picture fuzzy comprehensive evaluation.
Step 1: Establish evaluation index system. According to the method of APH (Analytic Hierarchy

Process), we classify various factors that influence evaluation and establish a hierarchical relationship
of evaluation index. In this paper, we used two levels of evaluation indexes, where Ui (i = 1, 2, . . . , m)
shows the first level evaluation index, uj

(i) (j = 1, 2, . . . , ni) shows the second level evaluation index.
Let subscript sets I = {1, 2, . . . , m}, J(I) = {1, 2, . . . , ni}.

Step 2: Determine factor importance degree of evaluation indexes. In the evaluation index
system, the importance degree of the various index of target is different. There are many ways to
determine the factor importance degree, such as the Delphi method, Expert investigation method and
so on. Suppose the importance degree of the first level evaluation index Ui relative to the total goal is
W = (w1, w2, . . . , wm), where wk = (µk, ηk, νk), 0 ≤ µk ≤ 1, 0 ≤ ηk ≤ 1, 0 ≤ νk ≤ 1, 0 ≤ µk + ηk + νk ≤
1(k = 1, 2, . . . , m), µk shows this evaluation index is useful for the total goal, ηk shows this evaluation
index is dispensable for the total goal, and νk shows this evaluation index is not useful for the total
goal. The importance degree of the second level evaluation index uj

(i) (j ∈ J(I)) relative to the first level
evaluation index Ui is W(i) = (w1

(i), w2
(i), . . . , wni

(i)).
Step 3: Establish evaluation matrix. Let V = {v1, v2, . . . , vs} be a natural language comment set,

S = {1, 2, . . . , s}, and evaluation experts give the membership degree of waiting evaluation schemes
relative to each comment according to the evaluation indexes. In this paper, let the five-level language
review set V = {big risk, larger risk, general risk, smaller risk, small risk}. Suppose evaluation experts
give evaluation matrix R(i), which represents the picture fuzzy relation of factor sets and comment
sets, and

R(i) =


r11

(i) r12
(i) · · · r1s

(i)

r21
(i) r22

(i) · · · r2s
(i)

· · · · · · · · · · · ·
rni1

(i) rni2
(i) · · · rnis

(i)

,

where rpq
(i) is a picture fuzzy set, i ∈ I, p ∈ J(I), q ∈ S.

Step 4: The second level picture fuzzy comprehensive evaluation. According the evaluation
matrix R(i) and the importance degree W(i), we can get evaluation vector of Ui (i ∈ I):

A(i) = (a1
(i), a2

(i), · · · , as
(i)) = W(i) ◦ R(i) =

((
ni∨2

k=1

(
wk

(i) ∧2 rk1
(i)
))

,
(

ni∨2
k=1

(
wk

(i) ∧2 rk2
(i)
))

, · · · ,
(

ni∨2
k=1

(
wk

(i) ∧2 rks
(i)
)))

.

Step 5: The first level picture fuzzy comprehensive evaluation. Let the subset of factor sets as the
element of total factor sets. Then, the picture fuzzy relation matrix of factor sets U and evaluation sets
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V is A = (A(1), A(2), . . . , A(m)). According to the factor importance degree vector W = (w1, w2, . . . , wm)
and the picture fuzzy relation matrix A, to calculate the first level comprehensive evaluation vector

B = (b1, b2, · · · , bs) = W ◦ A =

((
m
∨2
k=1

(
wk ∧2 a1

(k)
))

,
(

m
∨2
k=1

(
wk ∧2 a2

(k)
))

, · · · ,
(

m
∨2
k=1

(
wk ∧2 as

(k)
)))

.

Step 6: The risk assessment. All elements of B are picture fuzzy sets. Therefore, the evaluation
vector B can be regarded as the picture fuzzy set of the evaluation scheme risk size of the evaluation
set V, which comprehensively describe the picture fuzzy membership of the evaluation scheme about
all the comments. In order to get the final evaluation result, we used the scoring function and accurate
function in Definition 7 to compare the size of each element in B, and, according to the principle
of maximum membership, the corresponding vi in V of the maximum value bi in the picture fuzzy
comprehensive evaluation set B is selected as the final evaluation result. In this paper, the final
evaluation result is to determine the risk level of the investment scheme.

6.2. The Application Example

According to the principles of scientific nature, comparability and operability, we can get the
investment risk multi-level evaluation index system as Figure 1 through the study of the structure and
relationship analysis of venture capital investment risk factors, where IR-investment risk, TR-technical
risk, MR-market risk, MER-manage risk, FR-financial risk, ER-environmental risk, TAN-technology
advanced nature, TA-technology applicability, TYR-technology reliability, TP-technology periodicity,
MTR-market requirement, MC-market competition, SA-sale ability, MA-market access, PQ-personnel
quality, OS-organization structure, LD-leadership decision-making, MM-management mechanism,
CS-capital structure, PY-profitability, FA-financing ability, MT-management ability, NE-natural
environment, EE-economic environment, PE-political environment, and SE is social environment.
According to the survey statistical method, we can get the factor importance degree vector W = {(0.5,
0.2, 0.1), (0.6, 0.1, 0.2), (0.4, 0.3, 0.3), (0.3, 0.1, 0.5), (0.3. 0.2, 0.3)}, W(1) = {(0.3, 0.1, 0.4), (0.4, 0.3, 0.2),
(0.2, 0.3, 0.4), (0.4, 0.2, 0.2)}, W(2) = {(0.2, 0.2, 0.5), (0.5, 0.1, 0.1), (0.2, 0.3, 0.3), (0.3, 0.4, 0.1)}, W(3) = {5},
W(4) = {(0.6, 0.1, 0.2), (0.4, 0.3, 0.1), (0.2, 0.6, 0.1), (0.3, 0.5, 0.2)}, W(5) = {(0.5, 0.3, 0.1), (0.3, 0.2, 0.2),
(0.4, 0.1, 0.2), (0.3, 0.4, 0.2)}, decision makers get the picture fuzzy evaluation matrix about a certain
item risk investment projects through the information integration:

R(1) =


(0.3, 0.2, 0.1) (0.7, 0.1, 0.1) (0.1, 0.2, 0.6)
(0.2, 0.6, 0.1) (0.5, 0.1, 0.3) (0.6, 0.1, 0.2)
(0.6, 0.1, 0.1) (0.5, 0.3, 0.1) (0.2, 0.1, 0.5)
(0.5, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.2, 0.1)

(0.4, 0.1, 0.2) (0.4, 0.1, 0.4)
(0.4, 0.2, 0.3) (0.1, 0.6, 0.1)
(0.6, 0.1, 0.2) (0.3, 0.2, 0.4)
(0.3, 0.4, 0.2) (0.3, 0.1, 0.4)

;

R(2) =


(0.8, 0.1, 0) (0.4, 0.2, 0.3) (0.5, 0.3, 0)
(0.3, 0.3, 0.2) (0.7, 0.1, 0.1) (0.4, 0.3, 0.2)
(0.3, 0.4, 0.1) (0.6, 0.2, 0.1) (0.4, 0.3, 0.1)
(0.1, 0.2, 0.5) (0.2, 0.1, 0.6) (0.2, 0.2, 0.5)

(0.2, 0.3, 0.4) (0.2, 0.2, 0.4)
(0.3, 0.3, 0.2) (0.4, 0, 0.5)
(0.1, 0.4, 0.2) (0.7, 0.1, 0.2)
(0.2, 0.1, 0.3) (0.5, 0.3, 0.1)

;

R(3) =


(0.3, 0.4, 0.2) (0.1, 0.4, 0.2) (0.8, 0, 0.1)
(0.5, 0.2, 0.2) (0.4, 0.1, 0.5) (0.2, 0.5, 0.1)
(0.1, 0.2, 0.6) (0.4, 0.2, 0.3) (0.2, 0.1, 0.1)
(0.3, 0.1, 0.6) (0.7, 0.3, 0) (0.5, 0.2, 0.1)

(0.4, 0.3, 0.2) (0.2, 0.7, 0.1)
(0.6, 0.1, 0.2) (0.7, 0.1, 0.1)
(0.3, 0.2, 0.4) (0.3, 0.5, 0.1)
(0.2, 0.4, 0.2) (0.4, 0.3, 0.1)

;

R(4) =


(0.6, 0.1, 0.2) (0.1, 0.1, 0.6) (0.1, 0.4, 0.3)
(0.4, 0.2, 0.3) (0.2, 0.3, 0.4) (0.3, 0.3, 0.2)
(0.3, 0.1, 0.5) (0.2, 0.2, 0.4) (0.6, 0, 0.3)
(0.2, 0.1, 0.3) (0.3, 0.4, 0.2) (0.1, 0.4, 0.2)

(0.5, 0.2, 0.2) (0.4, 0.1, 0.5)
(0.2, 0.2, 0.4) (0.4, 0.2, 0.3)
(0.7, 0.3, 0) (0.5, 0.2, 0.3)
(0.4, 0, 0.3) (0.8, 0, 0.1)

;
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R(5) =


(0.2, 0.6, 0.1) (0.3, 0.1, 0.3) (0.4, 0.2, 0.2)
(0.3, 0.5, 0.1) (0.2, 0.1, 0.5) (0.4, 0.5, 0)
(0.1, 0.4, 0.2) (0.4, 0.1, 0.3) (0.2, 0.2, 0.5)
(0.5, 0.1, 0.3) (0.6, 0.1, 0.1) (0.5, 0.1, 0.2)

(0.4, 0.4, 0.2) (0.7, 0.1, 0.1)
(0.6, 0.2, 0.1) (0.3, 0.2, 0.4)
(0.3, 0.3, 0.3) (0.4, 0.1, 0.2)
(0.2, 0.5, 0.2) (0.3, 0.2, 0.4)

.
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Then, according to step 4, we can get the second level comprehensive evaluation vector:

A(1) = W(1) ◦ R(1) = {((0.3, 0.1, 0.4) ∧2 (0.3, 0.2, 0.1)) ∨2 ((0.4, 0.3, 0.2) ∧2 (0.2, 0.6, 0.1)) ∨2 ((0.2, 0.3, 0.4)
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∧2 (0.1, 0.6, 0.1))∨2 ((0.2, 0.3, 0.4) ∧2 (0.3, 0.2, 0.4)) ∨2 ((0.4, 0.2, 0.2) ∧2 (0.3, 0.1, 0.4))}
= {(0.4, 0.2, 0.2), (0.4, 0.3, 0.3), (0.4, 0.3, 0.2), (0.4, 0, 0.2), (0.3, 0, 0.2)}.

With the same way, we have

A(2) = {(0.3, 0.3, 0.2), (0.5, 0.1, 0.1), (0.4, 0.3, 0.2), (0.3, 0.3, 0.2), (0.4, 0, 0.1)};
A(3) = {(0.3, 0, 0.2), (0.3, 0.5, 0.1), (0.4, 0, 0.1), (0.4, 0, 0.2), (0.3, 0.5, 0.1)};
A(4) = {(0.6, 0.1, 0.2), (0.3, 0.4, 0.2), (0.3, 0.3, 0.2), (0.5, 0, 0.1), (0.4, 0, 0.2)};
A(5) = {(0.3, 0, 0.1), (0.4, 0, 0.2), (0.4, 0.2, 0.2), (0.4, 0.4, 0.2), (0.5, 0.3, 0.1)}.

Then, according to step 5, we can get the first level comprehensive evaluation vector:

B = W ◦ A
b1 = ((0.5, 0.2, 0.1) ∧2 (0.4, 0.2, 0.2)) ∨2 ((0.6, 0.1, 0.2) ∧2 (0.3, 0.3, 0.2)) ∨2 ((0.4, 0.3, 0.3) ∧2 (0.3, 0,

0.2)) ∨2 ((0.3, 0.1, 0.5) ∧2 (0.6, 0.1, 0.2)) ∨2 ((0.3, 0.2, 0.3) ∧2 (0.3, 0, 0.1)) = (0.4, 0.2, 0.2);
In addition, we have b2 = (0.5, 0.3, 0.2); b3 = (0.4, 0.3, 0.2); b4 = (0.4, 0, 0.2); b5 = (0.4, 0.4, 0.2).
Therefore, B = W ◦ A = {(0.4, 0.2, 0.2), (0.5, 0.3, 0.2), (0.4, 0.3, 0.2), (0.4, 0, 0.2), (0.4, 0.4, 0.2)}.

Next, we compare the size of each element in B by the scoring function and accurate function in
Definition 7, and according to the principle of maximum membership, get the final evaluation result.
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So, S(b1) = 0.4 − 0.2 = 0.2, S(b2) = 0.3, S(b3) = 0.2, S(b4) = 0.2, S(b5) = 0.2. H(b1) = 0.4 + 0.2 + 0.2
= 0.8, H(b2) = 1, H(b3) = 0.9, H(b4) = 0.6, and H(b5) = 1.

Therefore, we get b2 � b5 � b3 � b1 � b4.
Hence, the risk rating for the evaluation scheme is “larger risk”.

7. Conclusions

In this paper, we investigate some new operations of picture fuzzy relations and discussed their
properties. The kernels and closures of a picture fuzzy relation are defined and their properties are
obtained. Then, we proposed a new composition operation of picture fuzzy relations and found a new
method to solve picture fuzzy comprehensive evaluation problems. In addition, we prove it is feasible
by an application example.

Future research will focus on other new methods for fuzzy comprehensive evaluation problems,
especially applying some new granular computing techniques (see [18–27]) to develop a comprehensive
evaluation model about investment risk.
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