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1. Introduction

The theory of knotoids was introduced by V. Turaev in 2012 [1]. A knotoid diagram is an open
curve in an oriented surface, having finitely many self-intersections that are endowed with under/over
data and with its two endpoints possibly lying in different regions of the diagram. The two endpoints
of the curve are named ‘leg’ and ‘head’, and a knotoid diagram has a natural orientation from its leg
to its head. The theory of knotoids is a complex diagrammatic theory, and its complexity lies in the
forbidden moves that prevent the endpoints from slipping under or over other arcs of the diagram.
The theory of spherical knotoids (i.e., knotoids in the two-sphere) extends the theory of classical
knots and also proposes a new diagrammatic approach to classical knot theory [1], which promises
reducing the computational complexity of knot invariants. On the other hand, planar knotoids surject
to spherical knotoids, but do not inject. This means that the planar knotoids provide a much richer
combinatorial structure than the spherical ones.

In [1], basic notions of knotoids are studied comprehensively, including the introduction of
several invariants of spherical knotoids, such as the minimum distance between the endpoints of a
knotoids in terms of crossings and the Jones/bracket polynomial. Knotoids were further studied by A.
Bartholomew in [2], where he classifies knotoids up to five crossings. More recently, new invariants
of knotoids were introduced by the first listed author and L.H. Kauffman in [3], in analogy with
corresponding invariants from virtual knot theory.

However, what is missing is a theory of braids for knotoids that could go perhaps in analogy
with the braid theory we have for classical knots and links, cf. among others [4–6]. The purpose of
this paper is to initiate and develop the theory of braidoids as a counterpart to the theory of planar
knotoids. We define the notion of a braidoid diagram, which extends the notion of a classical braid
diagram by having two extra ‘free’ strands that may start/terminate in any region of the braidoid
diagram. We then give a set of isotopy moves for braidoid diagrams, and isotopy classes under these
moves are named braidoids. Here also, we have the forbidden moves, which play a crucial role
throughout the study of braidoids and which cause that the classical setting and results about braids
do not carry straightforward through to braidoids. For example, and contrary to the freedom in the
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choice of closing arcs in the closure of a classical braid, the braidoid closure operation has to be defined
on labeled braidoid diagrams for obtaining planar knotoids and is realized by straight arcs running
either under or over all other arcs of the diagram.

We proceed with describing a ‘braidoiding’ algorithm for turning any planar knotoid diagram
into a labeled braidoid diagram. The braidoiding algorithm is an adaptation of [7,8] for classical knots,
but special attention must be given for braidoiding near the endpoints, due to the forbidden moves.
Furthermore, the closure of a braidoid diagram that results from braidoiding a knotoid diagram is
isotopic to the initial knotoid diagram. The above leads to an analogue for knotoids of the classical
Alexander theorem for knots and links [7–15]. Moreover, the added value of our braidoiding algorithm
is that it implies that every knotoid is isotopic to the closure of a labeled braidoid with all labels
the same.

Similarly to the theory of classical knots and braids, the braidoid representation of a knotoid is
not unique up to the braidoid isotopy. In order that the ’braidoiding’ induces a well-defined mapping
from knotoids to braidoids, one needs to study the effect that isotopy moves on knotoid diagrams
have on the resulting braidoid diagrams. For this, we employ the concept of an ‘L-move’. An L-move
on a braidoid diagram is the result of cutting a strand at some point and creating a new pair of
vertically-aligned braidoid strands, such that the resulting braidoid has isotopic closure with the initial
one. The braiding moves and the L-moves were firstly introduced on classical knot and braid diagrams
by the second-listed author in [7,15,16] for formulating a one-move analogue of the classical Markov
theorem for braid equivalence. Contrary to the two algebraic moves in the classical Markov theorem,
the L-moves are geometric and fundamental, so they have been applied to many diverse diagrammatic
braid settings without the need for algebraic structures; for details see [17] and references therein.
Both the basic braiding moves and the L-moves have a beautiful symmetry, as well as a symmetric
interconnection, as illustrated in Figure 1. Along with the isotopy on braidoid diagrams, the L-moves
generate an equivalence relation on braidoid diagrams, the L-equivalence, which is used in [18] for
formulating an analogue of the celebrated Markov theorem for braidoids.

Figure 1. The symmetries of the braidoiding moves and the L-moves.

Knots and braids are subjects of perennial interest, whose study dates back to Lord Kelvin,
C.F. Gauss and E. Artin and which have found numerous uses and applications in many areas of
mathematics and sciences. The Markov theorem enabled the use of algebraic tools in the study
of classical knots and links, as it was proven by the pioneering work of V.F.R. Jones on the
discovery of the Jones polynomial [19,20], revealing deep interactions of knot theory with algebra and
statistical mechanics.

We continue the paper by defining the underpass connection on braidoid diagrams to obtain
classical braids up to L-equivalence. As for knotoids, the underpass connection destroys the delicate
theory of braidoids, since it may cause many distinct braidoid diagrams to be represented by the
same classical braid. We proceed with a first attempt to extract an algebraic structure for braidoids.
Namely, we introduce a set of elementary blocks for generating braidoid diagrams, and we give a
set of rules they should obey. As for classical knots, having an algebraic structure available for the
study of knotoids means more control in proving arguments and also that one can also employ tools
from algebra.
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Throughout the paper, some technical proofs are omitted, and the interested reader is directed to [18].
The theory of knotoids has recently found important applications in the topological analysis

of proteins. In [3], the theory of knotoids was proposed for understanding the topology of physical
entities located in three-dimensional space, such as linear polymers and protein chains. In this direction,
a recent study of open knotted proteins is made by modeling the molecules by spherical knotoids
and applying topological invariants of knotoids [21], while in [22], this study is extended to bonded
open protein chains by introducing the concept of planar bonded knotoids. As it turned out, the use of
planar knotoids provides more refined results in protein analysis [22]. This is due to the fact that there
are infinitely many non-trivial planar knotoids which being spherical get trivialized.

In this paper, we propose the notion of braidoids and their elementary blocks for an algebraic
encoding of the entanglement of open protein chains in three-dimensional space. Although the main
purpose of this paper is to initiate the braidoid theory, we make this suggestion on the applied side
as a potential new way of encoding and tabulating proteins, and we include an example of a protein
chain and its corresponding set of algebraic expressions.

The outline of the paper is as follows. In Sections 2 and 3, we first review the basics of knotoids.
In Section 4, we introduce the notion of a braidoid diagram, and we define isotopy moves on braidoid
diagrams, whose isotopy classes are called braidoids. In Section 5, we define a closure operation
defined on labeled braidoid diagrams. Then, in Section 6, we give an algorithm for turning a knotoid
diagram into a labeled braidoid diagram with isotopic closure. In Section 7, we adapt the definition
of the L-moves to braidoid diagrams. We continue with Section 8, where we define the underpass
connection on braidoid diagrams inducing classical braids. Finally, in Section 9, we present the
elementary blocks for braidoid diagrams, which are used in Section 10 for encoding open protein
chains by algebraic expressions.

2. Knotoids

2.1. Knotoid Diagrams

Let Σ be an oriented surface. A knotoid diagram K [1] is a compact open curve in Σ only
with finitely many double self-intersection points each of which is transversal and is endowed with
over/under data. Such self-intersections of K are called crossings of K. The two distinct endpoints of
K can lie in any region of the diagram and are called the leg (named as the tail in [3]) and the head of
K. A knotoid diagram is naturally oriented from the leg to the head. The trivial knotoid diagram is
assumed to be a curve without any self-intersections as depicted in Figure 2a. In most studies so far,
the surface Σ is considered to be the two-sphere S2 or the two-dimensional space R2.
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Figure 2. Examples of knotoid diagrams
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equivalence relation defined on knotoid diagrams applies to multi-knotoid diagrams directly, and109

Figure 2. Examples of knotoid diagrams: (a) trivial knotoid; (b) a non-trivial planar knotoid that is
trivial as spherical; (c,d) two proper knotoids; (e) a knot-type knotoid.

The notion of a knotoid diagram can be extended in the following way. A multi-knotoid
diagram is defined to be an immersion of a finite number of oriented circles and an oriented interval.
The equivalence relation defined on knotoid diagrams applies to multi-knotoid diagrams directly, and
the corresponding equivalence classes are called multi-knotoids. In the sequel, all notions and results
concerning knotoids apply also to multi-knotoids.
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2.2. Moves on Knotoid Diagrams

A ∆-move on a knotoid diagram is a local replacement of an arc with two arcs (or vice versa) in a
triangular region, which does not contain any of the endpoints in its interior. The arcs are replaced by
sweeping entirely over or under the arcs intersecting the triangular region. The Reidemeister moves
Ω1, Ω2, Ω3 [23] (see Figure 3) are some special cases of ∆-moves. The Ω0-move is regarded as a planar
∆-move and takes place in a triangular region that does not contain any arcs of the diagram in its
interior (see Figure 3). We refer to all these moves as Ω-moves.

A special case of planar ∆-move that involves an endpoint is a swing move, whereby an endpoint
can be pulled within its region, without crossing any other arc of the diagram, as illustrated in Figure 3.
The endpoints may also be involved in an Ω-move, where the arc containing the endpoint, as well as
its replacement are terminal. Clearly, any such move may break into the move restricted in a smaller
region not containing endpoints, followed by a swing move.

Finally, the moves consisting of pulling the arc adjacent to an endpoint over or under a transversal
arc, as shown in Figure 4, are the forbidden knotoid moves and are denoted by Φ+ and Φ−, respectively.
Notice that, if both Φ+- and Φ−-moves were allowed, any knotoid diagram in Σ could be clearly
turned into the trivial knotoid diagram.
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The ∆-moves (including the swing moves) generate an equivalence relation on knotoid diagrams
in Σ, called knotoid isotopy. Two knotoid diagrams are isotopic to each other if there is a finite sequence
of Ω-moves that takes one to the other. It follows from the classical Reidemeister theorem [23] that the
Ω-moves together with the swing moves suffice for generating knotoid isotopy. The isotopy classes of
knotoid diagrams are called knotoids in Σ. Note that, knotoid isotopy in the surface Σ allows for more
∆-moves than in R2. In particular, knotoid isotopy in S2 has an extra move, namely pulling an arc so
that it crosses the ‘north pole’ or the ‘south pole’.

3. Planar and Spherical Knotoids

Let K(R2) and K(S2) denote the set of all knotoids in R2 and S2, respectively. We shall call
knotoids in K(R2) planar and knotoids in (S2) spherical.

There is a surjective map [1]:
ι : K(R2) ↪→ K(S2),
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induced by the inclusion R2 ↪→ S2 = R2 ∪ {∞}. However, the map ι is not injective. Indeed, there are
knotoid diagrams in the plane representing a nontrivial knotoid, which represents the trivial knotoid
in S2. For an example, see Figure 2b. While the knot theory of the plane coincides with the knot theory
of the sphere, the non-injectivity of the map implies that the theory of knotoids in S2 differs from the
theory of knotoids in R2.

3.1. Knots via Knotoids

In [1], the study of knotoid diagrams is suggested as a new diagrammatic approach to the study
of knots in three-dimensional space. Any classical knot can be represented by a knotoid diagram in
R2 or in S2. Precisely, the endpoints of a knotoid diagram can be connected with an embedded arc in
S2 that goes either under every strand it meets or over every strand it meets. This way, we obtain an
oriented classical knot diagram in S2 representing a knot in R3. The connection types are called the
underpass closure and the overpass closure, respectively. See Figure 5. The knot that is represented by
a knotoid diagram may differ depending on the type of the connection. For example, the knotoid in
Figure 5 represents a trefoil via the underpass closure and the trivial knot via the overpass closure.
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In order to have a well-defined representation of knots via knotoids, we should fix the
closure type for knotoid diagrams. Let us choose the underpass connection. Then, we have the
following proposition.

Proposition 1 ([1]). Two knotoid diagrams in S2 or R2 represent the same classical knot if and only if they are
related to each other by finitely many Ω-moves, swing moves and the forbidden Φ−-moves.

The proposition says in other words that, if only one of the two forbidden moves (recall Figure 4) is
allowed, say the Φ−, then the theory of spherical or planar knotoids coincides with classical knot theory.

3.2. The Theory of Spherical Knotoids as an Extension of Knot Theory

The theory of knotoids in S2 extends the theory of classical knots. In fact, there is a well-defined
injective map α [1] from the set of oriented classical knots to K(S2). This map is induced by specifying
an oriented diagram for a given knot and cutting out an open arc from this diagram, which does not
contain any crossings. The resulting diagram is a knotoid diagram in S2 with its endpoints lying in the
same local region of S2. Such a knotoid diagram is called a knot-type knotoid diagram, and the isotopy
class of the diagram is a knot-type knotoid. Figure 2a,b,e shows some examples of knot-type knotoid
diagrams. It is clear that the map α gives a one-to-one correspondence between the set of oriented
classical knots and the set of knot-type knotoids in S2. The knotoids that are not in the image of α

are called proper knotoids. The endpoints of any of the representative diagrams of a proper knotoid
can lie in any, but different local regions of the diagram. Figure 2c,d illustrates some examples of
proper knotoids.

On the other hand, the map α is no longer a well-defined map when defined on the set K(R2).
For example, the knotoid represented in Figure 2b is a non-trivial planar knotoid [1], but it is the image
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of the trivial knot under the map α along with the trivial knotoid of Figure 2a. In fact, one can show that
there are infinitely many non-trivial planar knotoids, which being spherical get trivialized. Take for
example the knotoid in Figure 2b and apply consecutive twists to the endpoints in the inner region.

A Geometric Interpretation of Planar Knotoids

It is explained in [3] that the theory of planar knotoids is related naturally to open space curves
on which an appropriate isotopy is defined. An open curve located in R3 corresponds to a planar
knotoid diagram when projected regularly along the two lines passing through its endpoints and
perpendicular to a chosen projection plane. See Figure 6. Conversely, an open space curve with two
specified parallel lines passing from its endpoints can be viewed as a lifting of the related knotoid
diagram. A line isotopy [3] between two open space curves is an ambient isotopy of R3 transforming
one curve to the other one in the complement of the lines, keeping the endpoints on the lines and fixing
the lines. Then, the isotopy classes of planar knotoids (considered in the chosen projection plane) are
in one-to-one correspondence with the line isotopy classes of open space curves [3].
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4. Braidoids

In this section, we introduce braidoid diagrams and the isotopy classes of them that we call
braidoids. A braidoid diagram is defined similarly to a classical braid diagram. The main difference is
that a braidoid diagram has one or two of its strands starting with/terminating at an endpoint, and we
also have here the forbidden moves. A braidoid diagram can be viewed as a generalization of a braid
diagram, and the notion of braidoid gives rise to the theory of braidoids that forms a counterpart to
the theory of knotoids.

4.1. The Definition of a Braidoid Diagram

Definition 1. Let I denote the unit interval [0, 1] ⊂ R. A braidoid diagram B is a system of a finite number of
arcs embedded in I × I ⊂ R2, which are called the strands of B. There are only finitely many intersection points
among the strands, which are transversal double points endowed with over/under data and are called crossings.
We identify R2 with the xt-plane with the t-axis directed downward. Following the orientation of I, each strand
is naturally oriented downward, with no local maxima or minima, so it intersects a horizontal line at most once.

A braidoid diagram has two types of strands, the classical strands and the free strands. A classical strand
is like a braid strand connecting two points, the top one that lies in [0, 1]× {0} and the bottom one that lies
in [0, 1]× {1}. A free strand is a strand that either connects a point in [0, 1]× {0} or in [0, 1]× {1} to a
special point located anywhere in [0, 1]× [0, 1], called an endpoint, or it connects two endpoints. A braidoid
diagram has either one free strand (see for example Figure 7a) or two free strands (see for example Figure 7b–e)
and exactly two endpoints, which are called the leg and the head, denoted by l and h, respectively, in analogy
with the endpoints of a (multi-)knotoid diagram.

The head is the endpoint that is terminal for a free strand with respect to the orientation, while the leg
is the starting endpoint for a free strand with respect to the orientation. The ends of the strands of B that are
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not the two endpoints of B are named braidoid ends. We note here that in the rest of the paper, we will assume
the endpoints are not aligned vertically with any of the braidoid ends. The braidoid ends lie equidistantly on
the lines {t = 0} and {t = 1}. It is clear that the number of braidoid ends that lie on the top line is equal to
the number of braidoid ends that lie on the bottom line of the diagram. The braidoid ends are arranged in pairs
that are vertically aligned, called corresponding ends, and they are numerated with integers according to their
horizontal order, as the examples illustrated in Figure 7.
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Figure 7. Some examples of braidoid diagrams: (a) a braidoid diagram with one free strand;
(b–e) braidoid diagrams with two free strands.

The endpoints of B differ conceptually from its braidoid ends. As we shall see, the endpoints
are subject to special isotopy moves unlike the braidoid ends, which are assumed to be fixed on the
top and the bottom line of the diagram, and they do not participate in the closure. To distinguish the
endpoints from the braidoid ends, we denote them by graphical nodes. See Figure 7 for some basic
examples of braidoids.

4.2. Braidoid Isotopy

4.2.1. Moves on Segments of Strands

As for classical braids, the following moves are allowed on segments of braidoid strands.

Definition 2. A ∆-move is defined on braidoid diagrams similarly to knotoid diagrams. As for knotoid diagrams,
a ∆-move on a braidoid diagram replaces a segment of a strand with two segments passing only over or only
under the arcs intersecting the triangular region of the move while the downward orientation of the strands is
preserved (recall Figure 8). The oriented Reidemeister moves, Ω2 and Ω3 (recall Figure 3), which keep the arcs
in the move patterns directed downward, are defined on braidoid diagrams as special cases of ∆-moves. Note that
the ∆-moves take place in a region that does not include any of the endpoints of braidoid diagrams.
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3.2.2. Moves of endpoints231

As for knotoid diagrams, we forbid the pulling of the leg and the head over or under a strand, as232

shown in Figure 9. These are the forbidden moves and they are denoted Φ+ and Φ−, respectively. It is233

clear that allowing both forbidden moves cancels any braiding of the free strands.234

Figure 9. Forbidden braidoid moves involving the head

The following moves are allowed on braidoid diagrams.235

Definition 3. As shown in Figure 10, the endpoints of a braidoid diagram can be pulled up or down236

in the vertical direction as long as they do not cross through any strand of the diagram. Such moves237

are called vertical move.238

An endpoint may also swing to the right or to the left, like a pendulum, as long as the downward239

orientation is preserved, it does not cross through or intersect any strand of the diagram and its vertical240

position does not change in relation to that of the braidoid ends or the other endpoint. In the case241

where an endpoint is vertically aligned with a pair of braidoid ends then the endpoint can be slightly242

moved to the left to avoid the alignment when necessary. Such moves are called swing moves and243

illustrated in Figure 11.244

Figure 8. A ∆-move on a braidoid diagram.
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4.2.2. Moves of Endpoints

As for knotoid diagrams, we forbid the pulling of the leg and the head over or under a strand,
as shown in Figure 9. These are the forbidden moves, and they are denoted Φ+ and Φ−, respectively.
It is clear that allowing both forbidden moves cancels any braiding of the free strands.

Figure 9. Forbidden braidoid moves involving the head.

The following moves are allowed on braidoid diagrams.

Definition 3. As shown in Figure 10, the endpoints of a braidoid diagram can be pulled up or down in the
vertical direction as long as they do not cross through any strand of the diagram. Such moves are called
vertical moves. An endpoint may also swing to the right or to the left, like a pendulum, as long as the downward
orientation is preserved, it does not cross through or intersect any strand of the diagram and its vertical position
does not change in relation to that of the braidoid ends or the other endpoint. In the case where an endpoint is
vertically aligned with a pair of braidoid ends, then the endpoint can be slightly moved to the left to avoid the
alignment when necessary. Such moves are called swing moves and are illustrated in Figure 11.
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Definition 4 (braidoid isotopy). It is clear that keeping braidoid ends fixed on the top and bottom245

lines (t = 0 and t = 1, respectively) but allowing the Reidemeister moves Ω2 and Ω3 and planar246

∆-moves, as well as the swing and vertical moves for the endpoints generates an equivalence relation247

on braidoid diagrams in R2. Two braidoid diagrams are said to be isotopic if one can be obtained from248

the other by a finite sequence of the above moves. An equivalence class of isotopic braidoid diagrams249

is a braidoid.250

4. From braidoids to knotoids - the closure operation251

In this section we define a closure operation on braidoid diagrams in order to obtain planar252

knotoid or multi-knotoid diagrams. In order to do this we further require for a braidoid diagram that253

its endpoints are not aligned vertically with any braidoid ends. Indeed, this can be achieved by a254

swing move moving the endpoint to the left hand side of the vertical line of the related corresponding255

ends. We also need to introduce a labelling on braidoid diagrams.256

Definition 5. A labelled braidoid diagram is a braidoid diagram such that every pair of its corresponding257

ends is labelled either by o or u, standing for ‘over’ or ‘under’, respectively. A label indicates an258

overpassing or an underpassing arc, accordingly, which will take place in the closure (see Definition 6).259

We attach the labels next to the braidoid ends lying on the top line.260

Clearly, braidoid isotopy moves, described in Definition 4 do not change the labelling. Two261

labelled braidoid diagrams are called isotopic if their braidoid ends possess the same labelling and they262

are isotopic as unlabelled diagrams. The corresponding equivalence classes are called labelled braidoids.263

Definition 6. Let B be a labelled braidoid diagram. The closure of B, denoted B̂, is a planar264

(multi-)knotoid diagram that results from B by the following topological operation : every pair265

of corresponding braidoid ends of B are connected by an embedded straight arc (with slightly tilted266

extremes) that lies on the right of the line of the corresponding braidoid ends, in a distance arbitrarily267

close to this line and goes entirely over or under the rest of the diagram according to the label of268

the ends. See Figure 12 for an abstract illustration of the closure of a labelled braidoid diagram and269

Figures 13 and 14 for concrete examples.270

Figure 10. A vertical move on h.
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Figure 11. Swing moves.

Definition 4 (Braidoid isotopy). It is clear that keeping braidoid ends fixed on the top and bottom lines (t = 0
and t = 1, respectively), but allowing the Reidemeister moves Ω2 and Ω3 and planar ∆-moves, as well as
the swing and vertical moves for the endpoints generates an equivalence relation on braidoid diagrams in R2.
Two braidoid diagrams are said to be isotopic if one can be obtained from the other by a finite sequence of the
above moves. An equivalence class of isotopic braidoid diagrams is a braidoid.
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5. From Braidoids to Knotoids: The Closure Operation

In this section, we define a closure operation on braidoid diagrams in order to obtain planar
knotoid or multi-knotoid diagrams. In order to do this, we further require for a braidoid diagram
that its endpoints are not aligned vertically with any braidoid ends. Indeed, this can be achieved by a
swing move moving the endpoint to the left-hand side of the vertical line of the related corresponding
ends. We also need to introduce a labeling on braidoid diagrams.

Definition 5. A labeled braidoid diagram is a braidoid diagram such that every pair of its corresponding ends
is labeled either by o or u, standing for ‘over’ or ‘under’, respectively. A label indicates an overpassing or an
underpassing arc, accordingly, which will take place in the closure (see Definition 6). We attach the labels next
to the braidoid ends lying on the top line.

Clearly, braidoid isotopy moves, described in Definition 4, do not change the labeling. Two labeled
braidoid diagrams are called isotopic if their braidoid ends possess the same labeling and they are
isotopic as unlabeled diagrams. The corresponding equivalence classes are called labeled braidoids.

Definition 6. Let B be a labeled braidoid diagram. The closure of B, denoted B̂, is a planar (multi-)knotoid
diagram that results from B by the following topological operation: every pair of corresponding braidoid ends of
B are connected by an embedded straight arc (with slightly tilted extremes) that lies on the right of the line of the
corresponding braidoid ends, in a distance arbitrarily close to this line and goes entirely over or under the rest of
the diagram according to the label of the ends. See Figure 12 for an abstract illustration of the closure of a labeled
braidoid diagram and Figures 13 and 14 for concrete examples.

Figure 12. The closure of an abstract labeled braidoid diagram.

Remark 1.

1. The endpoints of B do not participate in the closure, and they become the endpoints of B̂.
2. The reason that a joining arc is required to lie in an arbitrarily close distance to the line of the related

corresponding ends is that, otherwise, forbidden moves may be an obstacle to an isotopy of B̂ between any
two joining arcs.

3. The appearance of forbidden moves after closure is also the reason for requiring in a braidoid diagram that
the endpoints are not aligned vertically with any braidoid ends. See Figure 13 for an illustrative example.

4. A joining arc can lie on the right or on the left of the line of the corresponding ends. It is a matter of
preference that in this paper it is assumed to lie on the right. Clearly, both choices are isotopic since,
by definition, the connection takes place far from the endpoints, so there is an isotopy between the two
choices that avoids the forbidden moves.

5. A joining arc is oriented upward following the orientation of the connected strands.
6. The resulting (multi-)knotoid depends on the labeling of the braidoid ends. See Figure 14 for an example

of two non-isotopic labeled braidoid diagrams with the same underlying braidoid diagram, which give
rise to non-equivalent knotoids. To obtain a well-defined map, we define the closure on the set of labeled
braidoid diagrams.
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Figure 14. An example of non-equivalent labeled closures.

Proposition 2. The closure operation induces a well-defined map from the set of labeled braidoids to the set of
planar multi-knotoids.

Proof. It is clear that labeled braidoid isotopy transforms to isotopy on the resulting
(multi-)knotoid diagrams.

6. From Knotoids to Braidoids: The Braidoiding Algorithm

In this section, we present an algorithm for turning a knotoid diagram into a braidoid diagram
with isotopic closure. At the end of the section (Section 6.5), we give an example about how this
is done, and the reader may want to examine Section 6.5 first, before going into the details of the
braidoiding algorithm.
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The proof of the classical Alexander theorem in [7] utilizes the braiding moves that were first
introduced by the second-listed author in [15,16]. In the knotoid setting, we adopt the braiding moves,
which we name here braidoiding moves, and using them, we provide an algorithm that turns a planar
(multi-)knotoid diagram into a braidoid diagram. More precisely, we have the following theorem.

Theorem 1. Any multi-knotoid diagram in R2 is isotopic to the closure of a labeled braidoid diagram.

Let now K be a (multi-)knotoid diagram. We shall describe below how to manipulate K in order to
obtain a braidoid diagram, after equipping the plane on which K lies with the top-to-bottom direction.

6.1. The Basic Idea of the Braidoiding

The basic idea in order to turn K into a braidoid diagram is to keep the arcs that are oriented
downward, with respect to the top-to-bottom direction, and to eliminate the ones that are oriented
upward (up-arcs), producing at the same time pairs of corresponding braidoid strands, such that the
knotoid resulting after closure is isotopic to K. The elimination of the up-arcs is done by utilizing the
braidoiding moves, first introduced for classical knots and links in [7,15,16] and illustrated abstractly
in Figure 15. More precisely, a braidoiding move consists of cutting an up-arc at some (any) point
(in Figure 15, the middle point is selected) and pulling the two open ends, the upper upward and the
lower downward and both entirely over or entirely under the rest of the diagram according to the
label assigned to the up-arc, until there are no local maxima or minima, and we have at the end a pair
of corresponding braidoid strands. Clearly, applying closure on this pair of strands using the same
label as the one of the up-arc will produce a segment that is isotopic to the original up-arc.
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6.2. Preparatory Notions for Braidoiding

In order now to implement the braidoiding idea in a rigorous algorithm, we need first to take care
of a few technical points.

6.2.1. Up-Arcs and Free Up-Arc

It is clear that by small ∆-moves, K can be assumed to be a diagram without any horizontal
arcs. Thus, K consists of a finite number of arcs oriented either upward or downward, and these arcs
are separated by finitely many local maxima or minima. The arcs of K that are oriented upward are
up-arcs, and the ones oriented downward are down-arcs. An up-arc may contain crossings of different
types (over/under-crossings) or no crossing at all. An up-arc that contains no crossing is, in particular,
a free up-arc.
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6.2.2. Subdivision

We first mark the local maxima and minima of K with points, which we name subdividing points.
In the process, we may need to subdivide further some up-arcs of K. Subdivision is the addition or
deletion of a subdividing point; see Figure 16. Subdivision can be considered as a special ∆-move,
as shown in Figure 17.
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Definition 7. Let K be a (multi-)knotoid diagram marked with subdividing points. We shall say that345

K is in general position with respect to the standard height function on its plane if no endpoint lies in346

the region of some sliding triangle, if K contains no horizontal arcs and the cutpoints are not vertically347

aligned with the endpoints or any crossings.348

Clearly, any (multi-)knotoid diagram can be isotoped to a diagram in general position by small349

∆-moves and subdivision.350

Figure 17. Subdivision is a combination of ∆-moves.

6.2.3. Sliding Triangles and Cut-Points

Let QP be an up-arc of K, with respect to a given subdivision of K. Assume first that QP does
not contain any of the endpoints of K as its extremities (Q denotes the initial and P denotes the final
subdivision point on the arc) or that QP contains both endpoints. There are two right-angled triangles
that are symmetric to each other with respect to the horizontal and vertical lines passing through the
middle point of QP, as shown in Figure 18. These triangles are called the sliding triangles of the up-arc
QP. Further, the middle point of QP is the cut-point.
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6.2.4. Defining General Position

In the process of the preparation of a knotoid diagram for braidoiding, one may come across the
situation where an endpoint lies in the region of some sliding triangle. This is unwanted because when
applying the braidoiding, a forbidden move will be forced. To resolve this problem, we introduce
subdivision of the up-arc into smaller up-arcs by adding extra subdividing points. See Figure 19.
More precisely, we introduce a cut-point on QP at a horizontal level just above the horizontal level of
the endpoint. This determines (by doubling the length) a new subdividing point on QP.
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Definition 7. Let K be a (multi-)knotoid diagram marked with subdividing points. We shall say that K is in
general position with respect to the standard height function on its plane if no endpoint lies in the region of some
sliding triangle, if K contains no horizontal arcs and the cut points are not vertically aligned with the endpoints
or any crossings.

Clearly, any (multi-)knotoid diagram can be isotoped to a diagram in general position by small
∆-moves and subdivision.

6.3. The Proof of Theorem 1

Let K be a (multi-)knotoid diagram lying in the xt-plane. Since K is compact, we can assume that
it lies in the region [0, 1]× [0, 1]. For turning K into a braidoid diagram with isotopic closure, we follow
the steps below.

Step 1: Arranging the crossings

Rotate all crossings that contain at least one up-arc, so that the two arcs are now directed
downward, cf. [8]. More precisely, if some crossing contains two up-arcs, then rotate it by 180 degrees
inside a small disc neighborhood of the crossing. See Figure 20. If a crossing contains one up-arc,
then rotate it by 90 degrees inside a small disc neighborhood of the crossing. See Figure 21.
The resulting (multi-)knotoid diagram K′ is isotopic to K and contains only free up-arcs.

Figure 20. Arranging a crossing with a full twist.

Figure 21. Arranging a crossing with a half twist.
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Step 2: Arranging the endpoints

If an up-arc contains the head/leg, then we apply a swing move to an arbitrarily small segment
of the up-arc containing the endpoint that does not intersect any other arcs of the diagrams, so that the
segment of the endpoint is directed downward. The remaining of the up-arc is an up-arc without an
endpoint. See the first two instances of Figure 22 for a case including the head.Version December 7, 2017 submitted to Symmetry 15 of 25
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Figure 22. The braidoiding move on up-arcs containing an endpoint
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Step 3: Bringing to the general position and labeling the up-arcs

Mark the diagram K′ with subdividing points, starting from the local minima and maxima. Then,
isotope K′ to a diagram K′′ in general position. Finally, attach a label o or u to each free up-arc.

Step 4: Applying the braidoiding moves

We now choose an ordering for the up-arcs, which in K′′ are all free up-arcs. Let QP be the first
one. We cut QP at its cut-point, and we apply on QP a braidoiding move, as described in Section 6.1.
If QP is labeled with o, we pull the resulting two pieces, the upper upward to the line t = 1 and the
lower downward to the line t = 0, both entirely over the rest of the diagram, by sliding them across the
sliding triangles. Notice that sliding arcs across the sliding triangle(s) are in fact ∆-moves. The resulting
pieces are pulled so that their ends are kept aligned vertically with the cut-point, and by applying
small planar isotopies, we turn the lower and upper pieces into down-arcs. See Figures 15 and 22.
This operation eliminates the up-arc QP and results in a pair of corresponding braidoid strands
vertically aligned with the cut-point. For the purpose of closure, this pair of strands must be labeled o.
If QP is labeled with u, the resulting ends are pulled passing under the rest of the diagram, and the
new pair of strands is labeled by u for the purpose of closure.

Note also that closing the corresponding pairs of strands according to the label given to them,
the resulting diagram is locally isotopic to the initial up-arc QP. See Figure 15. We continue with the
elimination of the second up-arc, and so on. Should one encounter a local obstruction in the process,
a switching of order can overcome the problem. Theoretically, any potential obstruction can be always
resolved by adding extra subdividing points to the up-arcs. Full details can be found in [18]. The above
terminating algorithm combined with the observation above comprises our proof of Theorem 1. Q.E.D.

6.4. The Uniform Labeling

The algorithm presented in the proof of Theorem 1 has a very important implication. Namely, we have:

Corollary 1. Any knotoid diagram can be isotoped to the closure of some labeled braidoid diagram whose labels
are all ‘u’. There is also the analogous statement for ‘o’.
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Indeed, by twisting appropriately all crossings that contain an up-arc, we are only left with free
up-arcs, which are not forced by anything to be ‘over’. Therefore, we can choose for all of them the
label ‘u’, and so, we realize the closure using under-arcs.

By virtue of Corollary 1, we define a uniform braidoid to be a labeled braidoid with all labels ‘u’.

6.5. An Example of Braidoiding

In Figure 23, we give an example of applying the braidoiding algorithm for turning a knotoid
into a braidoid with isotopic closure. Furthermore, notice that our starting knotoid is the same as
the right-hand knotoid in Figure 14. In that figure, this knotoid appears as the closure of a labeled
braidoid with mixed labels, while in Figure 23, we obtain a uniform braidoid. As proven in [18],
the two different labeled braidoids are related to each other by the L-moves, which are introduced in
Section 7.

1

2

3

4

rotate crossings 1,3 ,4

mark with subdividing points
label and order the  up-arcs

u1

u2

u3
apply braidoiding moves
        in given order

1 2 3
u u u

closure

Figure 23. Applying the braidoiding algorithm.

7. L-Equivalence on Braidoid Diagrams

The L-moves were defined in 1993 by the second-listed author for classical
braids [7,15,16]. They were used for proving a one-move analogue of the classical two-move
Markov theorem, which relates braids that close to isotopic knots or links (for more on the Markov
theorem cf. for example [17] and references therein). Here, we define analogously L-moves for
braidoid diagrams.
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Definition 8. An L-move on a braidoid diagram B is the following operation.

1. Cut a strand of the braidoid diagram B at some point, not vertically aligned with a braidoid end, or an
endpoint, or a crossing. This can be ensured by small isotopies.

2. Pull the resulting ends away from the cut-point to the top and bottom of B, respectively, keeping them
aligned with the cut-point, and so as to create a new pair of corresponding braidoid strands. See Figure 1
for an abstract illustration of an L-move.

3. There are two types of L-moves, namely Lover and Lunder-moves, denoted by Lo and Lu, respectively. For
an Lo-move, pull the resulting new strands entirely over the rest of the diagram. For an Lu-move, pull the
new strands entirely under the rest of the diagram. See Figure 24.

The L-moves can be applied on labeled braidoid diagrams by labeling each resulting pair
of corresponding strands with ‘o’ if they are resulting from an Lo-move and with ‘u’ otherwise.
Then, the closure of the resulting labeled braidoid diagram is isotopic to the closure of the original one.
See Figure 24.Version December 7, 2017 submitted to Symmetry 17 of 25
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Figure 24. After closure an L-move contracts to the braidoid arc on which it is applied
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The L-moves together with labeled braidoid isotopy generate an equivalence relation on labeled
braidoid diagrams, the L-equivalence. Two labeled braidoid diagrams are said to be L-equivalent
if they are related to each other by a finite sequence of the above moves. Using the concept of the
L-moves, we can then formulate an analogue of the classical Markov theorem for braidoids. For details
cf. [18].

Remark 2. There is a fundamental symmetry between the braidoiding move and the L-move, as illustrated in
Figure 1. The simplicity of these moves and their interconnection enabled the definition of braid structures in
other diagrammatic settings (for example, singular knots and links, virtual knots and links, knots and links in
three-manifolds) and the extraction of braid equivalence theorems in those settings. For details on the Alexander
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and Markov theorems in the classical setting, as well as in other diagrammatic settings, see for example [17] and
the references therein.

8. From Braidoids to Classical Braids

We shall now use the braidoiding moves and the L-moves in order to obtain a classical braid
from a braidoid diagram. Let B be a braidoid diagram with n strands. The two endpoints of B can be
connected with an embedded arc or a pair of strands in the plane, resulting in a classical braid diagram.
There are two cases for the connection.

If the head of B appears before the leg (as t increases), then a downward directed embedded arc is
chosen to connect them, running under each piece of the strands that it meets during the connection.
Two such embedded arcs are clearly isotopic. The resulting diagram is a classical braid diagram on n
strands. See the top of Figure 25 for an abstract illustration of this case.

If, however, the leg of B appears before the head, then any arc connecting them is oriented upward
in order to be consistent with the orientation of the free strands. That is, it is an ‘up-arc’ in the resulting
tangle diagram. We apply a braiding move (which is also available for tangle diagrams; see [7,15,16])
on such a connection arc to turn the resulting up-arc into a pair of braid strands. The resulting diagram
is a classical braid diagram on n + 1 strands.

We call this connection defined on braidoid diagrams the underpass connection of a braidoid
diagram, in analogy with the underpass closure of a knotoid diagram that results in a knot diagram.

Figure 25. The two cases of the underpass connection.

We then have the following result.

Proposition 3. The operation of turning a braidoid diagram into a braid diagram induces a well-defined
surjective map from the set of braidoids to the set of L-equivalence classes of classical braids. Furthermore,
this map is not injective.

Proof. The proof of the first statement is illustrated in Figure 26. By a small planar isotopy on the
connecting arc of the one type of underpass connection, followed by an L-move, we arrive at the braid
resulting from the other type of underpass connection. See [18] for more details. Further, the fact that
the underpass connection is not an injective map is evident by the fact that joining the endpoints is
equivalent to allowing the Φ−-type forbidden moves, i.e., the free sliding of endpoints under other
arcs of the diagram (recall Figures 4 and 9).
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Figure 26. The choice of the arc connecting the endpoints does not affect the resulting braid up to
L-equivalence
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Figure 26. The choice of the arc connecting the endpoints does not affect the resulting braid up to
L-equivalence.

9. Toward an Algebraic Structure for Braidoids

In order to express braidoids in terms of basic generating blocks, we introduce an auxiliary
combinatorial structure for braidoid diagrams, the implicit points.

9.1. Implicit Points and Indexing

Right after or just before an appearance of an endpoint, the number of points on the horizontal
levels of the braidoid diagram (that is, intersections of the diagram with lines t = ti, 0 ≤ ti ≤ 1)
increases or decreases by one. We fill the braidoid diagram at discrete horizontal levels with the
implicit points, denoted by empty dots. Implicit points hold the vertical positions of braidoid ends and
two endpoints along their vertical directions. It can be verified easily by the reader that the ends of
strands of a braidoid diagram with n strands determine at least n and at most n + 1 vertical positions.
In this setting, we require that the endpoints lie on vertical segments of the free strands, and this can
be achieved by the braidoid swing moves.

See Figure 27 for the braidoid diagrams of Figure 7 completed with implicit points.
After the completion of the diagram with implicit points, all points appearing in a horizontal

level (braidoid ends, endpoints, implicit points) get indexed by consecutive natural numbers, starting
from one, according to their horizontal positions from left to right. Note that some indices of braidoid
ends may now be shifted from the previous numbering with the appearance of the implicit points.
See Figure 27.

Definition 9. A braidoid diagram filled in with implicit points and indexed accordingly shall be called a
combinatorial braidoid diagram.
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Figure 27. (a–e): Filling the braidoid diagrams of Figure 7 with implicit points.

9.2. Elementary Blocks of Combinatorial Braidoid Diagrams

Let B be a combinatorial braidoid diagram. It is clear that, by small braidoid isotopies, we can
arrange B, so that it is divided into finitely many horizontal stripes, each containing exactly one of the
elementary blocks described below and exemplified in Figure 28. An elementary n-block is a union of
2n-points positioned in top and bottom lines parallel to each other, together with descending strands
connecting top points to bottom ones. In an elementary block, a top point is connected to at most one
bottom point. There can be points, both in top and bottom lines, that are not connected to a point;
these points correspond to implicit points.

We are familiar with the elementary blocks 1n and σ±1
i denoting the identity braid on n strands

and the elementary braidings (or crossings), respectively. The set of the above is augmented by
elementary blocks containing one or two pairs of vertically-aligned implicit points to represent the
vertical positions of the endpoints.

Besides these blocks, there are two types of elementary blocks that connect the head or the leg to
the i-th position. They are denoted by hi and li, respectively. The elementary blocks that are denoted
by λi

i+1 and λi+1
i are called the shifting blocks. In the shifting block λi

i+1, each point on the top row
is connected to its corresponding point on the bottom row except that the top i-th point is connected
to the bottom (i + 1)st point, while in λi+1

i , the top (i + 1)st point is connected to the bottom (i + 1)st

point. The shifting elements represent the shifting of the index of a strand adjacent to a free strand that
can happen before or after the appearance or disappearance of an endpoint. The set of the above types
of elementary blocks is augmented by elementary blocks containing one pair of vertically-aligned
implicit points.

Note that, unlike the case of braids, an elementary block of a braidoid diagram is not itself a
braidoid diagram.
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Figure 28. Elementary blocks for braidoids.

We define a product operation on the set of elementary n-blocks induced by placing one
elementary n-block on top of another n-block and concatenating the ends of the blocks under the rules
given below. These are based on the global rule that the resulting diagram should be a braidoid diagram,
that is, it should contain one leg and one head and vertically-aligned braidoid ends. This principle
implies the following local rules.

1. We call the ends of strands in elementary blocks usual ends if they are not the endpoints.
Usual ends can be concatenated with usual ends only at the same position so that the resulting
diagram contains strands emanating from the top to bottom row.

2. An endpoint can be concatenated either with another endpoint or with implicit points.
Two concatenated endpoints remain at their vertical position as two disjoint endpoints.
See Figure 29. When an endpoint is concatenated with an implicit point, the endpoint remains as
it is, while the implicit point is annihilated.

3. An implicit point can be concatenated with an implicit points or with an endpoint. Two implicit
points concatenated in the middle row annihilate each other. See Figure 29.

Any braidoid diagram with n strands can be read, from top to bottom, as a product of finitely many
elementary n- or (n + 1)-blocks, thus assigning to it a word that consists of symbols corresponding
to finitely many concatenated elementary blocks. For example, the braidoid diagram in Figure 27d
consists of three blocks, and the corresponding word is 1(1)3 λ21h(2)1 l(2)1 λ12σ

(1)−1
2 .

We end the section by also noting that in the set of all elementary n-blocks, there are some relations
induced by the isotopy moves on combinatorial braidoid diagrams and their closures, as for example
cyclic permutations of crossings and endpoints moved by the vertical moves. These are explored
further in [18].
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10. An Application of Braidoid Theory to the Study of Proteins

The correspondence of line isotopy classes of open space curves and isotopy classes of planar
knotoids, described in Section 3.2, suggests that a topological analysis of linear physical structures
lying in three-dimensional space can be done by simulating them by open space curves and then by
taking their orthogonal projections that are in fact knotoid diagrams. Through this idea, knotoids,
both in S2 and R2, have found important applications in the study of open protein chains [21] and,
more recently, in the study of open protein chains with chemical bonds, via introducing the notion
of bonded knotoids [22]. Figure 30 illustrates the backbone of the protein 3KZN in 3D before and
after being simplified. The data are generated using the Knoto-ID software (written by J. Dorier and
D. Goundaroulis) [24]. The graphics are generated using VMD [25]. The analyzed protein is the
N-acetylornithine protein (PDB entry: 3KZN) [26]. The structure was downloaded from the Protein
Database (PDB) [27].
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Figure 30. The configuration of the backbone of the protein 3KZN in 3D and its simplified configuration.

Furthermore, it has been observed in [22] that planar knotoids yield a more refined analysis for
understanding the topological structure of open protein chains than spherical knotoids, since a trivial
knotoid in S2 may also correspond to a non-trivial knotoid when considered in R2.

As we showed in Section 6, any planar knotoid diagram can be turned into a (labeled) braidoid
diagram. This braidoid diagram now can be made algebraic by braidoid isotopy, so it can be
represented by an expression in terms of elementary blocks. This suggests a possible algebraic
encoding for open protein chains or, in general, of linear polymer chains; they can be projected to some
planes, and the resulting knotoid diagrams can be turned into braidoid diagrams that have algebraic
expressions. An example is illustrated in Figure 31, where the knotoid corresponding to the protein
3KZN is turned into a braidoid diagram, which is represented by the word l2σ3

1 h2 in elementary blocks.
An important topological and computational project is to enumerate all braidoid forms related to a

protein form, up to braidoid isotopy and cyclic permutation (preserving braidoid closure). Having such
an algebraic tabulation available would prove useful in the study of proteins, and elements in the
protein database could be encoded in this formalism. This project would have a strong impact both on
the theory and applications of braidoids.

More precisely, the implementation of such a project would require the following steps:

Step 1: A protein is taken from the Protein Database (PDB) [27]. It is converted to xyz-coordinates,
and its backbone is extracted (namely, the coordinates of the Cα atoms).

Step 2: The reconstructed protein chain is placed inside a large enough sphere, and it is projected to,
say, 100 different planes perpendicular to corresponding fixed directions evenly distributed
on the sphere. The projections are planar knotoid diagrams. We take the dominant knotoid
diagram, which is the one with the highest probability of appearance. The steps so far have
been implemented in [22].

Step 3: We turn the dominant knotoid diagram into a dominant braidoid diagram using the most
efficient braidoiding algorithm for the specific knotoid diagram. It would be very useful to
automatize this step through a computer program. We then fill in the braidoid diagram with
implicit points, and we index accordingly, obtaining the combinatorial dominant braidoid
diagram.

Step 4: We list all combinatorial braidoid diagrams that are obtained from the dominant braidoid
diagram by braidoid isotopy and cyclic permutation (that preserves braidoid closure). These all
have isotopic closures. We then note all words in elementary blocks for which our combinatorial
braidoid diagrams stand. This list of words is associated with the original protein form.

Step 5: Any given protein can be then identified by comparing its associated set of algebraic words
against the tabulated lists that we produce. The last two steps can be easily implemented in a
computer program. For example, with the dominant knotoid diagram of the protein 3KZN
(recall Figures 30 and 31) would be associated the set of words {l2σ3

1 h2, σ3
1 h2l2, h2l2σ3

1}. The
interested reader could exercise further with the example given in Figure 23.

It would be meaningful to generalize the above to the mathematical project of tabulating planar
knotoids through their corresponding sets of algebraic expressions. Using braidoids instead of knotoids
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gives more control and offers the possibility of employing more algebraic techniques in the topological
study of proteins and in general of knotoids, as supposed by the diagrammatic methods used so far.
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11. Conclusions

In this paper, we introduced the concepts of the braidoid diagram and the braidoid, and we
initiated the theory of braidoids. We defined an appropriate closure operation on braidoids to obtain
knotoids, and conversely, we gave an algorithm for obtaining a braidoid diagram from a knotoid
diagram. We further introduced the L-equivalence on the set of braidoid diagrams, which, as we show
in [18], induces a bijection between the set of knotoids and the set of braidoids. We finally defined a set
of generating blocks for braidoids, which enabled us to express any braidoid diagram as an algebraic
word on these generators. Carrying this idea further, we ended the paper by proposing an algebraic
way of tabulating proteins using braidoids.
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