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Abstract: With the development of sensor technology and the popularization of the data-driven
service paradigm, spatial crowdsourcing systems have become an important way of collecting
map-based location data. However, large-scale task management and location privacy are important
factors for participants in spatial crowdsourcing. In this paper, we propose the use of an R-tree
spatial cloaking-based task-assignment method for large-scale spatial crowdsourcing. We use an
estimated R-tree based on the requested crowdsourcing tasks to reduce the crowdsourcing server-side
inserting cost and enable the scalability. By using Minimum Bounding Rectangle (MBR)-based
spatial anonymous data without exact position data, this method preserves the location privacy of
participants in a simple way. In our experiment, we showed that our proposed method is faster than
the current method, and is very efficient when the scale is increased.
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1. Introduction

With the development of sensor and data communication technologies, smart devices can collect
real-time environmental information. Thus, the paradigm of information systems is changing from the
existing service center to the data center. As real-time data and data analysis have become important in
the data-driven paradigm, various methods of data collection have been studied in recent research [1].

In existing sensor networks, when collecting real-time environmental data, we must deploy many
sensors in the area where the measurement is needed. The disadvantage of the traditional sensor
network method is that the maintenance cost for the sensor network is high. A crowdsourcing system
can collect the necessary data directly from volunteer participants with smart devices and deliver it
to a crowdsourcing server. This makes it easy to collect data once or over a short period with little
expense and greater accuracy compared to current sensor networks [2].

Spatial crowdsourcing collects sensed information using smart devices equipped with GPS(global
positioning system) and other location-detection sensors. As a result, most crowdsourcing results
contain location data, and the collected results can be analyzed from a map-based perspective focusing
on local spatial characteristics. The visibility of analysis results can also be improved in a spatial
crowdsourcing system.

Adequate user participation is one of the most critical factors in the service quality of spatial
crowdsourcing applications. Most of the current crowdsourcing applications [3–8] are based on
voluntary participation. When participants are selected as attendees, they consume their own resources,
such as battery and computing power, and expose their locations, leading to potential privacy threats.
Zhao, Li, and Ma [9] studied general participant selection problem-solving solutions. They defined
the participants’ consumption model and the value model of participants’ contributions in order to
support the selection of a set of participants for task registers based on supplier or company. In this
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system, the task assignment is based on the balance of a participant’s consumption and the service
providers’ discharge.

In our work, we consider task assignment to be the main challenge in a crowdsourcing system;
other challenges include the incentive mechanism, the absence of real-world datasets, and privacy
protection. The spatial crowdsourcing server assigns tasks to numerous participants based on real-time
costs [10,11]. We only consider systems that assigns requesters’ tasks to participants automatically.
Automatic task assignments minimize participants’ operation costs while preserving their location
privacy, because in this case the participants don’t need to care about what kind of tasks they can
approve or where they have to go.

In this paper, we propose an R-Tree spatial cloaking-based task assignment method as a spatial
crowdsourcing system. We use MBR data instead of location-point data to assign tasks to participants.
When the participants are close to the MBR boundary, data sensing automatically starts; it lasts until
the participants are within the MBR boundary. The whole process could be carried out automatically,
so it would be able to attract more participants and could increase the amount of crowdsensing
data. When the results are translated to the crowdsourcing server, it sends data package lists,
including location data, time data, and sensing data. To preserve participants’ location privacy,
the local position relative to the MBR is used in this data package. The MBR data is sent in the first
data package only. This proposed method would increase the amount of sensing data while also
preserving participants’ location privacy. The MBR data would be used R-tree-based data storage in
the crowdsourcing server to reduce the data insertion cost.

This paper is organized into five sections. In the second section, we describe the current related
research on spatial crowdsourcing and task assignment in spatial crowdsourcing systems. In the third
section, we introduce our proposed method: the R-tree spatial cloaking-based task assignment method.
The fourth section describes our experimental results. The last section presents our conclusions and
lays out several plans for future work.

2. Related Works

Spatial crowdsourcing is a type of online, location-based crowdsourcing that asks participants to
physically travel to the specific location of a task during the term of the task. There are two types of
spatial crowdsourcing: in the first, participants choose tasks from a server; in the second, the server
automatically assigns spatial tasks to participants who have registered their location on the server.
In this paper, only automatic task-management algorithms of the second type of spatial crowdsourcing
are used [2].

Currently, there are several general spatial crowdsourcing platforms, including gMission
and GeoCrowd, that support various user-defined spatial crowdsourcing application services.
These general platforms model spatial tasks for a specific service, allowing spatial tasks to be
propagated to normal smart device users. Sensing results are then collected in the crowdsourcing
server [12].

Mobile crowdsourcing systems can collect real-time environmental data from smart devices,
and the collected data can be used for end-user services online. The end users use sensed environmental
data along with other attributes such as position or time data. When the participants’ personal data,
including position data, are open to a third party, their position privacy has been attacked. Our research
focuses on the protection of position data as they are transmitted between participants and the mobile
crowdsourcing server [13].

The location privacy problem emerges when data are sent between the crowdsourcing server and
participants to assign tasks and provide results. Some recent studies have proposed a task assignment
method that is limited to participants’ area. In addition, some researchers have studied methods of
protecting participants’ location privacy using encryption algorithms.

Several studies have tried to solve the privacy problem using the trusted encryption system
framework. These have looked at numerous research challenges, including the computational efficiency
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of allocation and payment, the individual rationality of each participant, budget feasibility, truthfulness,
consumer sovereignty, and the competitiveness of participants. Once the encryption system framework
has been compromised, however, location information cannot be protected, and the framework
is easy for fraudulent users to access. Moreover, by combining several participants’ information,
fraudulent users can easily guess a specific participant’s approximate location. Recent studies that
are closely related to ours include those by Ul Hassan and Curry [14] and Tong, She, Ding, Wang,
and Chen [15]. Both studies consider the online spatial task assignment problem; however, they differ
from our work in terms of their problems and objectives.

A location k-anonymity-based method has been proposed to support personal privacy by
preserving mobile-based LBS service by Bugra and Ling [16]. Under this method, a personalized
k-anonymity model was proposed that can modify the level of anonymity of the mobile user.
The location accuracy could be decreased through enlarging the spatial area exposed for a given
user. This kind of method is called spatial cloaking. The spatial cloaking method is used to blur
participants’ exact location data and preserve location privacy [17]. Pournajaf, Xiong, Sunderam,
and Goryczka [18] proposed a tow-stage optimization approach to manage location uncertainty
when using cloaked location data. This method uses a round area for spatial cloaking and point
data, and thus could increase the computing cost from the server side. Ul Hassan and Curry [14]
studied the combinatorial fractional optimization approach for efficient task assignment. They used
the semi-bandit learning method to reduce participants’ travel costs [19]. They called this method
the Distance-Reliability Ratio (DRR) algorithm. The DRR algorithm computes all distances between
participants and target locations online, which can increase computing costs. This method does not
consider the participants’ location privacy during crowdsourcing [13,20].

More recently, differential geo-obfuscation mechanisms have been studied for guaranteeing
the location privacy of location-based services [21]. The study by Leye Wang et al. [22] introduced
a location privacy-preserving task-allocation method by using differential geo-obfuscation. In this
method, they use participant’s obfuscated locations when allocating crowdsensing tasks to participants.
Geo-obfuscation-aware methods have to recalculate each real location point into obfuscation-aware
points when allocating tasks to participants. However, the collected location-dependent data have to be
calculated into real data first in order to guarantee the accuracy of the crowdsensing results. Therefore,
it would increase the cost of data management of scalable crowdsourcing server-side systems.

The scalability of crowdsourcing systems has also been studied for several years [23]. A study
by Oleson et al. [24] introduced a scalable quality-control method for crowdsourcing. In this study,
the authors introduced cost-based scalability for crowdsourcing systems in order to ensure that
more workers would be able to be hired. Van Pelt and Sorokin studied a method for filtering out
bad contributions to reduce server-side costs and increase the quality, cost, and scalability of the
crowdsourcing system [25]. We use the R-tree index [26] to manage spatial crowdsourcing tasks and to
reduce the server cost and increase the scalability of the crowdsourcing system.

3. R-Tree Spatial Cloaking-Based Task Assignment Method

We studied an R-Tree spatial cloaking-based task-assignment method for spatial crowdsourcing
systems, especially for automatically assigning tasks to participants.

3.1. Spatial Task Management Process

Crowdsourcing data are used for several types of service in open crowdsourcing platforms [27,28].
For example, real-time spatial crowdsourcing data can be used for online monitoring systems for end
users, and historical spatial crowdsourcing data can be used for various types of map-based analytics
services [29,30]. To support these types of map-based services, we must transform spatial task results
into location-based report data as quickly as possible. However, in this process, we must also protect
participants’ location privacy. Thus, we propose a grid-based index method to improve the spatial data
insert speed and the use of grid-based encryption of location data during the spatial task-management
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process to safeguard participants’ location privacy. The proposed spatial task-management process is
shown in Figure 1.

On a crowdsourcing platform, task requesters must register the type of data resources they
need in a specific area on a centralized spatial crowdsourcing server. The server then assigns tasks
to participants. Each task includes available date and time with area information and target data
type. The reward for task processing is also included; but in our research, we will not consider the
benefit for participants. If the task area is very large, then the area will be divided into subtasks.
When a participant accepts the assigned task, he or she travels to the task location; upon reaching the
area, the location-based task is completed. The collected resources are then sent to the centralized
crowdsourcing server.
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When participants accept tasks from the centralized crowdsourcing server, the regional
information and participants’ data is added to the crowdsourcing server during a participant
registration process. Following this, when a participant is in the sensing region, the R-tree based index
inserts his or her data into the crowdsourcing server.

A spatial task includes spatial area S (a rectangle-based area including the Minimum Bounded
Rectangle(MBR) of R-tree), task execution time information T (t1 < T < t2), and spatial query Q; this type
of spatial task is converted into a task map, shown as TM = {S, T, Q}. When the task requester registers
the TM on the crowdsourcing server, the crowdsourcing platform assigns the task to participants in
the form of a geometric-based task. The participants send results in the form of RM = {participant’s
ID, time, task ID, location-based result}. Our goal is to design an online task-management method to
ensure the computational efficiency of the crowdsourcing server and the participants’ location privacy.
To protect participants’ location privacy and ensure the server’s scalability, the location data used in
the RM is encrypted using the grid-based index proposed in Section 3.2.

3.2. R-Tree-Based Task-Assignment Method

We propose an R-tree spatial cloaking-based task-assignment method for spatial crowdsourcing
systems. We assume that the requesters’ tasks are registered on the crowdsourcing server and assigned
to preregistered participants automatically. The goal of our research is to reduce the computing costs
of the crowdsourcing server while preserving the location privacy of participants.

The information that requesters need from the crowdsourcing server includes the crowdsourcing
area, duration of collection time, and density of sensing data. Then, the crowdsourcing server
constructs an estimated R-tree based on the density data and crowdsourcing area. The central server
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assigns tasks to registered participants by using the MBR of the R-tree leaf node. Our method uses
MBR data instead of location-point data.

When participants get close to the MBR boundary, the data sensing ceases and the target data
is automatically sensed. This continues until the participants leave the MBR boundary. The sensed
data is organized as a data package list and then sent to the crowdsourcing server. The first data
package includes the MBR data, while the other data package uses only the anonymous local position
relative to the MBR to preserve participants’ location privacy. When the MBR is expressed as [(x1, y1),
(x2, y2)], and use (Ap(Anonymous position)) to simply the anonymous position data, the anonymous
location position of MBR is calculated by using the following formula. In this formula ∂ is defined
by the density of participants. When the density of destination MBR is low the ∂ will be large, if the
density of destination MBR is high then the ∂ will be small. In any case, this kind of location anonymity
could affect the correctness of the crowdsourced result. However, when the information sought by
crowdsourcing is an area-based request, such as the collection of noise in specific area, and then the
effectiveness of this kind of location anonymity is very poor.

Ap(x′, y′) = [

⌊
∂(x− x1)

x2 − x1

⌋
∗ (x2 − x1)

∂
,
⌊

∂(y− y1)

y2 − y1

⌋
∗ (

y2 − y1)

∂
]

When the first data package is inserted into the server, the server finds the leaf node of the
R-tree to insert the data. If the server receives a participant’s result data that is the same as position
data, then the data package is considered to be one of the sensing results of the previous MBR node.
This data package could be directly inserted into the leaf node without any more R-tree pruning to
reduce the insertion cost.

In some cases, the task area S to be managed will be very large, and then the task will be separated
into several sub-tasks, withthe area S being broken down into several sub areas S1,S2,S3, etc. In this
case, the main task will be the parent of a sub-tree, and the sub-tasks will be the child nodes of that
sub-tree. This reduces the integration costs for the sensing results. The size of the task area is defined
by the task registration, and the area is separated when the number of participants is greater than
TA-Limitation. TA-Limitation is determined by the performance server computer. In our test we
designated the bounds of TA-Limitation to be 10 < TA-Limitation < 100.

Figure 2 shows the architecture of the proposed R-tree spatial cloaking-based method. When the
crowdsourcing request registers in the crowdsourcing server, the R-tree is estimated by using the
sourcing area and density data. The task then selects preregistered participants; for example, the R7
task selected Participant 1, who is near the target area. The task ID and the selected participants will
be managed separately. When the number of participants increases, the R-tree node will be separated.
In our method, parent nodes will include taskIDs. At the pre-leaf node level, each parent node includes
only one taskID to reduce the pruning time.
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As the participants get close to the R7 area, the task automatically senses target data in the
positions P1, P2, P3, P4, and P5. Using our method, the sensing results data are inserted into the
R7 node directly, without any tree pruning. When the searching area S is so large, then S will be
separated into several sub-areas automatically, using the traditional R-Tree method. This area will
include the sub-areas for other tasks, too. In our method, however, the sub-tree of one task is managed
independently. This method increases the amount of sensing data, preserves the location privacy of
participants, and reduces the data insertion costs for the crowdsourcing server.

4. Experimental Results

We used a Gowalla [31] dataset and constructed a crowdsensing server with our proposed R-tree
spatial cloaking-based method. A Gowalla dataset is a location-based dataset in which users share their
locations with one another. This dataset contained 6,442,890 check-in location-based transaction data
from the period of February 2009–October 2010. This dataset showed real human motion and dynamics.
In our experiment, each Gowalla user was considered a participant. We simulated several rectangle
area-based tasks, and emulated an entire task-management process, including task propagation,
task assignment, and participants’ sensor results. Then, we analyzed the data insert performance and
memory usage of the server side.

We compared our R-tree-based method to the tow-stage optimization method, which uses an
algorithm to assign tasks, and a base system that uses an R-tree method only in the server. For the
random mechanism, we obtained the average performance of 50 such solutions for evaluations; in each
solution, the density threshold was chosen at random from a range of 1 to 29 POIs(Point of Interest).
All the simulations were run on a computerwith 1.7 GHz CPU and 8 GB memory. Each measurement
was averaged over 100 instances.

In order to show the effect scalability of the proposed algorithm clearly, it is necessary to reduce
the noise of other factor such as speed, so we assumed that the moving speed of participants was the
same when they received tasks, and thus that this did not affect the result. We randomly simulated 100
to 900 participants from the Gowalla dataset to construct a crowdsensing environment and created 100
different rectangle-based tasks to randomly assign to participants at one time.

Figure 3 shows the results of our experiment. The R-tree spatial cloaking-based method performed
faster than the tow-stage optimization method when the number of participants increased from 100
to 900 for 100 tasks. Because our method inserts the results into the R-tree without tree pruning,
the management cost is reduced when the tow-stage optimization method inserts the results data
without any data structure. When the density of MBR increased, the MBR will be separated under the
stratagem of the R-tree to reduce the insertion bottle neck. Our experiment also showed that, when the
number of participants was only 100, the running time for each method was similar.
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Secondly, we tested the preconstruction cost and memory usage of our proposed method.
The memory usage comparison result is shown in Figure 4. In the previous running time test, we also
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measured the memory usage of the three methods. As Figure 4 shows, when the number of participants
was same, and using the same tasks to process the crowd sourcing, the proposed R-tree cloaking
method used little more memory than the traditional R-tree and tow-stage optimization methods.
Because our method has to store the relation of task and subtask separately, the R-tree cloaking method
has a greater cost. Although the proposed method uses almost 3% more memory than the tow-stage
method, for large-scale crowdsourcing systems, real-time processing is more important than memory
usage. Therefore, the proposed method is efficient for large-scale crowdsourcing systems.
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Thirdly, we tested the prevention of center-of-area attack. We compared our proposed method
with the tow-stage optimization method. We used the 900 generated participants and simulated for
5 min, then we divided the test area into 16 regions. One of the separated regions was selected for
center-of-area attack. We tried to evaluate the effectiveness of privacy prevention against center-of-area
attack by measuring the distance between the query issuer and the center of the cloaking region.
Figure 5 shows the results of three different regions. Because each test region had a different size,
the distance value to the center of the cloaking region was normalized to 0–100. The proposed method
and tow-stage optimization methods were both able to separate the center of the region away from the
real query area; but the distance of the proposed method is more random than that of the tow-stage
optimization method.
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5. Conclusions

We studied an R-tree spatial cloaking-based task-assignment method for use in spatial
crowdsourcing. With the popularization of the data-driven service paradigm, the question of how to
efficiently collect real-time data has become a hot research topic. Crowdsourcing using participants’
smart devices is a new way to collect real-time data online. Privacy is a serious concern when
engaging participants in spatial crowdsourcing. We used the anonymous MBR data of an estimated
server-side R-tree instead of exact location-point data in order to maintain participants’ privacy.
The anonymous MBR data was used for R-tree-based data storage in the crowdsourcing server to
reduce the data insertion cost with the least reduction in the accuracy of the crowdsourced results.
Our proposed method was able to reduce the insertion cost when the crowdsourcing system is scaled
up. In the future, we need to test the preconstruction cost of different methods and study the multi-task
execution method.
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