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1. Introduction

The notion of bipolar fuzzy sets was generalized to m-polar fuzzy sets by Chen et al. [1] in 2014.
Chen et al. [1] proved that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic mathematical
tools. In many real life complicated problems, data sometimes comes from n agents (n ≥ 2), that is,
multipolar information (not just bipolar information, which corresponds to two-valued logic) exists.
There are many applications of m-polar fuzzy sets to decision-making problems when it is compulsory
to make assessments with a group of agreements. For example, similarity degrees of two logic formulas
that are based on n logic implication operators (n ≥ 2), ordering results of a magazine, a group of
friends wants to plan to visit a country, ordering results of a university. Akram et al. [2–5] promoted the
work on m-polar fuzzy graphs and introduced many new concepts. Li et al. [6] considered different
algebraic operations on m-polar fuzzy graphs. In 1982, Pawlak [7] introduced the idea of rough
set theory, which is an important mathematical tool to handle imprecise, vague and incomplete
information. In fuzzy set theory [8], membership function plays the vital role. However, the selection
of membership function is uncertain. The fuzzy set theory is an uncertain tool to solve the uncertain
problems, but, in rough set theory, two precise boundary lines are established to describe the vague
concepts. Consequently, the rough set theory is a mathematical tool to solve uncertain problems.
Dubois and Prade [9] introduced the ideas of rough fuzzy sets and fuzzy rough sets by combining fuzzy
sets and rough sets. Recently, works on granular computing are progressing rapidly. Xu and Gou [10]
described an overview of interval-valued intuitionistic fuzzy information aggregation techniques, and
their applications in different fields such as decision-making, entropy measure and supplier selection.
Das et al. [11] introduced a robust decision-making approach using intuitionistic trapezoidal fuzzy
number. Cai et al. [12] defined dynamic fuzzy sets by means of shadowed sets and proposed an
analytic solution to computing the pair of thresholds by searching for a balance of uncertainty in the
framework of shadowed sets. Pedrycz and Chen [13] provided various methods of fuzzy sets and
granular computing, brings new concepts, architectures and practice of fuzzy decision-making with
various applications.
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Many real-world problems in different domains, including social sciences, physical sciences,
applied sciences and life sciences contain vague and imprecise information. The classical mathematical
tools and theories are unfit to handle the difficulties of the data having uncertainties, whereas a lot
of theories including probability theory and fuzzy set theory [8] are very helpful mathematical tools
for dealing with different types of uncertain data. Molodtsov [14] indicated the drawbacks of these
theories. In order to overcome these difficulties, Molodtsov [14] introduced the concept of soft set
theory. Maji et al. [15] proposed some fundamental algebraic operations for soft sets. Maji et al. [16]
generalized the idea of soft sets and presented a hybrid model fuzzy soft sets. Alcantud [17–19]
gave a novel approach to the problems of fuzzy soft sets based decision-making. Alcantud and
Santos-Garcia [20,21] produced a completely new approach to soft set based decision-making problems
when information is incomplete. They also proposed and compared an algorithmic solution with
previous approaches in the literature in [20]. Feng et al. [22] gave the novel idea of rough soft sets
by combining the Pawlak rough sets and soft sets. In 2011, Feng et al. [23] introduced the idea of
soft rough sets. All mathematical models, including fuzzy sets, rough sets, soft sets and fuzzy soft
sets have their advantages and drawbacks. One of the crucial drawbacks of all of these models is
that they have a lack of a sufficient number of parameters to handle the uncertain data. In order to
overcome this problem, we combine rough sets, soft sets with m-polar fuzzy sets and propose the
concepts of new hybrid models called soft rough m-polar fuzzy sets and m-polar fuzzy soft rough sets.
We define the lower and upper soft approximations of an m-polar fuzzy set. The idea of m-polar fuzzy
soft rough sets can be utilized to solve different real-life problems. Thus, we present a new method to
decision-making based on m-polar fuzzy soft rough sets.

2. Soft Rough m-Polar Fuzzy Sets

Definition 1. An m-polar fuzzy set (mF set, for short) on a universe Y is a function Q = (p1 ◦ Q(z), p2 ◦
Q(z), . . . , pm ◦Q(z)) : Y → [0, 1]m, where the i-th projection mapping is defined as pi ◦Q : [0, 1]m → [0, 1].
Denote 0 = (0, 0, · · · , 0) is the smallest element in [0, 1]m and 1 = (1, 1, · · · , 1) is the largest element in
[0, 1]m [1].

Definition 2. ([14]) Let Y be a nonempty set called universe, T a set of parameters. A pair (η, T) is called a
soft set over Y if η is a mapping given by η : T → P(Y), where P(Y) is the collection of all subsets of Y.

Definition 3. ([24]) Let Y be an initial universe, (η, T) a soft set on Y. For any N ⊆ Y × T, the crisp soft
relation N over Y× T is given by

N =
{〈

(v, w), $N(v, w)
〉
| (v, w) ∈ Y× T

}
,

where $N : Y× T → {0, 1}, $N(v, w) =

{
1 i f (v, w) ∈ N,
0 i f (v, w) /∈ N.

Definition 4. ([25]) Let Y be the universe of discourse and let T be a set of parameters. For any crisp soft
relation ξ ⊆ Y× T, a set-valued function ξs : Y → P(T) is given by

ξs(v) = {w ∈ T | (v, w) ∈ ξ}, v ∈ Y.

ξ is referred to as serial if ∀ v ∈ Y, ξs(v) 6= ∅. The pair (Y, T, ξ) is said to be a crisp soft approximation space.
For any Q ⊆ T, the lower and upper soft approximations of Q about (Y, T, ξ), denoted by ξ(Q) and ξ(Q),
respectively, are defined as

ξ(Q) = {v ∈ Y | ξs(v) ∩Q 6= φ},

ξ(Q) = {v ∈ Y | ξs(v) ⊆ Q}.
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The pair (ξ(Q), ξ(Q)) is said to be a crisp soft rough set and ξ, ξ : P(T)→ P(Y) are, respectively, called
lower and upper crisp soft rough approximation operators. Furthermore, if ξ(Q) = ξ(Q), then Q is called a
definable set.

We now define soft rough m-polar fuzzy sets.

Definition 5. Let Y be an initial universe and T a universe of parameters. For any crisp soft relation ξ over
Y× T, the pair (Y, T, ξ) is called a crisp soft approximation space. For an arbitrary Q ∈ m(T), the lower and
upper soft approximations of Q about (Y, T, ξ), denoted by ξ(Q) and ξ(Q), respectively, are defined by

ξ(Q) =
{〈

v, Qξ(v)
〉
| v ∈ Y

}
,

ξ(Q) =
{〈

v, Qξ(v)
〉
| v ∈ Y

}
,

where
Qξ(v) =

∧
w∈ξs(v)

pi ◦Q(w), Qξ(v) =
∨

w∈ξs(v)

pi ◦Q(w).

The pair (ξ(Q), ξ(Q)) is called the soft rough mF set of Q about (Y, T, ξ), and ξ, ξ : m(T)→ m(Y) are,
respectively, said to be lower and upper soft rough mF approximation operators. Moreover, if ξ(Q) = ξ(Q),
then Q is referred to as definable.

Example 1. Let Y = {y1, y2, y3, y4, y5, y6} be a universe of discourse, T = {k1, k2, k3, k4} a set of parameters.
Assume that a soft set on Y is defined by

η(k1) = {y1, y2, y5}, η(k2) = {y3, y4, y5},
η(k3) = ∅, η(k4) = Y.

Then, a crisp soft relation ξ over Y× T is given by

ξ =
{
(y1, k1), (y2, k1), (y5, k1), (y3, k2), (y4, k2), (y5, k2), (y1, k4), (y2, k4), (y3, k4), (y4, k4), (y5, k4), (y6, k4)

}
.

By Definition 4, we have

ξs(y1) = {k1, k4}, ξs(y2) = {k1, k4},
ξs(y3) = {k2, k4}, ξs(y4) = {k2, k4},
ξs(y5) = {k1, k2, k4}, ξs(y6) = {k4}.

Consider a 3-polar fuzzy set Q ∈ m(T) as follows:

Q =
{
(k1, 0.75, 0.25, 0.13), (k2, 0.12, 0.7, 0.4), (k3, 0.3, 0.85, 0.6), (k4, 0.1, 0.3, 0.5)

}
.

By Definition 5, we have lower and upper soft approximations:

Qξ(y1) = (0.1, 0.25, 0.13), Qξ(y1) = (0.75, 0.3, 0.5),
Qξ(y2) = (0.1, 0.25, 0.13), Qξ(y2) = (0.75, 0.3, 0.5),
Qξ(y3) = (0.1, 0.3, 0.4), Qξ(y3) = (0.12, 0.7, 0.5),
Qξ(y4) = (0.1, 0.3, 0.4), Qξ(y4) = (0.12, 0.7, 0.5),
Qξ(y5) = (0.1, 0.25, 0.13), Qξ(y5) = (0.75, 0.7, 0.5),
Qξ(y6) = (0.1, 0.3, 0.5), Qξ(y6) = (0.1, 0.3, 0.5).
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Thus,

ξ(Q) =
{
(y1, 0.1, 0.25, 0.13), (y2, 0.1, 0.25, 0.13), (y3, 0.1, 0.3, 0.4), (y4, 0.1, 0.3, 0.4),

(y5, 0.1, 0.25, 0.13), (y6, 0.1, 0.3, 0.5)
}

,

ξ(Q) =
{
(y1, 0.75, 0.3, 0.5), (y2, 0.75, 0.3, 0.5), (y3, 0.12, 0.7, 0.5), (y4, 0.12, 0.7, 0.5),

(y5, 0.75, 0.7, 0.5), (y6, 0.1, 0.3, 0.5)
}

.

Hence, the pair (ξ(Q), ξ(Q)) is said to be a soft rough 3-polar fuzzy set.

We now present properties of soft rough mF sets.

Theorem 1. Let (Y, T, ξ) be a crisp soft approximation space. Then, the lower and upper soft rough mF
approximation operators ξ(Q) and ξ(Q), respectively, satisfy the following properties, for any Q, R ∈ m(T):

1. ξ(Q) =∼ ξ(∼ Q),
2. Q ⊆ R⇒ ξ(Q) ⊆ ξ(R),
3. ξ(Q ∩ R) = ξ(Q) ∩ ξ(R),
4. ξ(Q ∪ R) ⊇ ξ(Q) ∪ ξ(R),
5. ξ(Q) =∼ ξ(∼ Q),
6. Q ⊆ R⇒ ξ(Q) ⊆ ξ(R),
7. ξ(Q ∪ R) = ξ(Q) ∪ ξ(R),
8. ξ(Q ∩ R) ⊆ ξ(Q) ∩ ξ(R),

where ∼ Q denotes the compliment of Q.

Proof. 1. From Definition 5, we have

∼ ξ(∼ Q) =
{〈

v,
(
1− (∼ Q)ξ(v)

)〉
| v ∈ Y

}
,

=
{〈

v,
(

1−
∨

w∈ξs(v)

pi ◦ (∼ Q)(w)
)〉
| v ∈ Y

}
,

=
{〈

v,
(

1 ∧
∧

w∈ξs(v)

pi ◦Q(w)
)〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

pi ◦Q(w)
〉
| v ∈ Y

}
,

=
{〈

v, Qξ(v)
〉
| v ∈ Y

}
,

= ξ(Q).

It follows that ξ(Q) =∼ ξ(∼ Q).
2. It can be easily proved by Definition 5.
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3. By Definition 5,

ξ(Q ∩ R) =
{〈

v, (Q ∩ R)ξ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

pi ◦ (Q ∩ R)(w)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w) ∧ pi ◦ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w)

)
∧

∧
w∈ξs(v)

(
pi ◦ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qξ(v) ∧ Rξ(v)
〉
| v ∈ Y

}
,

= ξ(Q) ∩ ξ(R).

Hence, ξ(Q ∩ R) = ξ(Q) ∩ ξ(R).
4. From Definition 5,

ξ(Q ∪ R) =
{〈

v, (Q ∪ R)ξ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

pi ◦ (Q ∪ R)(w)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w) ∨ pi ◦ R(w)

)〉
| v ∈ Y

}
,

⊇
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w)

)
∨

∧
w∈ξs(v)

(
pi ◦ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qξ(v) ∨ Rξ(v)
〉
| v ∈ Y

}
,

= ξ(Q) ∪ ξ(R).

Hence, ξ(Q ∪ R) ⊇ ξ(Q) ∪ ξ(R).
Similarly, properties (5–8) of the upper soft rough mF approximation operator ξ(Q) can be proved

by using the above arguments.

Example 2. Let Y = {g1, g2, g3, g4} be a universe and let T = {n1, n2, n3} be a set of parameters. Consider a
soft set (η, T) over Y is defined as

η(n1) = {g1, g2, g4}, η(n2) = {g3}, η(n3) = Y.

Then, a crisp soft relation ξ on Y× T is given by

ξ =
{
(g1, n1), (g2, n1), (g4, n1), (g3, n2), (g1, n3), (g2, n3), (g3, n3), (g4, n3)

}
.

By Definition 4,

ξs(g1) = {n1, n3}, ξs(g2) = {n1, n3},
ξs(g3) = {n2, n3}, ξs(g4) = {n1, n3}.

Consider 3-polar fuzzy sets Q, R ∈ m(T) as follows:

Q =
{
(n1, 0.5, 0.2, 0.3), (n2, 0.2, 0.6, 0.5), (n3, 0.5, 0.9, 0.1)

}
,

R =
{
(n1, 0.7, 0.5, 0.1), (n2, 0.1, 0.7, 0.4), (n3, 0.3, 0.8, 0.6)

}
.
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Then,

∼ Q =
{
(n1, 0.5, 0.8, 0.7), (n2, 0.8, 0.4, 0.5), (n3, 0.5, 0.1, 0.9)

}
,

Q ∪ R =
{
(n1, 0.7, 0.5, 0.3), (n2, 0.2, 0.7, 0.5), (n3, 0.5, 0.9, 0.6)

}
,

Q ∩ R =
{
(n1, 0.5, 0.2, 0.1), (n2, 0.1, 0.6, 0.4), (n3, 0.3, 0.8, 0.1)

}
.

By Definition 5, we have

ξ(Q) =
{
(g1, 0.5, 0.2, 0.1), (g2, 0.5, 0.2, 0.1), (g3, 0.2, 0.6, 0.1), (g4, 0.5, 0.2, 0.1)

}
,

ξ(Q) =
{
(g1, 0.5, 0.9, 0.3), (g2, 0.5, 0.9, 0.3), (g3, 0.5, 0.9, 0.5), (g4, 0.5, 0.9, 0.3)

}
,

ξ(R) =
{
(g1, 0.3, 0.5, 0.1), (g2, 0.3, 0.5, 0.1), (g3, 0.1, 0.7, 0.4), (g4, 0.3, 0.5, 0.1)

}
,

ξ(R) =
{
(g1, 0.7, 0.8, 0.6), (g2, 0.7, 0.8, 0.6), (g3, 0.3, 0.8, 0.6), (g4, 0.7, 0.8, 0.6)

}
,

ξ(∼ Q) =
{
(g1, 0.5, 0.1, 0.7), (g2, 0.5, 0.1, 0.7), (g3, 0.5, 0.1, 0.5), (g4, 0.5, 0.1, 0.7)

}
,

ξ(∼ Q) =
{
(g1, 0.5, 0.8, 0.9), (g2, 0.5, 0.8, 0.9), (g3, 0.8, 0.4, 0.9), (g4, 0.5, 0.8, 0.9)

}
,

∼ ξ(∼ Q) =
{
(g1, 0.5, 0.9, 0.3), (g2, 0.5, 0.9, 0.3), (g3, 0.5, 0.9, 0.5), (g4, 0.5, 0.9, 0.3)

}
,

∼ ξ(∼ Q) =
{
(g1, 0.5, 0.2, 0.1), (g2, 0.5, 0.2, 0.1), (g3, 0.2, 0.6, 0.1), (g4, 0.5, 0.2, 0.1)

}
,

ξ(Q ∪ R) =
{
(g1, 0.5, 0.5, 0.3), (g2, 0.5, 0.5, 0.3), (g3, 0.2, 0.7, 0.5), (g4, 0.5, 0.5, 0.3)

}
,

ξ(Q ∪ R) =
{
(g1, 0.7, 0.9, 0.6), (g2, 0.7, 0.9, 0.6), (g3, 0.5, 0.9, 0.6), (g4, 0.7, 0.9, 0.6)

}
,

ξ(Q ∩ R) =
{
(g1, 0.3, 0.2, 0.1), (g2, 0.3, 0.2, 0.1), (g3, 0.1, 0.6, 0.1), (g4, 0.3, 0.2, 0.1)

}
,

ξ(Q ∩ R) =
{
(g1, 0.5, 0.8, 0.1), (g2, 0.5, 0.8, 0.1), (g3, 0.3, 0.8, 0.4), (g4, 0.5, 0.8, 0.1)

}
.

Now,

ξ(Q) ∪ ξ(R) =
{
(g1, 0.5, 0.5, 0.1), (g2, 0.5, 0.5, 0.1), (g3, 0.2, 0.7, 0.4), (g4, 0.5, 0.5, 0.1)

}
,

ξ(Q) ∪ ξ(R) =
{
(g1, 0.7, 0.9, 0.6), (g2, 0.7, 0.9, 0.6), (g3, 0.5, 0.9, 0.6), (g4, 0.7, 0.9, 0.6)

}
,

ξ(Q) ∩ ξ(R) =
{
(g1, 0.3, 0.2, 0.1), (g2, 0.3, 0.2, 0.1), (g3, 0.1, 0.6, 0.1), (g4, 0.3, 0.2, 0.1)

}
,

ξ(Q) ∩ ξ(R) =
{
(g1, 0.5, 0.8, 0.3), (g2, 0.5, 0.8, 0.3), (g3, 0.3, 0.8, 0.5), (g4, 0.5, 0.8, 0.3)

}
.

From the above calculations, we observe that the following properties are satisfied:

∼ ξ(∼ Q) = ξ(Q), ∼ ξ(∼ Q) = ξ(Q),
ξ(Q ∩ R) = ξ(Q) ∩ ξ(R), ξ(Q ∪ R) ⊇ ξ(Q) ∪ ξ(R),
ξ(Q ∪ R) = ξ(Q) ∪ ξ(R), ξ(Q ∩ R) ⊆ ξ(Q) ∩ ξ(R).

Proposition 1. Let (Y, T, ξ) be a crisp soft approximation space. Then, lower and upper soft rough
approximations of mF sets Q and R satisfies the following laws:

1. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

2. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

3. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

4. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

5. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R),

6. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R),

7. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R),
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8. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R).

Proof. Its proof follows immediately from the Definition 5.

3. mF Soft Rough Sets

Definition 6. Let Y be a universe of discourse, T a set of parameters and V ⊆ T. A pair (τ, V) is referred to as
an mF soft set on Y if τ is a mapping τ : T → m(Y).

Definition 7. Let (τ, V) be an mF soft set over Y. Then, an mF subset ζ of Y× T is referred to as an mF soft
relation from Y to T is given by

ζ =
{〈

(x, t), pi ◦ ζ(x, t)
〉
| (x, t) ∈ Y× T

}
,

where ζ : Y× T → [0, 1]m.

If Y = {x1, x2, · · · , xn}, T = {t1, t2, · · · , tn}, then an mF soft relation ζ over Y×T can be presented
as follows:

ζ t1 t2 · · · tn

x1 pi ◦ (x1, t1) pi ◦ (x1, t2) · · · pi ◦ (x1, tn)

x2 pi ◦ (x2, t1) pi ◦ (x2, t2) · · · pi ◦ (x2, tn)
...

...
...

. . .
...

xn pi ◦ (xn, t1) pi ◦ (xn, t2) · · · pi ◦ (xn, tn).

Example 3. Let Y = {x1, x2, x3} be a universe, T = {t1, t2, t3} a set of parameters. A 3-polar fuzzy soft
relation ζ : Y → T of the universe Y× T is given by

ζ t1 t2 t3

x1 (0.6, 0.3, 0.1) (0.4, 0.7, 0.6) (0.4, 0.6, 0.2)
x2 (0.5, 0.3, 0.2) (0.5, 0.2, 0.8) (0.6, 0.9, 0.6)
x3 (0.3, 0.2, 0.1) (0.3, 0.4, 0.8) (0.7, 0.3, 0.5).

We now define m-polar fuzzy soft rough sets.

Definition 8. Let Y be a nonempty set called universe, T a universe of parameters. For any mF soft relation
ζ on Y × T, the pair (Y, T, ζ) is referred to as an mF soft approximation space. For an arbitrary Q ∈ m(T),
the lower and upper soft approximations of Q about (Y, T, ζ), denoted by ζ(Q) and ζ(Q), respectively, are
defined as follows:

ζ(Q) =
{〈

v, Qζ(v)
〉
| v ∈ Y

}
,

ζ(Q) =
{〈

v, Qζ(v)
〉
| v ∈ Y

}
,

where

Qζ(v) =
∧

w∈T

[(
1− pi ◦Qζ(v, w)

)
∨ pi ◦Q(w)

]
,

Qζ(v) =
∨

w∈T

(
pi ◦Qζ(v, w) ∧ pi ◦Q(w)

)
.

The pair (ζ(Q), ζ(Q)) is called mF soft rough set of Q about (Y, T, ζ), and ζ, ζ : m(T) → m(Y) are,
respectively, said to be lower and upper mF soft rough approximation operators. Moreover, if ζ(Q) = ζ(Q),
then Q is said to be definable.
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Example 4. Let Y = {x1, x2, x3, x4, x5} be the set of five laptops and let T =
{

t1 = size, t2 = beauti f ul,
t3 = technology, t4 = price

}
be the set of parameters. Consider a 3-polar fuzzy soft relation ζ : Y → T is

given by
ζ t1 t2 t3 t4

x1 (0.6, 0.3, 0.1) (0.4, 0.7, 0.6) (0.4, 0.6, 0.2) (0.4, 0.6, 0.2)
x2 (0.5, 0.3, 0.2) (0.5, 0.2, 0.8) (0.6, 0.9, 0.6) (0.7, 0.3, 0.6)
x3 (0.3, 0.2, 0.1) (0.3, 0.4, 0.8) (0.7, 0.3, 0.5) (0.2, 0.9, 0.9)
x4 (0.4, 0.3, 0.6) (0.5, 0.1, 0.4) (0.3, 0.1, 0.0) (0.6, 0.4, 0.4)
x5 (0.2, 0.7, 0.3) (0.4, 0.8, 0.1) (0.4, 0.0, 0.7) (0.8, 0.9, 0.0).

Consider a 3-polar fuzzy subset Q of T as follows:

Q =
{
(t1, 0.3, 0.1, 0.7), (t2, 0.3, 0.6, 0.4), (t3, 0.5, 0.6, 0.1), (t4, 0.9, 0.1, 0.4)

}
.

From Definition 8, the lower and upper soft approximations are given by

Qζ(x1) = (0.4, 0.4, 0.4), Qζ(x1) = (0.4, 0.6, 0.4),
Qζ(x2) = (0.5, 0.6, 0.4), Qζ(x2) = (0.7, 0.6, 0.4),
Qζ(x3) = (0.5, 0.1, 0.4), Qζ(x3) = (0.5, 0.4, 0.4),
Qζ(x4) = (0.5, 0.6, 0.6), Qζ(x4) = (0.6, 0.1, 0.6),
Qζ(x5) = (0.6, 0.1, 0.3), Qζ(x5) = (0.8, 0.6, 0.3).

Now,

ζ(Q) =
{
(x1, 0.4, 0.4, 0.4), (x2, 0.5, 0.6, 0.4), (x3, 0.5, 0.1, 0.4), (x4, 0.5, 0.6, 0.6),

(x5, 0.6, 0.1, 0.3)
}

,

ζ(Q) =
{
(x1, 0.4, 0.6, 0.4), (x2, 0.7, 0.6, 0.4), (x3, 0.5, 0.4, 0.4), (x4, 0.6, 0.1, 0.6),

(x5, 0.8, 0.6, 0.3)
}

.

Hence, the pair (ζ(Q), ζ(Q)) is called a 3-polar fuzzy soft rough set.

We now present properties of mF soft rough sets.

Theorem 2. Let (Y, T, ζ) be an mF soft approximation space. Then, the lower and upper soft rough mF
approximation operators ζ(Q) and ζ(Q), respectively, satisfy the following properties, for any Q, R ∈ m(T):

1. ζ(Q) =∼ ζ(∼ Q),
2. Q ⊆ R⇒ ζ(Q) ⊆ ζ(R),
3. ζ(Q ∩ R) = ζ(Q) ∩ ζ(R),
4. ζ(Q ∪ R) ⊇ ζ(Q) ∪ ζ(R),
5. ζ(Q) =∼ ζ(∼ Q),
6. Q ⊆ R⇒ ζ(Q) ⊆ ζ(R),
7. ζ(Q ∪ R) = ζ(Q) ∪ ζ(R),
8. ζ(Q ∩ R) ⊆ ζ(Q) ∩ ζ(R),

where ∼ Q denotes the compliment of Q.



Symmetry 2017, 9, 271 9 of 18

Proof. 1. From Definition 8,

∼ ζ(∼ Q) =
{〈

v,
(
1− (∼ Q)ζ(v)

)〉
| v ∈ Y

}
,

=
{〈

v, 1−
∨

w∈T

(
pi ◦ (∼ Q)ζ(v, w) ∧ pi ◦ (∼ Q)(w)

)〉
| v ∈ Y

}
,

=
{〈

v, 1 ∧
∧

w∈T

(
1− pi ◦Qζ(v, w)

)
∨ pi ◦Q(w)

〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦Qζ(v, w)

)
∨ pi ◦Q(w)

〉
| v ∈ Y

}
,

=
{〈

v, Qζ(v)
〉
| v ∈ Y

}
,

= ζ(Q).

Thus, ζ(Q) =∼ ζ(∼ Q).
2. It can be proved directly by Definition 8.
3. By Definition 8,

ζ(Q ∩ R) =
{〈

v, (Q ∩ R)ζ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦ (Q ∩ R)(v, w)

)
∨ pi ◦ (Q ∩ R)(w)

〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦

(
Q(v, w) ∧ R(v, w)

))
∨ pi ◦

(
Q(w) ∧ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qζ(v) ∧ Rζ(v)
〉
| v ∈ Y

}
,

= ζ(Q) ∩ ζ(R).

Hence, ζ(Q ∩ R) = ζ(Q) ∩ ζ(R).
4. Using Definition 8,

ζ(Q ∪ R) =
{〈

v, (Q ∪ R)ζ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦ (Q ∪ R)(v, w)

)
∨ pi ◦ (Q ∪ R)(w)

〉
| v ∈ Y

}
,

⊇
{〈

v,
∧

w∈T

(
1− pi ◦

(
Q(v, w) ∨ R(v, w)

))
∨ pi ◦

(
Q(w) ∨ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qζ(v) ∨ Rζ(v)
〉
| v ∈ Y

}
,

= ζ(Q) ∪ ζ(R).

Thus, ζ(Q ∪ R) ⊇ ζ(Q) ∪ ζ(R).
The properties (5–8) can be proved by using similar arguments.

Example 5. Let Y = {w1, w2, w3, w4} be the set of four cars and let T =
{

v1, v2, v3
}

be the set of
parameters, where

• v1 denotes the Fuel efficiency,
• v2 denotes the Price,
• v3 denotes the Technology.
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Consider a 3-polar fuzzy soft relation ζ : Y → T is given by

ζ v1 v2 v3

w1 (0.6, 0.3, 0.1) (0.4, 0.7, 0.6) (0.4, 0.6, 0.2)
w2 (0.5, 0.3, 0.2) (0.5, 0.2, 0.8) (0.6, 0.9, 0.6)
w3 (0.3, 0.2, 0.1) (0.3, 0.4, 0.8) (0.7, 0.3, 0.5)
w4 (0.4, 0.3, 0.6) (0.5, 0.1, 0.4) (0.3, 0.1, 0.0).

Consider 3-polar fuzzy subsets Q, R of T as follows:

Q =
{
(v1, 0.2, 0.1, 0.9), (v2, 0.7, 0.5, 0.3), (v3, 0.5, 0.6, 0.1)

}
,

R =
{
(v1, 0.4, 0.2, 0.5), (v2, 0.6, 0.7, 0.3), (v3, 0.4, 0.7, 0.8)

}
.

Then,
∼ Q =

{
(v1, 0.8, 0.9, 0.1), (v2, 0.3, 0.5, 0.7), (v3, 0.5, 0.4, 0.9)

}
,

Q ∪ R =
{
(v1, 0.4, 0.2, 0.9), (v2, 0.7, 0.7, 0.3), (v3, 0.5, 0.7, 0.8)

}
,

Q ∩ R =
{
(v1, 0.2, 0.1, 0.5), (v2, 0.6, 0.5, 0.3), (v3, 0.4, 0.6, 0.1)

}
.

By Definition 8, we have

ζ(Q) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.4, 0.3), (w4, 0.5, 0.1, 0.6)

}
,

ζ(R) =
{
(w1, 0.4, 0.7, 0.4), (w2, 0.4, 0.7, 0.3), (w3, 0.4, 0.7, 0.3), (w4, 0.6, 0.7, 0.5)

}
,

ζ(R) =
{
(w1, 0.4, 0.7, 0.3), (w2, 0.5, 0.7, 0.6), (w3, 0.4, 0.4, 0.5), (w4, 0.5, 0.2, 0.5)

}
,

∼ ζ(∼ Q) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.4, 0.3), (w4, 0.5, 0.1, 0.6)

}
,

∼ ζ(∼ Q) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q ∪ R) =
{
(w1, 0.4, 0.7, 0.4), (w2, 0.5, 0.7, 0.3), (w3, 0.5, 0.7, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q ∪ R) =
{
(w1, 0.4, 0.7, 0.3), (w2, 0.5, 0.7, 0.6), (w3, 0.5, 0.4, 0.5), (w4, 0.5, 0.2, 0.6)

}
,

ζ(Q ∩ R) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.4, 0.6, 0.3), (w3, 0.4, 0.6, 0.3), (w4, 0.6, 0.7, 0.5)

}
,

ζ(Q ∩ R) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.4, 0.4, 0.3), (w4, 0.5, 0.1, 0.5)

}
.

Now,

ζ(Q) ∪ ζ(R) =
{
(w1, 0.4, 0.7, 0.4), (w2, 0.5, 0.7, 0.3), (w3, 0.5, 0.7, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q) ∪ ζ(R) =
{
(w1, 0.4, 0.7, 0.3), (w2, 0.5, 0.7, 0.6), (w3, 0.5, 0.4, 0.5), (w4, 0.5, 0.2, 0.6)

}
,

ζ(Q) ∩ ζ(R) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.4, 0.6, 0.3), (w3, 0.4, 0.6, 0.3), (w4, 0.6, 0.7, 0.5)

}
,

ζ(Q) ∩ ζ(R) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.4, 0.4, 0.3), (w4, 0.5, 0.1, 0.5)

}
.

From the above calculations,

∼ ζ(∼ Q) = ζ(Q), ∼ ζ(∼ Q) = ζ(Q),
ζ(Q ∩ R) = ζ(Q) ∩ ζ(R), ζ(Q ∪ R) ⊇ ζ(Q) ∪ ζ(R),
ζ(Q ∪ R) = ζ(Q) ∪ ζ(R), ζ(Q ∩ R) ⊆ ζ(Q) ∩ ζ(R).

Remark 1. In Theorem 2, properties (1) and (5) show that the lower and upper mF soft rough approximations
operators ζ and ζ, respectively, are dual to one another.
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Proposition 2. Let (Y, T, ζ) be an mF soft approximation space. Then, the lower and upper soft rough
approximations of mF sets Q and R satisfy the following laws:

1. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

2. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

3. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

4. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

5. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R),

6. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R),

7. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R),

8. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R).

Proof. Its proof follows immediately from Definition 8.

Definition 9. Let Y be a universe, Q = {(v, pi ◦Q(v)) | v ∈ Y} ∈ m(Y), and σ ∈ [0, 1]m. The σ-level cut
set of Q and the strong σ-level cut set of Q, denoted by Qσ and Qσ+, respectively, are defined as follows:

Qσ = {v ∈ Y | pi ◦Q(v) ≥ σ},

Qσ+ = {v ∈ Y | pi ◦Q(v) > σ}.

Definition 10. Let ζ be an mF soft relation on Y× T, we define

ζσ = {(v, w) ∈ Y× T | pi ◦ ζ(v, w) ≥ σ},
ζσ(v) = {w ∈ T | pi ◦ ζ(v, w) ≥ σ},

ζσ+ = {(v, w) ∈ Y× T | pi ◦ ζ(v, w) > σ},
ζσ+(v) = {w ∈ T | pi ◦ ζ(v, w) > σ}.

Then, ζσ and ζσ+ are two crisp soft relations on Y× T.

We now prove that the mF soft rough approximation operators can be described by crisp soft
rough approximation operators.

Theorem 3. Let (Y, T, ζ) be an mF soft approximation space and Q ∈ m(T). Then, the upper mF soft rough
approximation operator can be described as follows, ∀ v ∈ Y:

1.

Qζ(v) =
∨

σ∈[0,1]m

(
σ ∧ ζσ(Qσ)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ(Qσ+)(v)

)
,

=
∨

σ∈[0,1]m

(
σ ∧ ζσ+(Qσ)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ+(Qσ+)(v)

)
.

2. [ζ(Q)]σ+ ⊆ ζσ+(Qσ+) ⊆ ζσ+(Qσ) ⊆ ζσ(Qσ) ⊆ [ζ(Q)]σ.
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Proof. 1. For all v ∈ Y,∨
σ∈[0,1]m

(
σ ∧ ζσ(Qσ)(v)

)
= sup{σ ∈ [0, 1]m | v ∈ ζσ(Qσ)},

= sup{σ ∈ [0, 1]m | ζσ(v) ∩Qσ},
= sup{σ ∈ [0, 1]m | ∃ w ∈ T[w ∈ ζσ(v), w ∈ Qσ]},
= sup{σ ∈ [0, 1]m | ∃ w ∈ T[pi ◦Qζ(v, w) ≥ σ, pi ◦Q(w) ≥ σ]},

=
∨

w∈T

(
pi ◦Qζ(v, w) ∧ pi ◦Q(w)

)
,

= Qζ(v).

By similar arguments, we can compute

Qζ(v) =
∨

σ∈[0,1]m

(
σ ∧ ζσ(Qσ+)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ+(Qσ)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ+(Qσ+)(v)

)
.

2. By Definitions 9 and 10, we directly verified that ζσ+(Qσ+) ⊆ ζσ+(Qσ) ⊆ ζσ(Qσ). Now, it is
sufficient to show that [ζ(Q)]σ+ ⊆ ζσ+(Qσ+) and ζσ(Qσ) ⊆ [ζ(Q)]σ.

For all v ∈ [ζ(Q)]σ+, we have Qζ(v) > σ. By Definition 8,
∨

w∈T

(
pi ◦Qζ(v, w) ∧ pi ◦Q(w)

)
> σ.

Then, there exists w0 ∈ T, such that pi ◦ Qζ(v, w0) ∧ pi ◦ Q(w0) > σ, that is, pi ◦ Qζ(v, w0) > σ

and pi ◦ Q(w0) > σ. Thus, w0 ∈ ζσ+(v) and w0 ∈ Qσ. It follows that ζσ+(v) ∩ Qσ 6= ∅.
By Definition 4, we have v ∈ ζσ+(Qσ+). Hence, [ζ(Q)]σ+ ⊆ ζσ+(Qσ+).

To prove ζσ(Qσ) ⊆ [ζ(Q)]σ, let an arbitrary v ∈ ζσ(Qσ), we have ζσ(Qσ)(v) = 1.
Since Qζ(v) =

∨
σ∈[0,1]m

[ζσ(Qσ)(v)] ≥ σ ∧ ζσ(Qσ)(v) = σ, we obtain v ∈ [ζ(Q)]σ.

Hence, ζσ(Qσ) ⊆ [ζ(Q)]σ.

Theorem 4. Let (Y, T, ζ) be an mF soft approximation apace. If ζ is serial, then the lower and upper mF soft
rough approximation operators ζ(Q) and ζ(Q), respectively, satisfy the following:

1. ζ(∅) = ∅. ζ(T) = Y,
2. ζ(Q) ⊆ ζ(Q), for all Q ∈ m(T).

Proof. Its proof follows directly by Definition 8.

Definition 11. Let Q be an mF set of the universe set Y and let ζ(Q), ζ(Q) be the lower and upper soft rough
approximation operators. Then, ring sum operation about mF sets ζ(Q) and ζ(Q) is defined by

ζ(Q)⊕ ζ(Q) =
{(

v, pi ◦Qζ(v) + pi ◦Qζ(v)− pi ◦Qζ(v)× pi ◦Qζ(v)
)
| v ∈ Y

}
.

4. Applications to Decision-Making

4.1. Selection of a Hotel

The selection of the right hotel to stay is always a difficult task. Since every person has different
needs when searching for a hotel. The location of the hotel is something that is very important for an
enjoyable stay. There are a number of factors to take into consideration for selecting the right hotel,
whether we are looking for a great location, a great meal option or a great service. Suppose a person
(Mr. Adeel) wants to stay in a hotel for a long period. There are four alternatives in his mind.
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The alternatives are y1, y2, y3, y4. He wants to select the most suitable hotel. The location, meal options
and services are the main parameters for the selection of a hotel.
Let Y = {y1, y2, y3, y4} be the set of four hotels under consideration and let T = {z1, z2, z3} be the set
of parameters related to the hotels in Y, where,

‘z1’ represents the Location,
‘z2’ represents the Meal Options,
‘z3’ represents the Services.

We give more features of these parameters as follows:

• The “Location” of the hotel include close to main road, in the green surroundings, in the city center.
• The “Meal options” of the hotel include fast food, fast casual, casual dining.
• The “Services” of the hotel include Wi-Fi connectivity, fitness center, room service.

Suppose that Adeel explains the “attractiveness of the hotel” by forming a 3-polar fuzzy soft
relation ζ : Y → T, which is given by

ζ z1 z2 z3

y1 (0.2, 0.6, 0.1) (0.3, 0.4, 0.7) (0.7, 0.3, 0.2)
y2 (0.4, 0.5, 0.7) (0.4, 0.5, 0.5) (0.7, 0.4, 0.1)
y3 (0.7, 0.8, 0.3) (0.8, 0.9, 0.4) (0.6, 0.2, 0.6)
y4 (0.5, 0.6, 0.4) (0.6, 0.7, 0.1) (0.8, 0.5, 0.3).

Thus, ζ over Y× T is the 3-polar fuzzy soft relation in which location, meal option and price of
the hotels are considered. For example, if we consider “Location” of the hotel, ((y1, z1), 0.2, 0.6, 0.1)
means that the hotel y1 is 20% close to the main road, 60% in the green surroundings and 10% in the
city center.

We now assume that Adeel gives the optimal normal decision object Q, which is a 3-polar fuzzy
subset of T as follows:

Q =
{
(z1, 0.5, 0.6, 0.7), (z2, 0.7, 0.6, 0.9), (z3, 0.9, 0.6, 0.8)

}
.

By Definition 8,

Qζ(y1) = (0.7, 0.6, 0.8), Qζ(y1) = (0.7, 0.6, 0.7),
Qζ(y2) = (0.6, 0.6, 0.7), Qζ(y2) = (0.7, 0.5, 0.7),
Qζ(y3) = (0.5, 0.6, 0.7), Qζ(y3) = (0.7, 0.6, 0.6),
Qζ(y4) = (0.5, 0.6, 0.7), Qζ(y4) = (0.8, 0.6, 0.4).

Now, 3-polar fuzzy soft rough approximation operators ζ(Q), ζ(Q), respectively, are given by

ζ(Q) =
{
(y1, 0.7, 0.6, 0.8), (y2, 0.6, 0.6, 0.7), (y3, 0.5, 0.6, 0.7), (y4, 0.5, 0.6, 0.7)

}
,

ζ(Q) =
{
(y1, 0.7, 0.6, 0.7), (y2, 0.7, 0.5, 0.7), (y3, 0.7, 0.6, 0.6), (y4, 0.8, 0.6, 0.4)

}
.

These operators are very close to the decision alternatives yn, n = 1, 2, 3, 4.
By Definition 11, we have the choice set as follows:

ζ(Q)⊕ ζ(Q) =
{
(y1, 0.91, 0.84, 0.94), (y2, 0.88, 0.8, 0.91), (y3, 0.85, 0.84, 0.88), (y4, 0.9, 0.84, 0.82)

}
.

Thus, Mr. Adeel will select the hotel y1 to stay because the optimal decision in the choice set
ζ(Q)⊕ ζ(Q) is y1.
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The method of selecting a suitable hotel is explained in the following Algorithm 1.

Algorithm 1: Selection of a suitable hotel

1. Input Y as universe of discourse.
2. Input T as a set of parameters.
3. Construct an mF soft relation ζ : Y → T according to the different needs of the

decision maker.
4. Give an mF subset Q over T, which is an optimal normal decision object according to the

various requirements of decision maker.
5. Compute the mF soft rough approximation operators ζ(Q) and ζ(Q) by Definition 8.
6. Find the choice set S = ζ(Q)⊕ ζ(Q) by Definition 11.
7. Select the optimal decision yk. If pi ◦ S(yk) ≥ M, where M =

∨
1≤k≤n

pi ◦ S(yk), n is equal to

the number of objects in Y, then the optimal decision will be yk.

If there exists more than one optimal choice in step 7 of the Algorithm 1, that is, yki
= ykj

, where
1 ≤ ki 6= k j ≤ n, one may go back and change the optimal normal decision object Q and repeat the
Algorithm 1 so that the final decision is only one.

4.2. Selection of a Place

Choosing a place to go when some people have the opportunity to travel can sometimes be very
difficult task. Suppose that a group of ten peoples plan a tour to a suitable place in a country Z.
There are four alternatives in their mind. The alternatives are q1, q2, q3, q4. They want to select the best
place for the tour. It is a challenge to find advice in one place. The environment and cost are the main
parameters for the selection of a suitable place. In the environment of the place, they want to check
whether the place has availability of built environment, natural environment and social environment.
The term built environment refers to the man-made surroundings. Built environment of the place
includes buildings, parks and every other things that are made by human beings. Natural environment
of the place includes forests, oceans, rivers, lakes, atmosphere, climate, weather, etc. The social
environment includes the culture and lifestyle of the human beings. Lastly, the tour cost is an important
criteria for the place selection. It includes low, medium and high.

Let Y = {q1, q2, q3, q4} be the set of four places and T = {a1, a2} be the set of parameters, where

‘a1’ represents the Environment,
‘a2’ represents the Tour Cost.

We give more characteristics of these parameters.

• The “Environment” of the place includes built environment, natural environment, and
social environment.

• The “Tour Cost” of the place may be low, medium, or high.

Suppose that they describe the “attractiveness of the place” by constructing a 3-polar fuzzy soft
relation ζ over Y× T, which is given by

ζ a1 a2

q1 (0.8, 0.8, 0.9) (0.4, 0.7, 0.6)
q2 (0.5, 0.7, 0.6) (0.5, 0.7, 0.8)
q3 (0.8, 0.6, 0.7) (0.8, 0.9, 0.4)
q4 (0.7, 0.9, 0.6) (0.6, 0.7, 0.8)
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Thus, ζ : Y → T is the 3-polar fuzzy soft relation in which environment and tour cost of the places
are considered. For example, if we consider “Environment” of the place, ((q1, a1), 0.8, 0.8, 0.9) means
that the place q1 include 80% built environment, 80% natural environment and 90% social environment.

We now assume that they give the optimal normal decision object Q, which is a 3-polar fuzzy
subset of T as follows:

Q =
{
(a1, 0.8, 0.7, 0.9), (a2, 0.7, 0.6, 0.8)

}
.

From Definition 8,

Qζ(q1) = (0.7, 0.6, 0.8), Qζ(q1) = (0.8, 0.7, 0.9),
Qζ(q2) = (0.7, 0.6, 0.8), Qζ(q2) = (0.5, 0.7, 0.8),
Qζ(q3) = (0.7, 0.6, 0.8), Qζ(q3) = (0.8, 0.6, 0.7),
Qζ(q4) = (0.7, 0.6, 0.8), Qζ(q4) = (0.7, 0.7, 0.8).

We now have 3-polar fuzzy soft rough approximation operators ζ(Q), ζ(Q), respectively,
as follows:

ζ(Q) =
{
(q1, 0.7, 0.6, 0.8), (q2, 0.7, 0.6, 0.8), (q3, 0.7, 0.6, 0.8), (q4, 0.7, 0.6, 0.8)

}
,

ζ(Q) =
{
(q1, 0.8, 0.7, 0.9), (q2, 0.5, 0.7, 0.8), (q3, 0.8, 0.6, 0.7), (q4, 0.7, 0.7, 0.8)

}
.

These operators are very close to the decision alternatives qn, n = 1, 2, 3, 4.
By Definition 11,

ζ(Q)⊕ ζ(Q) =
{
(q1, 0.94, 0.88, 0.98), (q2, 0.85, 0.88, 0.96), (q3, 0.94, 0.84, 0.94), (q4, 0.91, 0.88, 0.96)

}
.

Thus, the optimal decision in the choice set ζ(Q)⊕ ζ(Q) is q1. Therefore, they will select the place
q1 for the tour.

The method of selecting a suitable place for tour is explained in the following Algorithm 2.

Algorithm 2: Selection of a suitable place

1. Input Y as universe of discourse.
2. Input T as a set of parameters.
3. Construct an mF soft relation ζ over Y× T according to the different needs of the

decision makers.
4. Give an mF subset Q of T, which is an optimal normal decision object according to the

various requirements of decision makers.
5. Compute the mF soft rough approximation operators ζ(Q) and ζ(Q) by Definition 8.
6. Find the choice set S = ζ(Q)⊕ ζ(Q) by Definition 11.
7. Select the optimal decision qk. If pi ◦ S(qk) ≥ M, where M =

∨
1≤k≤n

pi ◦ S(qk), n is equal to the

number of objects in Y, and then the optimal decision will be qk.

If there exists more than one optimal choice in step 7 of the Algorithm 2, that is, qki
= qkj

where
1 ≤ ki 6= k j ≤ n, one may go back and change the optimal normal decision object Q and repeat the
Algorithm 2 so that the final decision is only one.

4.3. Selection of a House

Buying a house is an exhilarating time in many people lives, but it is also a very difficult task to
those who are not particularly real estate savvy. There are a number of factors to take into consideration
for buying the house such as location of the house, size of the house and price of the house. These factors
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among many others influence house buyers before they even get to start thinking about buying a new
house. Suppose a person (Mr. Ali) wants to buy a house. The alternatives in his mind are u1, u2, u3.
The size, location and price are the main parameters for the selection of a suitable house.

Let Y = {u1, u2, u3} be the set of three houses and let T = {t1, t2, t3} be the set of parameters
related to the houses in Y, where

‘t1’ represents the Size,
‘t2’ represents the Location,
‘t3’ represents the Price.

We give further characteristics of these parameters.

• The “Size” of the house include small , large, and very large.
• The “Location” of the house include close to the main road, in the green surroundings, and in the

city center.
• The “Price” of the house includes low, medium, and high.

Suppose that Ali describes the “attractiveness of the house” by forming a 3-polar fuzzy soft
relation ζ : Y → T, which is given by

ζ t1 t2 t3

u1 (0.5, 0.7, 0.9) (0.7, 0.6, 0.8) (0.5, 0.6, 0.9)
u2 (0.8, 0.9, 0.1) (0.6, 0.8, 0.9) (0.8, 0.4, 0.2)
u3 (0.9, 0.7, 0.6) (0.9, 0.8, 0.9) (0.4, 0.6, 0.3).

Thus, ζ over Y× T is the 3-polar fuzzy soft relation in which size, location and price of the houses
are considered. For example, if we consider “Location” of the house, ((u2, t1), 0.8, 0.9, 0.1) means that
the house u1 is, 80% close to the main road, 90% in the green surroundings and 10% in the city center.

We now assume that Ali gives the optimal normal decision object Q, which is a 3-polar fuzzy
subset of T as follows:

Q =
{
(t1, 0.6, 0.8, 0.7), (t2, 0.5, 0.8, 0.8), (t3, 0.9, 0.8, 0.7)

}
.

By Definition 8,

Qζ(u1) = (0.5, 0.8, 0.7), Qζ(u1) = (0.5, 0.7, 0.8),
Qζ(u2) = (0.5, 0.8, 0.8), Qζ(u2) = (0.8, 0.8, 0.8),
Qζ(u3) = (0.5, 0.8, 0.7), Qζ(u3) = (0.6, 0.8, 0.8).

Now, 3-polar fuzzy soft rough approximation operators ζ(Q), ζ(Q), respectively, are given by

ζ(Q) =
{
(u1, 0.5, 0.8, 0.7), (u2, 0.5, 0.8, 0.8), (u3, 0.5, 0.8, 0.7)

}
,

ζ(Q) =
{
(u1, 0.5, 0.7, 0.8), (u2, 0.8, 0.8, 0.8), (u3, 0.6, 0.8, 0.8)

}
.

These operators are very close to the decision alternatives un, n = 1, 2, 3.

Using Definition 11,

ζ(Q)⊕ ζ(Q) =
{
(u1, 0.75, 0.94, 0.94), (u2, 0.9, 0.96, 0.96), (u3, 0.8, 0.96, 0.94)

}
.

Hence, Ali will buy the house u2 because the optimal decision in the choice set ζ(Q)⊕ ζ(Q) is u2.
The method of selecting a suitable house is explained in the following Algorithm 3.
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Algorithm 3: Selection of a suitable house

1. Input Y as universe of discourse.
2. Input T as a set of parameters.
3. Construct an mF soft relation ζ : Y → T according to the different needs of the

decision maker.
4. Give an mF subset Q over T, which is an optimal normal decision object according to the

various requirements of the decision maker.
5. Compute the mF soft rough approximation operators ζ(Q) and ζ(Q) by Definition 8.
6. Find the choice set S = ζ(Q)⊕ ζ(Q) by Definition 11.
7. Select the optimal decision uk. If pi ◦ S(uk) ≥ M, where M =

∨
1≤k≤n

pi ◦ S(uk), n is equal to

the number of objects in Y, and then the optimal decision will be uk.

If there exist too many optimal choices in step 7 of Algorithm 3, that is, uki
= ukj

, where
1 ≤ ki 6= k j ≤ n, change the optimal normal decision object Q and repeat the Algorithm 3 so that
the final decision is only one.

5. Conclusions

The theory of mF sets plays a vital role in decision-making problems, when multiple information
is given. An mF soft rough set is a combination of an mF set, soft set and rough set. In this paper, we
have presented the concepts of two new hybrid models called soft rough mF sets and mF soft rough
sets, which provide more exactness and compatibility with a system when compared with other hybrid
mathematical models. We have discussed the properties of both hybrid models. We have examined
the relationship between mF soft rough approximation operators and crisp soft rough approximation
operators. We have discussed some applications of mF soft rough sets in real-life decision-making
problems. We are expanding our research work to (1) soft rough mF graphs; (2) soft rough mF
hypergraphs; (3) mF soft rough graphs; (4) mF soft rough hypergraphs; and a (5) decision support
system based on mF soft rough hypergraphs.

Acknowledgments: The authors are thankful to the anonymous referees for their valuable comments
and suggestions.

Author Contributions: Muhammad Akram, Ghous Ali and Noura Omair Alshehri conceived and designed the
experiments; Ghous Ali performed the experiments; Noura Omair Alshehri analyzed the data; Muhammad
Akram contributed reagents/materials/analysis tools; Noura Omair Alshehri and Ghous Ali wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J.; Li, S.; Ma, S.; Wang, X. m-polar fuzzy sets: An extension of bipolar fuzzy sets. Sci. World J. 2014,
doi:10.1155/2014/416530.

2. Akram, M.; Younas, H.R. Certain types of irregular m-polar fuzzy graphs. J. Appl. Math. Comput. 2017, 53,
365–382.

3. Akram, M.; Adeel, A. m-polar fuzzy labeling graphs with application. Math. Comput. Sci. 2016, 10, 387–402.
4. Akram, M.; Waseem, N. Certain metrics in m-polar fuzzy graphs. New Math. Natl. Comput. 2016, 12, 135–155.
5. Akram, M.; Sarwar, M. Novel applications of m-polar fuzzy competition graphs in decision support system.

Neural Comput. Appl. 2017, 1–21, doi:10.1007/s00521-017-2894-y.
6. Li, S.; Yang, X.; Li, H.; Miao, M.A. Operations and decompositions of m-polar fuzzy graphs. Basic Sci. J. Text.

Univ. Fangzhi Gaoxiao Jichu Kexue Xuebao 2017, 30, 149–162.
7. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 145–172.
8. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.



Symmetry 2017, 9, 271 18 of 18

9. Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209.
10. Xu, Z.; Gou, X. An overview of interval-valued intuitionistic fuzzy information aggregations and applications.

Granul. Comput. 2017, 2, 13–39.
11. Das, S.; Kar, S.; Pal, T. Robust decision making using intuitionistic fuzzy numbers. Granul. Comput. 2017, 2,

41–54.
12. Cai, M.; Li, Q.; Lang, G. Shadowed sets of dynamic fuzzy sets. Granul. Comput. 2017, 2, 85–94.
13. Pedrycz, W.; Chen, S.M. Granular Computing and Decision-Making: Interactive and Iterative Approaches; Springer:

Heidelberg, Germany, 2015.
14. Molodtsov, D.A. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31.
15. Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562.
16. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602.
17. Alcantud, J.C.R. A novel algorithm for fuzzy soft set based decision making from multiobserver input

parameter data set. Inf. Fusion 2016, 29, 142–148.
18. Alcantud, J.C.R. Fuzzy soft set based decision making: A novel alternative approach. In Proceedings of

the 16th World Congress of the International Fuzzy Systems Association (IFSA) and 9th Conference of the
European Society for Fuzzy Logic and Technology (EUSFLAT), Gijón, Spain, 30 June–3 July 2015.

19. Alcantud, J.C.R. Fuzzy soft set decision making algorithms: Some clarifications and reinterpretations.
In Proceedings of the Spanish Association for Artificial Intelligence, Salamanca, Spain, 14–16 September 2016;
Springer: Basel, Switzerland, 2016; pp. 479–488.

20. Alcantud, J.C.R.; Santos-Garcia, G. A new criterion for soft set based decision making problems under
incomplete information. Int. J. Comput. Intell. Syst. 2017, 10, 394–404.

21. Alcantud, J.C.R.; Santos-Garcia, G. Incomplete soft sets: New solutions for decision making problems.
In Decision Economics: In Commemoration of the Birth Centennial of Herbert A. Simon 1916–2016 (Nobel Prize in
Economics 1978); Springer: Cham, Switzerland, 2016; pp. 9–17.

22. Feng, F.; Li, C.X.; Davvaz, B.; Ali, M.I. Soft sets combined with fuzzy sets and rough sets: A tentative
approach. Soft Comput. 2010, 14, 899–911.

23. Feng, F.; Liu, X.; Leoreanu-Fotea, V.; Jun, Y.B. Soft sets and soft rough sets. Inf. Sci. 2011, 181, 1125–1137.
24. Cagman, N.; Enginoglu, S. Soft matrix theory and decision making. Comput. Math. Appl. 2010, 59, 3308–3314.
25. Zhang, H.; Shu, L.; Liao, S. Intuitionistic fuzzy soft rough set and its application in decision-making.

Abstr. Appl. Anal. 2014, doi:10.1155/2014/287314.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Soft Rough m-Polar Fuzzy Sets
	mF Soft Rough Sets
	Applications to Decision-Making
	Selection of a Hotel
	Selection of a Place
	Selection of a House

	Conclusions
	References

