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80-308 Gdańsk, Poland; marcin.ciecholewski@ug.edu.pl
† Current address: ul. Wita Stwosza 57, 80-308 Gdańsk, Poland.
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Abstract: The correct segmentation of tumours can simplify formulate the diagnostic hypothesis,
particularly in cases of irregular shapes, with fuzzy margins or spicules growing into the surrounding
tissue, which are more likely to be malignant. In this study, the following active contour methods
were used to segment the masses: an edge–based active contour model using an inflation/deflation
force with a damping coefficient (EM), a geometric active contour model (GAC) and an active contour
without edges (ACWE). The preprocessing techniques presented in this publication are to reduce
noise and at the same time amplify uniform areas of images in order to improve segmentation results.
In addition, the use of image sampling by bicubic interpolation was tested to shorten the evolution
time of active contour methods. The experiments used a test set composed of 100 cases taken
from two publicly available databases: Digital Database for Screening Mammography (DDSM) and
Mammographic Image Analysis Society (MIAS) database. The qualitative assessment concerned the
ability to formulate an adequate diagnostic hypothesis and, for the individual methods (malignant
and benign cases together), it amounted to at least: 81% (EM), 76% (GAC), and 69% (ACWE).
The quantitative test consisted of measuring the following indexes: overlap value (OV) and extra
fraction (EF). The OV of the segmentation for malignant and benign cases had the following average
values: 0.81 ∓ 0.10 (EM), 0.79 ∓ 0.09 (GAC), 0.76 ∓ 0.18 (ACWE). The average values of the EF
index, in turn, amounted to: 0.07 ∓ 0.06 (EM), 0.07 ∓ 0.05 (GAC) 0.34 ∓ 0.32 (ACWE). The qualitative
and quantitative results obtained are the best for EM and are comparable or better than for other
methods presented in the literature.

Keywords: active contour; edge–based active contour; region–based active contour; image processing;
segmentation; masses; breast cancer; mammography

1. Introduction

Mammography systems for the computer–aided detection (CAD) of cancer masses perform
the following steps: preprocessing [1–3], segmentation [4–7], feature extraction [8–10] and
classification [11–13]. However, whether a CAD system will be successfully adopted in clinical practice
depends mainly on the segmentation algorithm or algorithms used. In medical image analysis,
segmentation is defined as a method allowing the precise margins of the potential lesions to be
determined or the shape of the organ to be determined.

A tumor is a pathology occupying a certain area, ranging from medium-grey to white shades
in the mammogram. The smallest tumors visible in mammograms are approx. 0.5 cm in diameter.
The most significant features indicating whether the tumor is malignant or benign are its shape and
the nature of its margins [8,14]. The shape can be: round, oval, lobulated, and irregular. The margins,
in turn, can be described as: circumscribed, microlobulated, obscured, ill–defined, and spiculated.
Benign tumours are usually: regular (round or oval) in shape, with smooth margins and uniform
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texture. They are circumscribed well against the surrounding tissue. Tumors of irregular shapes and
with fuzzy margins or spicules growing into the surrounding tissue are more likely to be malignant.

Digital mammograms frequently contain strong noise while cancerous tumours are of varied
shapes and appearances. Furthermore, the contrast of suspicious-looking regions of mammograms is
frequently low and heterogeneous, and the margins between masses are fuzzy and difficult to identify.
All of this means that the segmentation of the lesions is an important and frequently very difficult task.

In general, algorithms used for the detection and segmentation of masses as well as their
further possible classification can be divided into two approaches: supervised segmentation and
unsupervised segmentation. Supervised segmentation mainly includes model-based methods [15–17].
Model-based methods use previously acquired (e.g., defined or learned) knowledge of objects and
background regions that are being segmented. Previous knowledge is used to determine whether
specific regions occur in the image or not. Supervised segmentation methods also include template
matching approaches [15,18], in which the training set contains templates or patterns of objects
that can be detected. Unfortunately, the main limitation of model—or template-based methods—is
their reduced effectiveness in case of irregular masses with spiculated margins that are difficult
to distinguish.

Unsupervised segmentation methods work by dividing the image into areas that are different
or uniform with regard to defined features, such as grey levels, their texture or colour. Three main
groups of unsupervised segmentation methods can be listed:

- Clusterization methods that group pixels with the same properties and make a division into
non-connected regions possible. An example of such a method is presented in the publication
of Suliga et al. [19], in which the Markov random field is used to clusterize pixels belonging to
lesions. The mass detection algorithm developed in [20] works by using the area of fraction under
minimum (AFUM) filter. The AFUM filter determines the degree to which the surrounding region
of a point radially decreases in intensity. The last step in the algorithm is to threshold the image
to identify suspicious-looking areas.

- Region-based methods allow the image to be divided into homogeneous and connected regions,
e.g., according to their texture properties. In the publication by Wei et al. [21], potential lesions are
first extracted by their clusterization based on the region-growing method. The morphological
and spatial relationships of grey levels, i.e., the characteristics of texture features, are extracted for
every suspicious-looking object. Then, rule-based and linear discriminant analysis classifiers are
used to differentiate normal tissues from masses. Unfortunately, this method has a certain
limitation, namely the wrong classification of the background with fragments of lesions,
causing oversegmentation. This applies to images of a low contrast. In Ref. [22], the authors
proposed an automated method (requiring no interaction by the user) with the use of the
marker-controlled watershed segmentation [22] and presented good results for malignant and
benign cases, as well as for different types of tissue densities and margins of the analysed tumours.

- Contour methods that find the boundaries of approximated areas. Active contour methods
(ACMs) are among the most popular because they are able to integrate image pixels into smooth,
connected borders that delineate the shape being approximated. ACMs can be further subdivided,
e.g., into edge-based [23–25], or region-based ones [26–29]. The way in which the energy
function is defined in the ACM determines the effectiveness and the range of applications
of the active contour. The advantage of region-based methods, in turn, consists of their
topological adaptability to complex shapes. Several active contour approaches using level-sets
have been used to segment masses in mammograms [6,30,31]. Rahmati et al. [6] presented the
maximum likelihood active contour model using level sets (MLACMLS) and demonstrated that
the proposed method produced better results than earlier approaches presented in [30] and also
in [31]. In [6], experiments were conducted on 100 regions of interest (ROI) with the resolution
of 256 × 256 pixels taken from mammograms from the DDSM database, and the mean value of
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Jaccard’s index [32] (Overlap Value—OV) achieved was 86.85%. The time needed to segment
masses for ROIs with the resolution of 256 × 256 ranged from 10 to 60 s [6].

A more detailed review of publications dealing with the classification of various methods of
segmenting lesions in mammograms can be found, among others, in [5,33,34]. Articles [35–38], in turn,
present approaches supporting interactive and automatic image segmentation for grey level [36] and
colour [35,37,38] images.

This article is structured as follows. Section 2 presents the Material and Methods. Section 3
contains the Results and Discussion. Section 4 is the Conclusion.

2. Material and Methods

In this research, just as in [6,30,31], ACMs were used to segment masses in mammograms.
This publication describes the application of the recently developed edge-based active contour
model using an inflation/deflation force with a damping coefficient [25], which is abbreviated to
EM. This model has been proven to be useful in the segmentation of various types of digital images,
including medical ones: produced by ultrasonography (USG) and magnetic resonance (MRI). The EM
was compared to two popular active contour methods, i.e.,

- A geometric active contour (GAC) using a morphological approach [39]. It enables the active
contour to evolve very effectively because there are no floating point operations and differential
operators have been replaced with mathematical morphological methods on a binary-level
set [39].

- Active Contour Without Edges (ACWE). This is a region-based method from publication [26],
very frequently used to segment images, including medical ones. This model enables a global
segmentation—for the entire image—and also a local segmentation (e.g., of a selected object in
the image after the contour is initiated inside the approximated object).

This study also contains an assessment of the ability to segment masses using two state-of-the-art
region-based active contours that support global segmentation, i.e., the region-scalable fitting model
(RSF) [28] and the B-spline level-set model [29].

In this study, 90 mammograms from the DDSM database [40,41] and 30 from the MIAS
database [42] were used. They were selected for the experiments by two experienced breast
radiologists: R1, R2. R1 has 30 years of professional experience and R2 10 years.

An ROI with the constant dimensions of 512 × 512 pixels and 256 grey levels was sampled
from each selected mammogram. Among the 120 analysed ROIs, there were 60 benign cases and
60 cancerous ones, with every ROI corresponding to a different patient. Each case in the DDSM
database has four images available in the CC and MLO projections for the left and right breast. CC is
the cranio-caudal projection showing the central and medial part of the mamma while MLO stands for
the medio-lateral oblique projection. In the experiments, a single view was taken, namely the CC or
MLO view, for each patient.

Detailed information about the analysed datasets with regards to the shape of the disorder,
different margins and types of tissues is presented in Table 1. It is worth noting that, in the case of
the DDSM database, there are four tissue categories given, which is consistent with the BI–RADS [43]
classification. The description of cases from the MIAS mammography database contains only three
categories of tissues.

It should be noted that twenty images—showing masses of various shapes, dimensions,
margins and brightnesses—were used as a training set to establish the necessary parameters of
the methods applied. The remaining 100 images were used to test the proposed segmentation method.
A convenient functionality of the CAD program can stem from using methods that automatically mark
ROIs containing suspicious-looking masses in mammograms. Example solutions are known from
literature [44–46]. On the other hand, these methods may lead to identifying false positive areas, i.e.,
implied ROIs that actually contain no masses, so the judgement of an experienced breast radiologist is
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indispensable here. This publication focuses on the subject of segmentation and the methods used in
it accept rectangular ROIs marked by a radiologist on an input mammogram in such a way that the
suspicious-looking anomalies are located in their centre.

The proposed method of segmenting lesions is illustrated in Figure 1. The preprocessing
methods used—namely input image inversion, histogram equalization [1], anisotropic diffusion
filtering (ADF) [47,48], Gaussian filtration—are to reduce noise, amplify uniform areas of the processed
image and thus improve the operation of the active contour models, namely: EM and GAC. In the
case of ACWE, it is sufficient to use only the Close-Open filtering (CO), which helps reduce noise.
Image sampling by bicubic interpolation [49], in turn, reduces the image resolution by half and thus
makes it possible to shorten the evolution time of the active contour for a pre-set number of iterations
in all three of the models used: ACWE, EM and GAC. If the image has been sampled, then its size
should be restored and this is done using bicubic interpolation too, which is also applied to the points
of the active contour from the last iteration. In the last step, the active contour nodes are overlaid on
the input image.

Figure 1. A block diagram of the proposed method of segmenting suspicious-looking masses from
mammograms using the following active contour models: an active contour without edges ACWE,
an edge-based active contour model using an inflation/deflation force with a damping coefficient EM
and a geometric active contour model GAC.
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Figure 2. An example illustrating subsequent steps of the methods for approximating masses in the
mammogram, in the order of the diagram from Figure 1. (a) ROI 512 × 512 pixels in size, based on
the image ‘mdb015’ from the MIAS database; (b) inverted image from letter (a); (c) executing the
histogram equalisation transformation; (d) sampling the image from letter (c) and reducing its size to
265 × 256 pixels. The sampled image sized 256 × 256 pixels is overlaid on the processed image from
letter (c); (e) the sampled image from letter (d), 256 × 256 pixels in size, after anisotropic diffusion
filtering [47,48]. To emphasise details better, the example is of the same height and width as the image
before sampling, i.e., from letter (c); (f) EM model use: the rectangular seed contour and the final
contour approximating the boundaries of the lesion; (g) EM model use: the final contour overlaid on the
input image from letter (a) after the processed image has been restored to the size of 512 × 512 pixels;
(h) GAC model use: the rectangular seed contour and the final contour approximating the boundaries
of the lesion; (i) GAC model use: The final contour overlaid on the input image from letter (a) after
the processed image has been restored to the size of 512 × 512 pixels; (j) the use of the ACWE model
(the same preprocessing as in the EM and GAC models): a rectangular seed contour and the final
contour; (k) ACWE: a rectangular seed contour and the final contour approximating the edges of the
lesion in a source image after the CO filtration; (l) ACWE: the final contour overlaid on the input image
from item (a).

Figure 2 contains examples illustrating the methods based on the diagram from Figure 1. If the
ACWE model uses the same methods of preprocessing as the EM and GAC methods, then the active
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contour will frequently produce an extra fraction, located outside the approximated area of the mass.
This situation is illustrated by Figure 2j. Only the use of CO filtering makes better results possible:
Figure 2k,l. Literature describes various active contour models that can be used to segment medical
images and the authors of papers present very good results. For instance, the region-scalable fitting
model (RSF) [28] and the B-spline level-set model [29] are region-based active contours recognised
in the literature. The RSF model can produce very good segmentation results for, among others,
MRI images of the brain and blood vessels. The B-spline level-set model, in turn, is very resistant to
stronger noise and also allows a calcaneus bone in 3D micro-CT images to be segmented with a high
accuracy. Unfortunately, the results of segmenting masses in mammograms using both models [28,29]
that execute the global segmentation of the entire analysed image are unsatisfactory. Example results
are illustrated in Figure 3.

Figure 3. The application of the following region-based active contours: the region-scalable fitting
model (RSF) [28] and the B-spline level-set [29] to the example mammogram ‘mdb015’ from the MIAS
database. The seed contour was put in the same place as in examples from Figure 2f,h. The first column
compares results based on the source image in which the CO filtration with a disk-shaped structuring
element with the radius of 3 had been applied, and the second column shows segmentation results
for an image subjected to the anisotropic diffusion filtration (ADF) as in the example from Figure 2e.
(a,b) RSF; (c,d) B-spline level-set.
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Table 1. Disorders in the analysed set of 120 ROIs, depending on the shape of the mass, its margins,
and tissue density types, based on the following databases: DDSM (90 ROIs) and MIAS (30 ROIs).

No. of Lesions of Various No. of Lesions of Various No. of Lesions of Various No. of Lesions of Various

Mass Shape Types Margin Types Densities (DDSM) Densities (MIAS)

Round 20 Circumscribed 40 Almost entirely fatty 23 Fatty 18
Oval 20 Spiculated 50 Scattered fibroglandular 43 Fatty—glandular 8

Lobulated 20 Ill-defined 10 Heterogeneously dense 16 Dense—glandular 4
Irregular 60 Microlobulated 10 Extremely dense 8

Obscured 10

2.1. Anisotropic Diffusion Filtering (ADF)

Anisotropic diffusion reduces the noise in the image while keeping region boundaries, which is
very important in the segmentation carried out later. According to [48], the anisotropic diffusion (It) of
the image (I) is defined by the following equation:

It = div[c(x, y, t)∇I] = c(x, y, t)∆I +∇c · ∇I, (1)

where div is the divergent operator, ∆ and ∇ are, respectively, the gradient and Laplace operators,
and c(x, y, t) is the diffusion coefficient with the iteration step t. The diffusion coefficient c(x, y, t)
influences the rate of diffusion, which means that the boundaries in the image are selectively equalised
or amplified, depending on the function selected. It may be written as c(||∇I||). In [47], two functions
were proposed:

c(||∇I||) = e[−((||∇I||])/(K)2)], (2)

c(||∇I||) = 1

1 +
(
||∇I||

K

)2 , (3)

where K is a constant controlling the edge sensitivity. The function (2) emphasises high-contrast edges
in relation to low-contrast edges, while function (3) emphasises larger regions in relation to smaller
ones in the image processed.

In this study, function (3) with the value of K = 2 was used. The ADF filtering was executed for
50 iterations. An example of utilising an ADF filter using function (3) is presented in Figure 2e.

2.2. Active Contour Models Used

The following two edge-based active contour models were used in the study: EM and GAC,
as was the ACWE, which belongs to the group of region-based active contours.

2.2.1. Edge-Based Active Contour Model Using an Inflation/Deflation Force with a Damping
Coefficient (EM)

The (EM) model is a recent development [25,50] and its iteration equation has the following form:

vi+1(t) = vi(t)− w1Ftensile
i (t) + w2F f lexural

i (t) + w3Fexternal
i (t)−

−τ(i)Fin f lation/de f lation
i (t),

(4)
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whereas:

- w1, w2 and w3 are weighing coefficients.
- Ftensile

i is the tensile force. For the node i at iteration t: Ftensile
i (t) = 2vi(t)− vi−1(t)− vi+1(t)

- F f lexural
i is the flexural force. For the node i at iteration t: F f lexural

i (t) = 2Ftensile
i (t)− Ftensile

i−1 (t) +
Ftensile

i+1 (t).
- Fexternal

i (t) = ∇P(xi(t), yi(t)) is the external force that allows the contour to be moved to regions
with higher gradient values in the image. When P(x, y) = −c||∇(Gσ ∗ I(x, y))||, the convolution
Gσ ∗ I(x, y) serves the purpose of removing noise from the image I using the Gaussian filter Gσ.

- Fin f lation/de f lation
i (t) = F(Is(xi, yi))ni(t) is the force which inflates or deflates the contour in the

direction of the edges being identified, whereas ni(t) represents a unit vector for the node with
the index i:

F(x, y) =

{
−1, if I(x, y) < T,
+1, if I(x, y) ≥ T,

(5)

in turn, is a function that links the inflation force with the image function I for a set value of the
threshold T.

- The parameter τi makes it possible to dampen the inflation/deflation force for the node with the
index i at iteration t. The damping is performed in the vicinity of the identified edges, according to
the relationship τi ← DF ∗ τi, whereas DF represents the value of the damping factor.

In addition, the following parameters are determined according to Algorithm 1 based on the
publication [25]:

- αmin, αmax i.e., the minimum and maximum angle between a pair of adjacent nodes;
- Lmin, Lmax, which are the minimum and maximum distances between adjacent nodes;
- inRv the maximum number of reversals of the node; after it is exceeded, the value of the

inflation/deflation force is dampened;
- number of iterations executed.

2.2.2. Geometric Active Contour Using Morphological Operators (GAC)

The GAC model has been presented in publication [39]. Iteration equations of the evolving
contour are as follows:

un+ 1
3 (x) =


Ddun(x), if I(x) ∈ [I0, I1] and υ > 0,
Edun(x), if I(x) ∈ [I0, I1] and υ < 0,
un(x), otherwise.

(6)

un+ 2
3 (x) =


1, if ∇un(x)∇g(I)(x) > 0,
0, if ∇un(x)∇g(I)(x) < 0,
un+ 1

3 (x), if ∇un(x)∇g(I)(x) = 0,
(7)

un+1(x) =

{
(SId ◦ ISdun)(x), if g(I)(x) ≥ 0,
un+ 2

3 (x), otherwise,
(8)

whereas Dd and Ed represent the operators of dilation and erosion with a square structural element
3× 3 pixels in size. The parameter v represents an inflating (v > 0) or a deflating contour (v < 0)
and is set by the user. The centre of the brightness interval [I0, I1] is calculated as the median value of
brightnesses calculated for the contour neighbourhood region using the selected function g(I), i.e.,

g(I) =
1√

10−20 + |∇Gσ ∗ I|
, (9)

g(I) = |Gσ ∗ I|. (10)
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The first function (9) reaches minima where the edges occur in the image I, while the second
function (10) reaches the minima where dark lines occur. Gσ stands for a Gaussian function removing
noise from image I. SId and ISd represent morphological line operators [39], and the purpose of the
operation SId ◦ ISd is to smooth out the contour during its evolution. In the binary image, the SId and
ISd operators have the same effect. However, the operator SId removes sharp ends of the contour for
the white pixels, while ISd does the opposite.

In the computer implementation, the parameter ‘Interval Radius’ represents a certain radius of
the brightness interval [I0, I1], while the ‘attraction force’ represents the selection of the function g(I)
(i.e., Label (9) or (10)). In addition, the number of iterations carried out is also determined.

2.2.3. Active Contour without Edges (ACWE)

This is a region–based method, based on publication [26], very frequently used to segment images,
including medical ones. In the ACWE model, the following energy criterion has been adopted:

E(φ) =
∫

Ω
F(I(x), φ(x))dx + λ

∫
Ω

δ(φ(x))‖∇‖dx, (11)

where δ is a Dirac function and the F function is as follows:

F(I(x), φ(x)) = H(φ(x))(I(x)− v)2 + (1− H(φ(x)))(I(x)− u)2. (12)

H—is a Heaviside function, while u and v are parameters updated at each iteration and are
as follows:

u =

∫
Ω(1− H(φ(x))) · I(x)∫

Ω(1− H(φ(x)))
, (13)

v =

∫
Ω H(φ(x)) · I(x)∫

Ω H(φ(x))
. (14)

The first integral in Equation (11) corresponds to the data attachment term, while the second
integral is a regularization term minimising the length of the curve and thus allowing the contour to
be smoothed out during its evolution. The evolution equation is as follows:

∂φ

∂t
(x) = δ(φ(x))((I(x)− v)2 − (I(x)− u)2) + λδ(φ(x))κ, (15)

where κ = div
(
∇φ(x)
‖∇φ(x)‖

)
corresponds to the curvature of the evolving contour. In the computer

implementation, two parameters are used:

- The curvature term λ. This parameter controls the regularization term from the Equation (15).
- The number of iterations executed N.

2.3. Accuracy Measurements of Segmentations Executed in Mammograms

The accuracy of segmenting masses in mammograms from the MIAS and DDSM databases
was estimated by comparing the results produced by the three active contour models used—ACWE,
EM and GAC—to areas traced manually by the more experienced breast radiologist (R1: more than
30 years of radiology practice). Two indexes were used in the measurements: the overlap value

OV = |M∩E|
|M∪E| and the extra fraction EF = |M∩E|

|E| , where:

- M represents a segmentation by an active contour method, while |M| is the number of pixels in
the extracted area.

- E is the area traced by the expert R1, while |E| is the number of pixels in the extracted area.
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- |M ∩ R|, |M ∪ R| are respectively: the number of pixels from the common area and the number of
all pixels found in the following areas: M and E.

If the OV index is close to 1 and, at the same time, the EF index is close to 0, this means that
the segmentation executed by the computer method is similar to the region of the image hand-traced
by the expert. The measurements of the OV and EF indexes constitute the quantitative criteria of
the segmentations completed. In addition, a qualitative assessment of the segmentation results was
made based on the opinion of two breast radiologists: R1 with over 30 years of professional experience
and R2 with 10 years of experience. The radiologists assessed every completed segmentation with
a view to the ability to formulate an adequate or an inadequate hypothesis for the diagnosis to be
made. It is obvious that an assessment based only on the radiologists’ opinion may be subjective
and dependent on their experience. However, the same can be said about the manual tracing of the
contour. Executing two assessment procedures, one quantitative and one qualitative, is to minimise
the subjectivity because they complement each other.

2.4. Selecting Parameters and Initialising of Active Contour Models

A training set composed of 20 ROIs (10 benign cases and 10 cases of malignant masses of various
shapes, sizes, margins and brightnesses) was used to set the parameters of active contour models so
that the segmentation results obtained were as accurate as possible, namely the OV index was the
highest, and, at the same time, the EF index was as low as possible.

Table 2 contains the values of parameters used in the preprocessing for the EM and GAC models.
The CO filtering was done with a disk-shaped structuring element with the radius of 3.

The location of the seed contour in individual mammograms is identical for three models: ACWE,
EM and GAC. An example initialisation and the location of the contour in the last iteration are
presented in Figure 2f,h,k. Both the EM and GAC models used an inflating contour, which increases its
surface area from the initial location during subsequent iterations.

Tables 3–5 present the optimal values of parameters used in the ACWE, EM and GAC methods.
The values of parameters shown in Tables 3 and 4 were selected so as to:

- Enable the effective evolution of the contour from its initial location and also the effective moving
of nodes during subsequent iterations, if they were far from the boundary searched for.

- Produce the best results of the segmentations carried out.

In the GAC model (Table 3), the following three parameters—the maximum iteration number,
the attraction force g(I), the interval radius—were used to ensure the control of the moving
active contour.

For the EM method, Table 4 contains 12 parameters in total, but it is worth emphasising that
11 parameters were defined so that their values remained constant for all experiments carried out.
To improve segmentation results, it is enough to select the brightness threshold T from the interval of
values shown in Table 4.

Table 2. Preprocessing parameters for the following models without image sampling: EM and GAC,
and with image sampling: EM(S) and GAC(S).

Parameter name ADF: Equation (3) ADF: K ADF: No. of iter. σ
Parameter value - 2 50 3

Image Pre-pocessing: EM, EM(S), GAC, GAC(S)
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Table 3. The optimal set of parameters for the GAC model without image sampling, and with image
sampling—GAC(S) for the segmentations completed in mammograms.

Parameter name No. of iter. Attraction force Interval radius
Parameter value 245 (9)–(10) [24, 83]

GAC

Parameter name No. of iter. Attraction force Interval radius
Parameter value 130 (9)–(10) [24, 83]

GAC(S)

Table 4. The optimal set of parameters for the EM model without image sampling, and with image
sampling—EM(S)—for the segmentations completed in mammograms.

Par. name No. of iter. w1 w2 w3 τinit T Lmin Lmax αmin αmax DF inRv
Par. value 300 1 0.5 40 8 [0.1, 0.4] 4 pixels 9 pixels 21◦ 30◦ 0.8 3

EM

Par. name No. of iter. w1 w2 w3 τinit T Lmin Lmax αmin αmax DF inRv
Par. value 135 1 0.5 40 8 [0.1, 0.4] 4 pixels 9 pixels 21◦ 30◦ 0.8 3

EM(S)

Table 5. The optimal set of parameters for the ACWE model without image sampling, and with image
sampling—ACWE(S)—for the segmentations completed in mammograms.

Parameter name No. of iter. λ
Parameter value 800 0.2

ACWE

Parameter name No. of iter. Attraction force
Parameter value 400 0.2

ACWE(S)

3. Results and Discussion

After the parameters enabling the segmentation to be controlled had been established, the active
contour methods allowing mass segmentation were tested on the remaining 100 ROIs from
mammograms, using contours traced manually by a radiologist (R1). The results obtained are presented
in Table 6. Table 6 presents the determined statistical parameters, such as: the maximum value (max),
the minimum value (min), the mean value (mean) and the standard deviation (sd) of the following
calculated indexes: OV and EF. Figure 4 shows a graph of data from Table 6.
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Table 6. Measurements of the overlap value (OV), extra fraction (EF) indexes for 100 mammograms
from the MIAS and DDSM databases. The symbol (S) represents results of measurements with image
sampling. The mean values in bold characters are the best among the values obtained.

OV EF OV(S) EF(S) OV EF OV(S) EF(S)

mean 0.8156 0.0764 0.8034 0.088 mean 0.7946 0.0713 0.7858 0.0828
sd 0.1045 0.0605 0.1193 0.0722 sd 0.095 0.0578 0.1086 0.0616

min 0.5467 0 0.5293 0.0031 min 0.7223 0 0.551 0.0015
max 0.9651 0.3028 0.9187 0.3234 max 0.9782 0.3072 0.9223 0.318

Benign and Malignant: EM vs. Expert Benign and Malignant: GAC vs. Expert

OV EF OV(S) EF(S) OV EF OV(S) EF(S)

mean 0.8327 0.0651 0.821 0.0726 mean 0.8067 0.0723 0.7925 0.079
sd 0.1175 0.0527 0.1219 0.0636 sd 0.0934 0.0626 0.1115 0.0663

min 0.5384 0 0.5293 0.0037 min 0.5677 0 0.551 0.0019
max 0.9263 0.1867 0.9187 0.1934 max 0.9347 0.2208 0.9223 0.2464

Benign: EM vs. Expert Benign: GAC vs. Expert

OV EF OV(S) EF(S) OV EF OV(S) EF(S)

mean 0.7904 0.0877 0.7884 0.0982 mean 0.7714 0.0854 0.7806 0.0785
sd 0.0951 0.0726 0.1073 0.0858 sd 0.098 0.0767 0.081 0.0526

min 0.5968 0 0.5882 0.0031 min 0.6039 0.0015 0.6157 0
max 0.8972 0.3159 0.8814 0.3205 max 0.8549 0.318 0.8676 0.2957

Malignant: EM vs. Expert Malignant: GAC vs. Expert

OV EF OV(S) EF(S) OV EF OV(S) EF(S)

mean 0.7656 0.3423 0.7423 0.3623 mean 0.7836 0.2853 0.7614 0.3076
sd 0.1847 0.3218 0.2068 0.3278 sd 0.1887 0.2745 0.2115 0.2953

min 0.4934 0 0.3132 0 min 0.4372 0 0.9004 0
max 0.9508 2.0354 0.9004 2.0598 max 0.9233 1.5237 0.3811 1.5449

Benign and Malignant: ACWE vs. Expert Benign: ACWE vs. Expert

OV EF OV(S) EF(S)

mean 0.7656 0.3423 0.7423 0.3623
sd 0.1847 0.3218 0.2068 0.3278

min 0.4934 0 0.3132 0
max 0.9508 2.0354 0.9004 2.0598

Malignant: ACWE vs. Expert
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Figure 4. Graphs of the mean value and the standard deviation based on measurements of two
indexes—overlap value (OV), extra fraction (EF)—for the three applied methods—ACWE, EM and
GAC—compared to the contours traced by the radiologist (expert) based on data from Table 6.
The symbol (S) represents results of measurements with image sampling, i.e., the bicubic interpolation,
applied. First row: benign and malignant cases, second row: benign cases, third row: malignant cases.

The EM model produced insignificantly better results of the OV index (81%) compared to the GAC
(79%). The values of the EF index are comparable for EM and GAC and amount to 0.07. The lowest
convergence with the contour traced manually by a radiologist (R1) occurs for the ACWE, where the
average OV index amounts to 76%, while the extra fraction cannot, unfortunately, be very high as the
EF index averages 36%.

After sampling the image by the bicubic interpolation and then applying the EM and GAC models,
a slight drop in the OV index occurs along with a slight increase in the EF index, with the value of
change for both indexes amounting to about 1%. In the case of the ACWE method, image sampling
also causes a slight drop in the OV index coupled with a slight increase of the EF index, at the level of
2% for both of these indexes. The bicubic interpolation may cause an overshoot (a haloing effect) and
increase the apparent sharpness [49], but considering the results of measuring the OV and EF indexes,
the undesirable effects can be said to be small.
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Table 7 presents quantitative segmentation results based on the OV index and the results available
in the literature. Unfortunately, segmentation methods very rarely achieve OV values of 90% and
higher [51]. Manual segmentations are often large enough to make it possible to place the entire tumour
inside the contour traced. In addition, the accuracy of a manual segmentation may be limited, and this
greatly depends on the experience of the radiologist participating in the research. According to the
data from Table 7, the best results of the average OV were achieved in publication [6], where the index
amounted to 87%. The second and third best results were achieved in this study using the following
methods: (EM) and (EM(S)), for which the average values of the OV amounted to, respectively
81% and 80%. It should, however, be emphasised that the results compiled in Table 7 concerned
different numbers of masses analysed and also different sizes of ROIs, which are not presented in some
papers. In addition, the time measurement allows the computational efficiency of the methods used to
be determined.

Table 7. A comparison of average overlap values of masses, for selected methods, with the number
of analysed masses (or the number of images) as well as information whether the segmentation was
carried out in a mammogram of the source size (M) or in the ROI (R). In the case of the ROI, its size is
also presented if this information is available in the source paper. The table also contains the average
time, in seconds, of the segmentations conducted and the database/databases used. The mean values
in bold characters are the best among the values obtained.

Methods No. of Masses Mean OV Full ROI (R); Size of Mean Time Database
or No. of Images Mammo. (M) ROI in Pixels in Seconds

Ball et al. [30], 2007 60 masses 0.57 ∓ 0.06 - R - DDSM
Ball et al. [31], 2007 60 masses 0.74 ∓ 0.07 - R; 2048 × 2048 - DDSM
Tao et al. [52], 2010 54 masses 0.69 ∓ 0.16 - R - priv. held database
Xu et al. [22], 2011 363 masses 0.72 ∓ 0.13 - R; 125 × 125 - DDSM

Rahmati et al. [6], 2012 100 masses 0.87 ∓ 0.05 - R; 256 × 256 From 10 to 60 s DDSM
Abbas et al. [53], 2013 480 masses 0.73 - R - DDSM and MIAS
Pereira et al. [54], 2014 160 masses 0.79 ∓ 0.08 M - 11.05 DDSM

(640 images) -
Cordeiro et al. [55], 2016 57 masses 0.58 ∓ 0.24 - R - MIAS

ACWE 100 masses 0.76 ∓ 0.18 - R; 512 × 512 126 ∓ 2 DDSM and MIAS
ACWE(S) 100 masses 0.74 ∓ 0.20 - R; 512 × 512 20.9 ∓ 2 DDSM and MIAS

EM 100 masses 0.81 ∓ 0.10 - R; 512 × 512 26.6 ∓ 5.72 DDSM and MIAS
EM(S) 100 masses 0.80 ∓ 0.12 - R; 512 × 512 8.42 ∓ 1.77 DDSM and MIAS
GAC 100 masses 0.79 ∓ 0.09 - R; 512 × 512 16.42 ∓ 2.3 DDSM and MIAS

GAC(S) 100 masses 0.78 ∓ 0.10 - R; 512 × 512 5.86 ∓ 0.7 DDSM and MIAS

Example differences in the segmentation produced by the ACWE(S), EM(S) and GAC(S)
methods and also the regions manually marked by an experienced radiologist (R1) are presented in
Figures 5 and 6. Figure 5 shows example results for the MIAS database, Figure 6—examples for the
DDSM database.

Table 8 sums up the results of the quantitative assessment of the segmentations carried out. It is
worth noting that the assessments of segmentations by radiologists R1 and R2 are identical for active
contour methods without image sampling and those with image sampling by bicubic interpolation.

The data from Table 8 justifies the following statements:

- The more experienced radiologist (R1) assessed the adequacy of the segmentations carried out
as follows: 69%, 81%, and 76%. The assessments of the second radiologist (R2), in turn, are as
follows: 74%, 84%, and 81%.

- In general, benign lesions produced higher assessments than malignant ones.

A comparison of the results obtained using image sampling by the bicubic interpolation method
presented in Tables 6 and 8 reveals that, whereas image sampling leads to a slight fall of the OV and the
simultaneous increase of the EF, it does not influence the qualitative assessment by both radiologists,
R1 and R2. In addition, image sampling allows the image processing time to be significantly reduced.
Table 9 is a summary of the above results. For the ACWE model, sampling cuts the total average time
of image processing six times, for the EM model over three times and for the GAC: 2.6 times.
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The ACWE, EM and GAC models were implemented in the MatlabR2015a (MathWorks, Inc.,
Natick, MA, USA) environment under Windows 8/10 and their time was measured on a PC with an
Intel Core i7 CPU @ 2GHz and 16 GB of RAM.

Table 8. Indicators of the adequate (AD) and inadequate (INAD) segmentation of 100 masses for
benign and malignant cases, based on the analysed ROIs, for the following methods: ACWE, ACWE(S),
EM, EM(S), GAC, and GAC(S). The results obtained for the ACWE, ACWE(S) are identical. Similarly,
the same results were obtained for the following pairs: EM, EM(S) and GAC, GAC(S). R1—is the
assessment of the segmentation by the breast cardiologist with 30 years of experience, while R2

is the assessment by the one with 10 years. The values in bold characters are the best among the
values obtained.

AD (benign) INAD (benign) AD (malignant) INAD (malignant) AD (total) INAD (total) Total
R1 36 (72%) 14 (28%) 33 (66%) 17 (34%) 69 (69%) 31 (31%) 100
R2 38 (76%) 12 (24%) 36 (72%) 14 (28%) 74 (74%) 26 (26%) 100

ACWE/ACWE(S)

AD (benign) INAD (benign) AD (malignant) INAD (malignant) AD (total) INAD (total) Total
R1 41 (82%) 9 (18%) 40 (80%) 10 (20%) 81 (81%) 20 (19%) 100
R2 43 (86%) 7 (14%) 41 (82%) 9 (18%) 84 (84%) 16 (16%) 100

EM/EM(S)

AD (benign) INAD (benign) AD (malignant) INAD (malignant) AD (total) INAD (total) Total
R1 39 (78%) 11 (22%) 37 (74%) 13 (26%) 76 (76%) 24 (24%) 100
R2 41 (82%) 9 (18%) 40 (80%) 10 (20%) 81 (81%) 20 (19%) 100

GAC/GAC(S)

Table 9. Time measurements (min, max, mean, sd—standard deviation) of individual steps of the
applied methods, for 100 mammograms from the DDSM and MIAS database. The symbol (S) represents
mammogram processing with image sampling, the lack of an (S) means that the mammogram was
processed without image sampling. Preprocessing: GAC or EM—measurements of the preprocessing
time, during which the following are executed in this order: input image inversion, histogram
equalisation and ADF, as shown in the diagram from Figure 1. Preprocessing(S): ACWE, represents
the measurements of the preprocessing time during which the CO filtration and image sampling are
executed in this order—Figure 1. ∑(1),(5),(11) represents the total time measurements for the three
methods in the following order: (1),(5),(11). Similarly: ∑(2),(6), ∑(1),(7),(11), ∑(2),(8), ∑(3),(9),(11),
∑(4),(10). The mean values in bold characters are the best of average values obtained for individual
steps of the methods used.

Method Min Max Mean sd

(1) Preproc.(S): EM or GAC 2.906 3.346 3.113 0.098
(2) Preproc.: EM or GAC 6.17 6.954 6.686 0.184

(3) Preproc.(S): ACWE 0.89 0.902 0.894 0.007
(4) Preproc.: ACWE 0.775 0.843 0.792 0.009

(5) GAC(S) 1.538 4.106 2.626 0.706
(6) GAC 5.484 12.512 8.711 2.098
(7) EM(S) 2.307 9.06 5.223 1.744

(8) EM 13.047 29.027 19.823 5.477
(9) ACWE(S) 14.972 21.254 17.4 2.207
(10) ACWE 122.03 129.21 125.4 2.021

(11) Postproc.(S) 0.119 0.142 0.138 0.003
∑(1),(5),(11) 4.803 7.436 5.862 0.737

∑(2),(6) 11.721 19.532 15.427 2.317
∑(1),(7),(11) 5.491 12.274 8.429 1.774

∑(2),(8) 19.324 36.127 26.607 5.723
∑(3),(9),(11) 18.362 25.287 20.904 2.288

∑(4),(10) 126.3 130.6 126.321 2.032
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Figure 5. The use of the GAC(S), EM(S) and ACWE(S) methods to segment the lesions—masses,
for example mammograms from the MIAS database, in which the image was sampled (S) by
bicubic interpolation. The contours in the first column have been traced by a radiologist, and
columns two, three and four show contours were determined using the following methods: GAC(S),
EM(S), and ACWE(S). (a–d) image ‘mdb015’ (mass shape: oval, margins circumscribed, pathology
benign); (e–h) ‘mdb025’ (mass shape: oval, margins circumscribed, pathology benign); (i–l) ‘mdb184’
(mass shape: oval—irregular, margins spiculated, pathology malignant); (m–p) ‘mdb145’ (mass
shape: irregular, margins spiculated, pathology benign); (q–t) ‘mdb198’ (mass shape: irregular,
margins spiculated, pathology benign).
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Figure 6. The use of the GAC(S), EM(S) and ACWE(S) methods to segment the
lesions—masses, for example mammograms from the DDSM database, in which the image
was sampled (S) by bicubic interpolation. The contours in the first column have been traced
by a radiologist, and columns two, three and four show contours determined using the
following methods: GAC(S), EM(S), and ACWE(S) (a–d) image B_3049_1.LEFT_CC (mass shape:
round, margins spiculated, pathology malignant); (e–h) B_3084_1.RIGHT_CC (mass shape:
lobulated-irregular, margins spiculated, pathology malignant); (i–l) C_0006_1.RIGHT_CC (mass shape:
irregular, margins spiculated, pathology malignant); (m–p) C_0009_1.RIGHT_MLO. (mass shape:
irregular, margins spiculated, pathology malignant); (q–t) C_0011_1.RIGHT_CC (mass shape: lobulated,
margins circumscribed, pathology malignant).
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3.1. Intensity Inhomogenity of Pixels and Fuzzy Edges in the Analysed ROIs

If the segmentation is carried out in ROIs in which the intensity of pixels is strongly inhomogenous
within the masses and/or the approximated edges are very fuzzy and merge with the image
background, this may make active contour methods extract the masses inaccurately. The use of
image preprocessing techniques can only partly improve the segmentation results. The problems
described can be illustrated by the following examples for masses that are irregular in shape and have
spiculated margins, i.e.,

- Figure 5n–p as compared to Figure 5m (mass shape: irregular, margins spiculated, pathology
benign) and also Figure 5r–t (mass shape: irregular, margins spiculated, pathology benign) as
compared to Figure 5q. It can be seen that the region segmented by computer methods is both
under- and overestimated

- Figure 6j–l as compared to Figure 6i (mass shape: irregular, margins spiculated, pathology
malignant). Here, it can be seen that ACMs underestimate the region to some extent.

- Figure 6n–p (mass shape: irregular, margins spiculated, pathology malignant) on the right-hand
side, one can see a small overestimated area in the segmentations produced by ACMs. In the case
of ACWE, the overestimated area is the largest.

The active contour methods—ACWE, EM and GAC—correctly extract the concavities of masses,
unless the image has an inhomogeneous pixel intensity and/or the edges approximated are very fuzzy
and merge with the background. Figure 7 shows an example of extracting a mass of an irregular shape
with spiculated margins from the example mammogram ‘mdb198’ (Figure 5q). The results produced
by ACWE in a black-and-white image are the best, but, in the real ROI, the opposite situation occurs,
as shown in Figure 5t (OV = 0.38, EF = 1.54).

Figure 7. The use of the EM, GAC and ACWE methods to extract an irregular shape (with concavities),
based on the margins traced by a radiologist, from the example mammogram ‘mdb198’, from Figure 5q.
The analysed image is black-and-white. (a) initial contour; (b) EM (c) GAC (d) ACWE.
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3.2. A Comparison of the Approach Used and the Experiment Results with Other Methods

Regardless of valuable research being completed, not all articles from the literature include
detailed information significant for the full assessment of the segmentations executed. Taking into
account the results obtained as part of this project and those from the four most recent articles from
Table 7, it can be stated that:

- Articles [53,55] do not give the processing time of the segmentation methods used.
- Articles [53,55] do not specify the resolution of the analysed ROIs.
- The results from articles [6,54,55] are not split into benign and malignant cases.
- Articles [6,54] do not specify the type of density of tissues analysed.
- Article [54] does not describe the types of shapes and margins of the analysed masses. In addition,

it is not known whether cases with protruding spicules and with a strong intensity inhomogeneity
were analysed, and they are the most difficult to segment.

- The impact of the decrease or increase of the OV index on the radiologists’ quality assessment
of the mass segmentations executed was not researched. This is why it is worth proposing
more computationally efficient approaches, as a slight drop in the OV index does not impact the
qualitative assessment of the segmentation by radiologists, as presented in Table 8 of this paper.

- Segmentation results can be improved using preprocessing methods suitably matched to the
approach followed.

- The properties of the EM model, namely the use of different forces , i.e., the external force,
the tensile force and the inflation/deflation force with a damping coefficient made it possible to
produce results better than those from the GAC model [39] and other methods, as shown by the
data based on Table 7, with the exception of the MLACMLS model [6], which yielded the best
segmentation results as assessed by the OV index. The EM model received a higher qualitative
assessment than the GAC model, as shown by results from Table 8. The computational efficiency,
in turn, of the GAC model is better than of the EM model.

Whereas the existing or new approaches can produce good results for prominent edges (including
those amplified by preprocessing methods applied), the most difficult thing is to segment cases
with protruding spicules and a strong intensity inhomogenity. This is still an open problem that
requires further research. Another important direction of research could be to automate the process of
segmenting masses for mammograms in full resolution: promising results were described in article [54].

4. Conclusions

The original contributions of this paper consist of: (1) employing an edge–based active contour
model using an inflation/deflation force with a damping coefficient (EM) together with the proposed
preprocessing methods to segment suspicious looking masses in mammograms; (2) assessing the
results of the EM segmentation, in comparison with other active contour methods implemented,
namely ACWE, B-spline level set, GAC, RSF; and (3) using radiologists’ knowledge at the last
step of the segmentation. The EM model has been able to produce segmentation results that are
better than or similar to those of other methods presented in literature. However, in the case of
masses that are irregular in shape and have spiculated margins merging with the background of the
mammogram, the ability to use the EM and also the other compared models—ACWE and GAC—is
limited. In addition, the presence of a strong inhomogeneity of pixel intensity within the mass also
makes obtaining satisfactory segmentation results difficult. To summarise the results of the qualitative
assessment of the EM using the knowledge of radiologists, it can be said that the segmentation
results would have been adequate for formulating the diagnostic hypothesis in at least 80% (40/50) of
malignant cases and 82% (41/50) of benign ones. These results are promising and show some potential
of the EM model for the computer assistance of diagnostics of mammograms. Further research should
focus on improving the segmentation results for the difficult examples described, as well as the possible
automation of the selection of active contour parameters (EM). Another direction of further research
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could be to develop or adapt existing methods to enable classifying masses and/or microcalcifications
because multifunctional CAD systems are the most desirable in practice.
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Abbreviations

The following abbreviations are used in this manuscript:

EM edge-based active contour model using an inflation/deflation force with a damping coefficient
GAC geometric active contour model
ACWE active contour without edges
MLACMLS maximum likelihood active contour model using level sets
OV overlap value
EF extra fraction
DDSM Digital Database for Screening Mammography
MIAS Mammographic Image Analysis Society
ACM active contour method
ROI region of interest
RSF region-scalable fitting model
CC cranio-caudal projection
MLO medio-lateral oblique projection
CAD computer aided diagnosis
ADF anisotropic diffusion filtering
CO close-open filtering
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