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1. Introduction

In recent years, there has been a considerable amount of interest in supersymmetric (SUSY)
models involving odd (anticommuting) Grassmann variables and superalgebras. Supersymmetry was
introduced in the theory of elementary particles and their interactions and forms an essential
component of attempts to obtain a unification of all physical forces [1]. A number of supersymmetric
extensions have been formulated for both classical and quantum mechanical systems. In particular,
such supersymmetric generalizations have been constructed for hydrodynamic-type systems
(e.g., the Korteweg-de Vries equation [2,3], the Sawada-Kotera equation [4], polytropic gas
dynamics [5,6] and a Gaussian irrotational compressible fluid [7]) as well as other nonlinear
wave equations, e.g., the Schrödinger equation [8] and the sine/sinh-Gordon equation [9–11].
Parameterizations of strings and Nambu-Goto membranes have been used to supersymmetrize the
Chaplygin gas in (1 + 1) and (2 + 1) dimensions respectively [12]. In addition, it was proposed
that non-Abelian fluid mechanics and color magnetohydrodynamics could be used to describe a
quark-gluon plasma [12].

In this paper, we formulate a supersymmetric extension of the minimal surface equation and
investigate its group-theoretical properties. The concept of minimal surfaces was originally devised by
Joseph-Louis Lagrange in the mid-eighteenth century [13] and still remains an active subject of research
and applications. We consider a smooth orientable conformally parameterized surface F defined by
the immersion ~F : R → R3 of a complex domainR ⊂ C into three-dimensional Euclidean space R3.
We consider a variation of F along a vector field ~v which vanishes on the boundary of F : ~v |∂F= 0.
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The corresponding variation of the area of F in the small parameter ε (where ε << 1) is, up to higher
terms in ε,

A(~F + ε~v)− A(~F) = −2ε
∫
F
~v× ~HdA + . . . , (1)

where ~H is the mean curvature vector on F . Surfaces with vanishing mean curvature (~H = 0) are
called minimal surfaces. The conformal metric associated with the surface F is Ω = eudzdz̄, where z
and z̄ are coordinates on R and u is a real-valued function of z and z̄. If we re-label the variables z
and z̄ as x and y, respectively, then the real-valued function u satisfies the partial differential equation
(PDE) [14]:

(1 + (ux)
2)uyy − 2uxuyuxy + (1 + (uy)

2)uxx = 0, (2)

which is called the minimal surface (MS) equation. Equation (2) can be written in the form of the
following conservation law:

∂x

 ux√
1 + (ux)2 + (uy)2

+ ∂y

 uy√
1 + (ux)2 + (uy)2

 = 0, (3)

which can be derived from the variational principle for the Lagrangian density:

L =
√

1 + (ux)2 + (uy)2. (4)

A conformally parameterized surface is minimal if and only if it can be locally expressed as the
graph of a solution of Equation (2). The minimal surface and its related equations appear in many areas
of physics and mathematics, such as fluid dynamics [15], continuum mechanics [16], nonlinear field
theory [17,18], plasma physics [12,19], nonlinear optics [20] and the theory of fluid membranes [21,22].
Using the Wick rotation y = it, one can transform Equation (2) to the scalar Born-Infeld equation [23]:

(1 + (ux)
2)utt − 2uxutuxt − (1− (ut)

2)uxx = 0. (5)

It is interesting to note that Equation (2) is weakly Lie remarkable as stated in [24].
In this paper, we construct a supersymmetric extension of the minimal surface Equation (2)

using a superspace and superfield formalism. The space {(x, y)} of independent variables is
extended to the superspace {(x, y, θ1, θ2)} while the bosonic surface function u(x, y) is replaced by the
bosonic superfield Φ(x, y, θ1, θ2) defined in terms of bosonic and fermionic-valued fields of x and y.
Following the construction of our supersymmetric extension, we determine a Lie superalgebra of
infinitesimal symmetries of our extended equation. We then classify the one-dimensional subalgebras
of this Lie superalgebra into conjugation classes with respect to action by the Lie supergroup generated
by the Lie superalgebra, and we use the symmetry reduction method to obtain invariant solutions
of the SUSY equation. The advantage of using such group-theoretical methods to analyze our
supersymmetrized equation is that these methods are systematic and involve regular algorithms
which, in theory, can be used without having to make additional assumptions. Finally, we revisit
and expand the group-theoretical analysis of the classical minimal surface equation and compare the
obtained results to those found for the supersymmetric extension of the minimal surface equation.

2. Supersymmetric Version of the Minimal Surface Equation

Grassmann variables are elements of a Grassmann algebra Λ involving a finite number of
Grassmann generators ζ1, ζ2, . . . , ζk which obey the rules:

ζiζ j = −ζ jζi if i 6= j,

ζ2
i = 0 for all i.

(6)
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The Grassmann algebra can be decomposed into even and odd parts: Λ = Λeven + Λodd,
where Λeven consists of all terms involving the product of an even number of generators
1, ζ1ζ2, ζ1ζ3, . . . , ζ1ζ2ζ3ζ4, . . ., while Λodd consists of all terms involving the product of an odd number
of generators ζ1, ζ2, ζ3, . . . , ζ1ζ2ζ3, ζ1ζ2ζ4, . . .. A Grassmann variable κ is called even (or bosonic)
if it is a linear combination of terms involving an even number of generators, while it is called odd
(or fermionic) if it is a linear combination of terms involving an odd number of generators.

We now construct a Grassmann-valued extension of the minimal surface Equation (2). The space
of independent variables, {(x, y)}, is extended to a superspace {(x, y, θ1, θ2)} involving two fermionic
Grassmann-valued variables θ1 and θ2. In addition, the bosonic function u(x, y) is generalized to a
bosonic-valued superfield Φ defined as:

Φ(x, y, θ1, θ2) = v(x, y) + θ1φ(x, y) + θ2ψ(x, y) + θ1θ2u(x, y), (7)

where v(x, y) is a bosonic-valued field while φ(x, y) and ψ(x, y) are fermionic-valued fields.
We construct our extension in such a way that it is invariant under the supersymmetry transformations:

x −→ x− η1θ1, θ1 −→ θ1 + η1, (8)

and:
y −→ y− η2θ2, θ2 −→ θ2 + η2, (9)

where η1 and η2 are odd-valued parameters. Throughout this paper, we use the convention that
underlined constants are fermionic-valued. The transformations (8) and (9) are generated by the
infinitesimal supersymmetry generators:

Q1 = ∂θ1 − θ1∂x and Q2 = ∂θ2 − θ2∂y, (10)

respectively. These generators satisfy the anticommutation relations:

{Q1, Q1} = −2∂x, {Q2, Q2} = −2∂y, {Q1, Q2} = 0. (11)

To make the superfield model invariant under the transformations generated by Q1 and Q2,
we construct the equation in terms of the following covariant derivatives:

D1 = ∂θ1 + θ1∂x and D2 = ∂θ2 + θ2∂y. (12)

These covariant derivative operators possess the following properties:

D2
1 = ∂x, D2

2 = ∂y, {D1, D2} = 0, {D1, Q1} = 0,

{D1, Q2} = 0, {D2, Q1} = 0, {D2, Q2} = 0.
(13)

Combining different covariant derivatives Dm
1 and Dn

2 of the superfield Φ of various orders,
where m and n are positive integers, we obtain the most general form of the supersymmetric extension
of Equation (2). Since this expression is very involved, we instead present the following sub-case as
our superymmetric extension of the MS equation, and will refer to it as such. We obtain the equation:

D4
2Φ + (D2

1Φ)(D3
1D2Φ)(D1D5

2Φ)− 2(D2
1Φ)(D1D3

2Φ)(D3
1D3

2Φ) + D4
1Φ

+ (D2
2Φ)(D1D3

2Φ)(D5
1D2Φ) = 0.

(14)
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In terms of derivatives with respect to x, y, θ1 and θ2, Equation (14) can be written in the form:

Φyy + Φxx

+ Φx(−Φxθ1θ2 + θ1Φxxθ2 − θ2Φxyθ1 + θ1θ2Φxxy)×
(−Φyyθ1θ2 + θ1Φxyyθ2 − θ2Φyyyθ1 + θ1θ2Φxyyy)

− 2Φx(−Φyθ1θ2 + θ1Φxyθ2 − θ2Φyyθ1 + θ1θ2Φxyy)×
(−Φxyθ1θ2 + θ1Φxxyθ2 − θ2Φxyyθ1 + θ1θ2Φxxyy)

+ Φy(−Φyθ1θ2 + θ1Φxyθ2 − θ2Φyyθ1 + θ1θ2Φxyy)×
(−Φxxθ1θ2 + θ1Φxxxθ2 − θ2Φxxyθ1 + θ1θ2Φxxxy)

= 0.

(15)

In what follows, we will refer to Equation (15) as the supersymmetric minimal surface equation
(SUSY MS equation).

The partial derivatives satisfy the generalized Leibniz rule:

∂θi ( f g) = (∂θi f )g + (−1)deg( f ) f (∂θi g), (16)

if θi is a fermionic variable and we define:

deg( f ) =

{
0 if f is even,

1 if f is odd.
(17)

The partial derivatives with respect to the odd coordinates satisfy ∂θi (θj) = δi
j, where the indices i

and j each stand for 1 or 2 and δi
j is the Kronecker delta function. The operators ∂θ1 , ∂θ2 , Q1, Q2, D1

and D2 change the parity of a bosonic function to that of a fermionic function and vice-versa.
When dealing with higher-order derivatives, the symbol fx1x2x3 ...xk−1xk denotes the derivative

∂xk ∂xk−1 . . . ∂x3 ∂x2 ∂x1( f ) where the order must be preserved for the sake of consistency. Throughout this
paper, we use the convention that if f (g(x)) is a composite function, then:

∂ f
∂x

=
∂g
∂x
× ∂ f

∂g
. (18)

The interchange of mixed derivatives with proper respect for the ordering of odd variables is
assumed throughout. For a review of recent developments in this subject, see, e.g., Freed [25] and
Varadarajan [26].

3. Lie Symmetries of the Supersymmetric Minimal Surface Equation

A symmetry supergroup G of a supersymmetric system is a local supergroup of transformations
acting on the Cartesian product of submanifolds X ×U , where X is the space of independent variables
{(x, y, θ1, θ2)} and U is the space of dependent superfields, which in this case involves only the
superfield Φ. To find symmetries of the SUSY MS equation, we make use of the theory described in
the book by Olver [27] to determine superalgebras of infinitesimal symmetries.

To determine the Lie point superalgebra of infinitesimal symmetries, we look for a bosonic vector
field of the form:

v = ξ1(x, y, θ1, θ2)∂x + ξ2(x, y, θ1, θ2)∂y + ρ1(x, y, θ1, θ2)∂θ1

+ ρ2(x, y, θ1, θ2)∂θ2 + Λ(x, y, θ1, θ2)∂Φ,
(19)

where ξ1, ξ2 and Λ are bosonic-valued functions, while ρ1 and ρ2 are fermionic-valued functions.
The prolongation formulas allowing us to find the symmetries are very involved and will not be
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presented here. Moreover, it should be noted that the symmetry criterion has not yet been conclusively
demonstrated for the case of equations involving Grassmann variables.

The following infinitesimal transformations were found to be symmetry generators of the SUSY
MS equation:

P1 = ∂x, P2 = ∂y, P3 = ∂θ1 , P4 = ∂θ2 , P5 = ∂Φ,

D = 2x∂x + 2y∂y + θ1∂θ1 + θ2∂θ2 + 4Φ∂Φ,

Q1 = ∂θ1 − θ1∂x, Q2 = ∂θ2 − θ2∂y.

(20)

These eight generators span a Lie superalgebra G of infinitesimal symmetries of the SUSY MS
equation. Here, P1, P2, P3 and P4 generate translations in the x, y, θ1 and θ2 directions, respectively,
while P5 generates a shift in the superfield Φ. The vector field D corresponds to a dilation involving
both bosonic and fermionic variables as well as the superfield Φ. Finally, the fermionic vector fields
Q1 and Q2 are simply the supersymmetry transformations identified in (10). The supercommutation
relations involving the generators of the superalgebra G are listed in Table 1.

Table 1. Supercommutation table for the Lie superalgebra G generated by the vector fields (20).
Here, for each pair of generators X and Y, we calculate either the commutator [X, Y] = XY − YX if
either X or Y are bosonic, or the anticommutator {X, Y} = XY + YX if both X and Y are fermionic.

D P1 P3 Q1 P2 P4 Q2 P5

D 0 −2P1 −P3 −Q1 −2P2 −P4 −Q2 −4P5
P1 2P1 0 0 0 0 0 0 0
P3 P3 0 0 −P1 0 0 0 0
Q1 Q1 0 −P1 −2P1 0 0 0 0
P2 2P2 0 0 0 0 0 0 0
P4 P4 0 0 0 0 0 −P2 0
Q2 Q2 0 0 0 0 −P2 −2P2 0
P5 4P5 0 0 0 0 0 0 0

The Lie superalgebra G can be decomposed into the following combination of semidirect and
direct sums:

G = {D} +⊃ {{P1, P3, Q1} ⊕ {P2, P4, Q2} ⊕ {P5}}. (21)

It should be noted that the symmetries found for the SUSY MS Equation (15) are qualitatively
different from those found previously for the SUSY version of the equations of confomally
parameterized surfaces with non-zero mean curvature [28].

4. Classification of Subalgebras for the Lie Superalgebra

We proceed to classify the one-dimensional Lie subalgebras of the superalgebra G generated
by (20) into conjugacy classes under the action of the Lie supergroup G = exp(G) generated by G.
We construct our list of representative subalgebras in such a way that each one-dimensional subalgebra
of G is conjugate to one and only one element of the list. Such a classification is useful because
subalgebras that are conjugate to each other lead to invariant solutions that are equivalent in the sense
that one can be transformed to the other by a suitable symmetry. Therefore, it is not necessary to
perform symmetry reduction on two different subalgebras that are conjugate to each other.

To classify the Lie superalgebra G given in (21), we make use of the procedures given in [29].
In what follows, α, r, k and ` are bosonic constants; µ, ν, η, λ, ρ and σ are fermionic constants;
and ε = ±1. We begin by considering the subalgebra S1 = {P1, P3, Q1}. Consider a general element of
S1 which can be written as the linear combination X = αP1 + µP3 + νQ1 and examine how this element
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changes under the action of the one-parameter group generated by the generator: Y = rP1 + ηP3 + λQ1.
This action is performed through the Baker-Campbell-Hausdorff formula:

X −→ Adexp(Y)X = X + [Y, X] + 1
2[Y, [Y, X]] + . . . + 1

3[Y, [Y, [Y, X]]] + . . . (22)

We obtain:

[Y, X] = [rP1 + ηP3 + λQ1, αP1 + µP3 + νQ1]

= [ηP3, νQ1] + [λQ1, µP3] + [λQ1, νQ1]

= (ην + λµ + 2λν)P1,

(23)

[Y[Y, X]] = [rP1 + ηP3 + λQ1, (ην + λµ + 2λν)P1] = 0. (24)

Thus, we have:

{αP1 + µP3 + νQ1} −→ {(α + ην + λµ + 2λν)P1 + µP3 + νQ1}. (25)

Therefore, aside from a change in the P1 coefficient, each element of the form {αP1 + µP3 + νQ1}
is conjugate only to itself. This gives us the subalgebras:

G1 = {P1}, G2 = {µP3}, G3 = {µQ1}, G4 = {P1 + µP3},

G5 = {P1 + µQ1}, G6 = {µP3 + νQ1}, G7 = {P1 + µP3 + νQ1}.
(26)

An analogous classification is performed for the subalgebra S2 = {P2, P4, Q2}, from which we
obtain the subalgebras:

G8 = {P2}, G9 = {µP4}, G10 = {µQ2}, G11 = {P2 + µP4},

G12 = {P2 + µQ2}, G13 = {µP4 + νQ2}, G14 = {P2 + µP4 + νQ2}.
(27)

The next step is to classify the direct sum of the algebras S1 and S2, that is, to classify:

S = S1 ⊕ S2 = {P1, P3, Q1} ⊕ {P2, P4, Q2}, (28)

using the Goursat method of subalgebra classification [30]. Each non-twisted subalgebra of S is
constructed by selecting one subalgebra of S1 and finding its direct sum with a subalgebra of S2.
The non-twisted one-dimensional subalgebras of S are the combined subalgebras G1 to G14 listed
in (26) and (27). The twisted subalgebras of S are formed as follows. If A ∈ S1 and B ∈ S2, then A and
B can be twisted together if there exists a homomorphism from A to B, say τ(A) = B. The twisted
subalgebra is then obtained by taking {A + τ(A)}. This results in the additional subalgebras:

G15 = {P1 + kP2}, G16 = {P1 + µP4}, G17 = {P1 + µQ2},

G18 = {P1 + kP2 + µP4}, G19 = {P1 + kP2 + µQ2}, G20 = {P1 + µP4 + νQ2},

G21 = {P1 + kP2 + µP4 + νQ2}, G22 = {P2 + µP3}, G23 = {µP3 + νP4},

G24 = {µP3 + νQ2}, G25 = {P2 + µP3 + νP4}, G26 = {P2 + µP3 + νQ2},

G27 = {µP3 + νP4 + ρQ2}, G28 = {P2 + µP3 + νP4 + ρQ2}, G29 = {P2 + µQ1},

G30 = {µP4 + νQ1}, G31 = {µQ1 + νQ2}, G32 = {P2 + µP4 + νQ1},

G33 = {P2 + µQ1 + νQ2}, G34 = {µP4 + νQ1 + ρQ2},
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G35 = {P2 + µP4 + νQ1 + ρQ2}, G36 = {P1 + kP2 + µP3},

G37 = {P1 + µP3 + νP4}, G38 = {P1 + µP3 + νQ2},

G39 = {P1 + kP2 + µP3 + νP4}, G40 = {P1 + kP2 + µP3 + νQ2},

G41 = {P1 + µP3 + νP4 + ρQ2}, G42 = {P1 + kP2 + µP3 + νP4 + ρQ2},

G43 = {P1 + kP2 + µQ1}, G44 = {P1 + µP4 + νQ1},

G45 = {P1 + µQ1 + νQ2}, G46 = {P1 + kP2 + µP4 + νQ1},

G47 = {P1 + kP2 + µQ1 + νQ2}, G48 = {P1 + µP4 + νQ1 + ρQ2},

G49 = {P1 + kP2 + µP4 + νQ1 + ρQ2}, G50 = {P2 + µP3 + νQ1},

G51 = {µP3 + νP4 + ρQ1}, G52 = {µP3 + νQ1 + ρQ2},

G53 = {P2 + µP3 + νP4 + ρQ1}, G54 = {P2 + µP3 + νQ1 + ρQ2},

G55 = {µP3 + νP4 + ρQ1 + σQ2}, G56 = {P2 + µP3 + νP4 + ρQ1 + σQ2},

G57 = {P1 + kP2 + µP3 + νQ1}, G58 = {P1 + µP3 + νP4 + ρQ1},

G59 = {P1 + µP3 + νQ1 + ρQ2}, G60 = {P1 + kP2 + µP3 + νP4 + ρQ1},

G61 = {P1 + kP2 + µP3 + νQ1 + ρQ2}, G62 = {P1 + µP3 + νP4 + ρQ1 + σQ2},

G63 = {P1 + kP2 + µP3 + νP4 + ρQ1 + σQ2}.

(29)

Next, we consider the one-dimensional subalgebras of the semi-direct sum:

S̃ = S ⊕ {P5} = {{P1, P3, Q1} ⊕ {P2, P4, Q2}} ⊕ {P5}, (30)

Using the Goursat method as described above, we obtain, in addition to the subalgebras already
listed in Equations (26), (27) and (29), the subalgebras:

G64 = {P5}, G65 = {P1 + kP5}, G66 = {P5 + µP3}, G67 = {P5 + µQ1},

G68 = {P1 + kP5 + µP3}, G69 = {P1 + kP5 + µQ1},

G70 = {P5 + µP3 + νQ1}, G71 = {P1 + kP5 + µP3 + νQ1},

G72 = {P2 + kP5}, G73 = {P5 + µP4}, G74 = {P5 + µQ2},

G75 = {P2 + kP5 + µP4}, G76 = {P2 + kP5 + µQ2},

G77 = {P5 + µP4 + νQ2}, G78 = {P2 + kP5 + µP4 + νQ2},

G79 = {P1 + kP2 + `P5}, G80 = {P1 + kP5 + µP4},

G81 = {P1 + kP5 + µQ2}, G82 = {P1 + kP2 + `P5 + µP4},

G83 = {P1 + kP2 + `P5 + µQ2}, G84 = {P1 + kP5 + µP4 + νQ2},

G85 = {P1 + kP2 + `P5 + µP4 + νQ2}, G86 = {P2 + kP5 + µP3},

G87 = {P5 + µP3 + νP4}, G88 = {P5 + µP3 + νQ2},

G89 = {P2 + kP5 + µP3 + νP4}, G90 = {P2 + kP5 + µP3 + νQ2},

G91 = {P5 + µP3 + νP4 + ρQ2}, G92 = {P2 + kP5 + µP3 + νP4 + ρQ2},

G93 = {P2 + kP5 + µQ1}, G94 = {P5 + µP4 + νQ1},

G95 = {P5 + µQ1 + νQ2}, G96 = {P2 + kP5 + µP4 + νQ1},

G97 = {P2 + kP5 + µQ1 + νQ2}, G98 = {P5 + µP4 + νQ1 + ρQ2},



Symmetry 2017, 9, 318 8 of 19

G99 = {P2 + kP5 + µP4 + νQ1 + ρQ2}, G100 = {P1 + kP2 + `P5 + µP3},

G101 = {P1 + kP5 + µP3 + νP4}, G102 = {P1 + kP5 + µP3 + νQ2},

G103 = {P1 + kP2 + `P5 + µP3 + νP4},

G104 = {P1 + kP2 + `P5 + µP3 + νQ2},

G105 = {P1 + kP5 + µP3 + νP4 + ρQ2},

G106 = {P1 + kP2 + `P5 + µP3 + νP4 + ρQ2},

G107 = {P1 + kP2 + `P5 + µQ1}, G108 = {P1 + kP5 + µP4 + νQ1},

G109 = {P1 + kP5 + µQ1 + νQ2}, G110 = {P1 + kP2 + `P5 + µP4 + νQ1},

G111 = {P1 + kP2 + `P5 + µQ1 + νQ2},

G112 = {P1 + kP5 + µP4 + νQ1 + ρQ2},

G113 = {P1 + kP2 + `P5 + µP4 + νQ1 + ρQ2},

G114 = {P2 + kP5 + µP3 + νQ1}, G115 = {P5 + µP3 + νP4 + ρQ1},

G116 = {P5 + µP3 + νQ1 + ρQ2}, G117 = {P2 + kP5 + µP3 + νP4 + ρQ1},

G118 = {P2 + kP5 + µP3 + νQ1 + ρQ2},

G119 = {P5 + µP3 + νP4 + ρQ1 + σQ2},

G120 = {P2 + kP5 + µP3 + νP4 + ρQ1 + σQ2},

G121 = {P1 + kP2 + `P5 + µP3 + νQ1},

G122 = {P1 + kP5 + µP3 + νP4 + ρQ1},

G123 = {P1 + kP5 + µP3 + νQ1 + ρQ2},

G124 = {P1 + kP2 + `P5 + µP3 + νP4 + ρQ1},

G125 = {P1 + kP2 + `P5 + µP3 + νQ1 + ρQ2},

G126 = {P1 + kP5 + µP3 + νP4 + ρQ1 + σQ2},

G127 = {P1 + kP2 + `P5 + µP3 + νP4 + ρQ1 + σQ2}.

(31)

Finally, we classify the complete semidirect sum superalgebra G = {D} +⊃ S̃ using the method of
splitting and non-splitting subalgebras [29]. The splitting subalgebras of G are formed by combining
the dilation {D} or the trivial element {0} with each of the subalgebras of S̃ in a semidirect sum
of the form F +⊃ N, where F = {D} or F = {0} and N is a subalgebra of the classification of
S̃ . The splitting one-dimensional subalgebras of G are the combined subalgebras G1 to G127 listed
in Equations (26), (27), (29) and (31) together with the subalgebra G128 = {D}. For non-splitting
subalgebras, we consider spaces of the form:

V = {D +
s

∑
i=1

ciZi}, (32)

where the Zi form a basis of S . The resulting possibilities are further classified by observing which are
conjugate to each other under the action of the complete group generated by G. This analysis provides
us with the additional subalgebras:
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G129 = {D + εP1}, G130 = {D + µP3}, G131 = {D + µQ1},

G132 = {D + εP1 + µP3}, G133 = {D + εP1 + µQ1},

G134 = {D + µP3 + νQ1}, G135 = {D + εP1 + µP3 + νQ1},

G136 = {D + εP2}, G137 = {D + µP4}, G138 = {D + µQ2},

G139 = {D + εP2 + µP4}, G140 = {D + εP2 + µQ2},

G141 = {D + µP4 + νQ2}, G142 = {D + εP2 + µP4 + νQ2},

G143 = {D + εP1 + kP2}, G144 = {D + εP1 + µP4},

G145 = {D + εP1 + µQ2}, G146 = {D + εP1 + kP2 + µP4},

G147 = {D + εP1 + kP2 + µQ2}, G148 = {D + εP1 + µP4 + νQ2},

G149 = {D + εP1 + kP2 + µP4 + νQ2}, G150 = {D + εP2 + µP3},

G151 = {D + µP3 + νP4}, G152 = {D + µP3 + νQ2},

G153 = {D + εP2 + µP3 + νP4}, G154 = {D + εP2 + µP3 + νQ2},

G155 = {D + µP3 + νP4 + ρQ2}, G156 = {D + εP2 + µP3 + νP4 + ρQ2},

G157 = {D + εP2 + µQ1}, G158 = {D + µP4 + νQ1},

G159 = {D + µQ1 + νQ2}, G160 = {D + εP2 + µP4 + νQ1},

G161 = {D + εP2 + µQ1 + νQ2}, G162 = {D + µP4 + νQ1 + ρQ2},

G163 = {D + εP2 + µP4 + νQ1 + ρQ2}, G164 = {D + εP1 + kP2 + µP3},

G165 = {D + εP1 + µP3 + νP4}, G166 = {D + εP1 + µP3 + νQ2},

G167 = {D + εP1 + kP2 + µP3 + νP4}, G168 = {D + εP1 + kP2 + µP3 + νQ2},

G169 = {D + εP1 + µP3 + νP4 + ρQ2},

G170 = {D + εP1 + kP2 + µP3 + νP4 + ρQ2}, G171 = {D + εP1 + kP2 + µQ1},

G172 = {D + εP1 + µP4 + νQ1}, G173 = {D + εP1 + µQ1 + νQ2},

G174 = {D + εP1 + kP2 + µP4 + νQ1}, G175 = {D + εP1 + kP2 + µQ1 + νQ2},

G176 = {D + εP1 + µP4 + νQ1 + ρQ2},

G177 = {D + εP1 + kP2 + µP4 + νQ1 + ρQ2}, G178 = {D + εP2 + µP3 + νQ1},

G179 = {D + µP3 + νP4 + ρQ1}, G180 = {D + µP3 + νQ1 + ρQ2},

G181 = {D + εP2 + µP3 + νP4 + ρQ1}, G182 = {D + εP2 + µP3 + νQ1 + ρQ2},

G183 = {D + µP3 + νP4 + ρQ1 + σQ2},

G184 = {D + εP2 + µP3 + νP4 + ρQ1 + σQ2},

G185 = {D + εP1 + kP2 + µP3 + νQ1}, G186 = {D + εP1 + µP3 + νP4 + ρQ1},

G187 = {D + εP1 + µP3 + νQ1 + ρQ2},

G188 = {D + εP1 + kP2 + µP3 + νP4 + ρQ1},

G189 = {D + εP1 + kP2 + µP3 + νQ1 + ρQ2},

G190 = {D + εP1 + µP3 + νP4 + ρQ1 + σQ2},
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G191 = {D + εP1 + kP2 + µP3 + νP4 + ρQ1 + σQ2}, G192 = {D + εP5},

G193 = {D + εP1 + kP5}, G194 = {D + εP5 + µP3},

G195 = {D + εP5 + µQ1}, G196 = {D + εP1 + kP5 + µP3},

G197 = {D + εP1 + kP5 + µQ1}, G198 = {D + εP5 + µP3 + νQ1},

G199 = {D + εP1 + kP5 + µP3 + νQ1}, G200 = {D + εP2 + kP5},

G201 = {D + εP5 + µP4}, G202 = {D + εP5 + µQ2},

G203 = {D + εP2 + kP5 + µP4}, G204 = {D + εP2 + kP5 + µQ2},

G205 = {D + εP5 + µP4 + νQ2}, G206 = {D + εP2 + kP5 + µP4 + νQ2},

G207 = {D + εP1 + kP2 + `P5}, G208 = {D + εP1 + kP5 + µP4},

G209 = {D + εP1 + kP5 + µQ2}, G210 = {D + εP1 + kP2 + `P5 + µP4},

G211 = {D + εP1 + kP2 + `P5 + µQ2}, G212 = {D + εP1 + kP5 + µP4 + νQ2},

G213 = {D + εP1 + kP2 + `P5 + µP4 + νQ2}, G214 = {D + εP2 + kP5 + µP3},

G215 = {D + εP5 + µP3 + νP4}, G216 = {D + εP5 + µP3 + νQ2},

G217 = {D + εP2 + kP5 + µP3 + νP4}, G218 = {D + εP2 + kP5 + µP3 + νQ2},

G219 = {D + εP5 + µP3 + νP4 + ρQ2},

G220 = {D + εP2 + kP5 + µP3 + νP4 + ρQ2}, G221 = {D + εP2 + kP5 + µQ1},

G222 = {D + εP5 + µP4 + νQ1}, G223 = {D + εP5 + µQ1 + νQ2},

G224 = {D + εP2 + kP5 + µP4 + νQ1}, G225 = {D + εP2 + kP5 + µQ1 + νQ2},

G226 = {D + εP5 + µP4 + νQ1 + ρQ2},

G227 = {D + εP2 + kP5 + µP4 + νQ1 + ρQ2},

G228 = {D + εP1 + kP2 + `P5 + µP3}, G229 = {D + εP1 + kP5 + µP3 + νP4},

G230 = {D + εP1 + kP5 + µP3 + νQ2},

G231 = {D + εP1 + kP2 + `P5 + µP3 + νP4},

G232 = {D + εP1 + kP2 + `P5 + µP3 + νQ2},

G233 = {D + εP1 + kP5 + µP3 + νP4 + ρQ2},

G234 = {D + εP1 + kP2 + `P5 + µP3 + νP4 + ρQ2},

G235 = {D + εP1 + kP2 + `P5 + µQ1}, G236 = {D + εP1 + kP5 + µP4 + νQ1},

G237 = {D + εP1 + kP5 + µQ1 + νQ2},

G238 = {D + εP1 + kP2 + `P5 + µP4 + νQ1},

G239 = {D + εP1 + kP2 + `P5 + µQ1 + νQ2},

G240 = {D + εP1 + kP5 + µP4 + νQ1 + ρQ2},

G241 = {D + εP1 + kP2 + `P5 + µP4 + νQ1 + ρQ2},

G242 = {D + εP2 + kP5 + µP3 + νQ1}, G243 = {D + εP5 + µP3 + νP4 + ρQ1},
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G244 = {D + εP5 + µP3 + νQ1 + ρQ2},

G245 = {D + εP2 + kP5 + µP3 + νP4 + ρQ1},

G246 = {D + εP2 + kP5 + µP3 + νQ1 + ρQ2},

G247 = {D + εP5 + µP3 + νP4 + ρQ1 + σQ2},

G248 = {D + εP2 + kP5 + µP3 + νP4 + ρQ1 + σQ2},

G249 = {D + εP1 + kP2 + `P5 + µP3 + νQ1},

G250 = {D + εP1 + kP5 + µP3 + νP4 + ρQ1},

G251 = {D + εP1 + kP5 + µP3 + νQ1 + ρQ2},

G252 = {D + εP1 + kP2 + `P5 + µP3 + νP4 + ρQ1},

G253 = {D + εP1 + kP2 + `P5 + µP3 + νQ1 + ρQ2},

G254 = {D + εP1 + kP5 + µP3 + νP4 + ρQ1 + σQ2},

G255 = {D + εP1 + kP2 + `P5 + µP3 + νP4 + ρQ1 + σQ2}.

(33)

Therefore, the classification includes the 255 non-equivalent subalgebras listed above. It is worth
noting that the minimal surface Equation (15) is invariant under the discrete reflection transformation:

x → y, y→ x, θ1 → θ2, θ2 → θ1. (34)

Hence, identifying each subalgebra of the classification with its partner equivalent under the
transformation given in Equation (34), the subalgebra classification of G can be simplified from 255 to
143 subalgebras. These 143 subalgebras, labeled L1 to L143, are listed in the Appendix A.

5. Symmetry Group Reductions and Solutions of the SUSY Minimal Surface Equation

Each subalgebra given in the Appendix A can be used to perform a symmetry reduction of the
supersymmetric minimal surface Equation (15), which, in most cases, allows us to determine invariant
solutions of the SUSY MS equation. Once a solution of the equation is known, new solutions can be
found by acting on the given solution with the supergroup of symmetries. Since both the equation and
the list of subalgebras are very involved, we do not consider all possible cases. Instead, we present
certain interesting examples of nontrivial solutions which illustrate the symmetry reduction method.
In each case, we begin by constructing a complete set of invariants (functions which are preserved
by the symmetry subgroup action). Next, we find the group orbits of the corresponding subgroups
as well as the associated reduced systems of equations. Each reduced system can be solved in order
to construct an invariant solution of the SUSY MS Equation (15). It should be noted that, as has
been observed for other similar supersymmetric extensions [6], some of the subalgebras listed in the
Appendix A have a non-standard invariant structure in the sense that they do not reduce the system
to ordinary differential equations in the usual sense. These are the nine subalgebras: L2, L3, L6, L15,
L16, L19, L21, L24, and L33. This leaves 134 subalgebras that lead to standard symmetry reductions,
of which we illustrate several examples.

5.1. Translation-Invariant Solutions

We first construct the following three polynomial translation-invariant solutions. For each of these
examples, K, C1, C2, C7 and C8 are bosonic constants, while C, C3, C4, C5 and C6 are fermionic constants.
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1. For the subalgebra L1 = {∂x}, the set of invariants is y, θ1, θ2, Φ, which leads to the group orbit
Φ = Φ(y, θ1, θ2). Substituting into Equation (15), we obtain the quadratic solution:

Φ(y, θ1, θ2) = C1 + C2y + C3θ1 + C4yθ1 + C5θ2 + C6yθ2 + C7θ1θ2 + C8yθ1θ2. (35)

2. For the subalgebra L4 = {∂x + µ∂θ1}, we obtain the invariants y, η = θ1 − µx, θ2, Φ,
so Φ = Φ(y, η, θ2) is the group orbit and we get the translationally invariant solution:

Φ(x, y, θ1, θ2) =C1 + C2y + C3(θ1 − µx) + C4y(θ1 − µx) + C5θ2 + C6yθ2

+ C7(θ1 − µx)θ2 + C8y(θ1 − µx)θ2.
(36)

which constitutes an analog travelling wave involving both the bosonic variable x and the fermionic
variable θ1. Along any curve θ1 − µx = C, solution (36) depends only on y and θ2, which constitutes a
subcase of (35).

3. The subalgebra L8 = {∂x + k∂y}, k 6= 0, has invariants ξ = y− kx, θ1, θ2, Φ, so we have the group
orbit Φ = Φ(ξ, θ1, θ2). We obtain the following stationary wave solution:

Φ(x, y, θ1, θ2) =C1 + C2(y− kx) + C3θ1 + C4θ1(y− kx) + C5θ2 + C6θ2(y− kx)

+ C7θ1θ2 + C8θ1θ2(y− kx).
(37)

which is an analog travelling wave involving the bosonic spatial variables x and y. Along any straight
line y− kx = K, the dependence of solution (37) is purely fermionic.

5.2. Scaling-Invariant Solution

We first present two subalgebra reductions involving combinations of dilations and translations.

4. The subalgebra L74 = {2x∂x + 2y∂y + (θ1 + µ)∂θ1 + θ2∂θ2 + 4Φ∂Φ} involves a linear combination
of the dilation D and the fermionic translation P3. This subalgebra has invariants:

ξ =
y
x

, η1 =
θ1 + µ
√

x
, η2 =

θ2√
x

, Ψ =
Φ
x2 , (38)

which leads to the group orbit Φ = x2Ψ(ξ, η1, η2). If we make the assumption that the bosonic
superfield Ψ is of the particular bodiless form:

Ψ = ω(ξ)η1η2, (39)

where ω(ξ) is an arbitrary bosonic function of ξ, Equation (15) reduces to the ordinary
differential equation:

(ω2 + ξ2 + 1)ωξξη1η2 = 0, (40)

from which we obtain the following two solutions for ω:

ω(ξ) = ε1i
√

ξ2 + 1, ω(ξ) = Aξ + B, (41)

where ε1 = ±1 and A and B are complex-valued constants. This leads to the following radical and
algebraic invariant solutions, respectively:

(i) Φ = ε1i
√

x2 + y2(θ1 + µ)θ2, (ii) Φ = (Ay + Bx)(θ1 + µ)θ2. (42)

Solutions (42) consist of (i) a radially dependent solution and (ii) a centered wave whose level
curves are lines intersecting at the origin. Both solutions involve the fermionic variables θ1 and θ2.
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5. The subalgebra G136 = {2x∂x + (2y + ε)∂y + θ1∂θ1 + θ2∂θ2 + 4Φ∂Φ} (which is equivalent to L73

under the discrete transformation (34)) involves a linear combination of the dilation D and the bosonic
translation P2. This subalgebra has invariants:

ξ =
2y + ε

x
, η1 =

θ1√
x

, η2 =
θ2√

x
, Ψ =

Φ
x2 , (43)

which leads to the group orbit Φ = x2Ψ(ξ, η1, η2). Under the assumption (39), Equation (15) reduces
to the ordinary differential equation:

(2ξωωξ + 6ω2 + ξ2 + 4)ωξξη1η2 = 0, (44)

from which we obtain the following two solutions for ω:

ω(ξ) = ε1

√
−1

8
ξ2 − 2

3
+

K
ξ6 , ω(ξ) = Aξ + B, (45)

where ε1 = ±1 and A, B and K are complex-valued constants. This leads to the following radical and
algebraic invariant solutions, respectively:

(i) Φ = ε1θ1θ2

√
− (2y + ε)2

8
− 2x2

3
+

Kx8

(2y + ε)6 , (ii) Φ = θ1θ2(2Ay + Bx + εA). (46)

In Equation (46), Solution (i) is a radical solution which admits two sixth-order poles in y for
ε = ±1. In contrast, Solution (ii) is a cubic polynomial solution which does not have poles. It is a
subcase of (37).

6. We now construct a scaling-invariant solution corresponding to the subalgebra L72 = {2x∂x +

2y∂y + θ1∂θ1 + θ2∂θ2 + 4Φ∂Φ}. This subalgebra has invariants:

ξ =
y
x

, η1 =
θ1√

x
, η2 =

θ2√
x

, Ψ =
Φ
x2 , (47)

which leads to the group orbit Φ = x2Ψ(ξ, η1, η2). Since the general case is very involved, we make
various assumptions concerning the form of the bosonic function Ψ in order to obtain particular
solutions. From the hypothesis:

Ψ = f (ξ) + g(η1, η2) + Aη1 + Bη2 + C, (48)

where f and g are bosonic functions, A and B are fermionic constants, and C is a bosonic constant,
we obtain the solutions:

Φ(x, y, θ1, θ2) = c1xθ1θ2 + c2y2 + C3xy + C4x2, (49)

where C1, C2, C3 and C4 are arbitrary bosonic constants, and:

Φ(x, y, θ1, θ2) = ay2 + Cxy−Mx2 + Nθ1θ2, (50)

where C, M and N are arbitrary bosonic constants. Under the assumption (39), we obtain the following
double periodic solution of Equation (15)
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Φ(x, y, θ1, θ2) =
iθ1θ2

√
x

x2 + 1

[
2 (−i(x + i))1/2 21/2 (−i(−x + i))1/2 (xi)1/2·(

x(x2 + 1)
)1/2

E
(
(−i(x + i))1/2 , 2−1/2

)
− (−i(x + i))1/2 21/2 (−i(−x + i))1/2 ·

(xi)1/2
(

x(x2 + 1)
)1/2

F
(
(−i(x + i))1/2 , 2−1/2

)
− (x3 + x)1/2x2 − (x3 + x)1/2

]
,

(51)

where F(ϕ, k) and E(ϕ, k) are the standard elliptic integrals of the first and second kind respectively,

F(ϕ, k) =

ϕ∫
0

dθ√
1− k2 sin2 θ

=

x∫
0

dt√
(1− t2)(1− k2t2)

,

E(ϕ, k) =

ϕ∫
0

√
1− k2 sin2 θdθ =

x∫
0

√
1− k2t2

1− t2 dθ,

(52)

where x = sin ϕ, and the modulus k = 2−1/2 is such that k2 < 1. This ensures that the elliptic solutions
each possess one real and one purely imaginary period and that for real-valued arguments ϕ we have
real-valued solutions [31]. The solutions are doubly periodic multiwaves.

It should be noted that the solutions found for the subalgebras L74 and G136 involving
combinations of dilations and translations were fundamentally different from the solutions found for
the subalgebra L72 involving a dilation alone. It should also be noted that, at the limit where θ1 and θ2

approach zero, Solutions (42), (46) and (51) vanish. These solutions therefore have no counterpart for
the classical MS equation.

6. Group Analysis of the Classical Minimal Surface Equation

In this section, we review previous group-theoretical results concerning the classical minimal
surface Equation (2). In Reference [32], the infinitesimal Lie point symmetries of Equation (2) were
determined to be:

e1 = ∂x, e2 = ∂y, e3 = ∂u, e4 = −y∂x + x∂y,

e5 = −u∂y + y∂u, e6 = −x∂u + u∂x, e7 = x∂x + y∂y + u∂u.
(53)

The non-zero commutation relations of the generators (Equation (53)) are given by:

[e1, e4] = e2, [e1, e6] = −e3, [e1, e7] = e1, [e2, e4] = −e1,

[e2, e5] = e3, [e2, e7] = e2, [e3, e5] = −e2, [e3, e6] = e1,

[e3, e7] = e3, [e4, e5] = −e6, [e4, e6] = e5, [e5, e6] = −e4.

(54)

The seven-dimensional Lie algebra E generated by the vector fields (Equation (53)) can be
decomposed as the following combination of semi-direct sums:

E = {{e4, e5, e6} +⊃ {e1, e2, e3}} +⊃ {e7} (55)

Using the methods described in Section 4, we perform a classification of the one-dimensional
subalgebras of the Lie algebra E . We briefly summarize the obtained results. We begin with
the subalgebra A = {e4, e5, e6}. This subalgebra is isomorphic to A3,9 (su(2)) as listed in [33],
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whose subalgebras are all conjugate with {e4}. Next, we use the methods of splitting and non-splitting
subalgebras to determine the subalgebras of:

A +⊃ B = {e4, e5, e6} +⊃ {e1, e2, e3} (56)

Through the Baker-Campbell-Hausdorff formula (22), we find that all subalgebras of A +⊃ B are
conjugate to an element of the list {e1}, {e4}, {e4 + me3}, where m is any real number. Finally, if we
consider the full Lie algebra E , we also obtain the subalgebra {e7}. Thus, the full classification of the
one-dimensional subalgebras of E :

{e1}, {e4}, {e4 + me3}, {e7}. (57)

This result is different from the one obtained in [32], whose twelve different conjugation classes
were obtained for the classification.

We perform symmetry reduction of the classical minimal surface equation for each of the four
one-dimensional subalgebras given in (57). The results for subalgebras {e1} and {e7} are the same as
those found in [32], that is planar solutions. However, for subalgebras {e4} and {e4 + me3}, we obtain
the following results which are not given in [32]. In both cases, the reduced equations led to instances
of Abel’s equation of the first kind.

For subalgebra {e4}, the invariants are ξ = x2 + y2 and u, and so u is a function of ξ only.
Equation (2) then reduces to:

vξ = −1
ξ

v− 2v3, v = uξ . (58)

Solving Equation (58) leads to the invariant solution:

u(x, y) =
1√
2s0

ln
∣∣∣4√s0

√
s0(x2 + y2)2 − 2(x2 + y2) + 4s0(x2 + y2)− 4

∣∣∣+ k0 (59)

where s0 and k0 are real constants.
For subalgebra {e4 + me3}, the invariants are:

ξ = x2 + y2 and φ = u + m arcsin

(
x√

x2 + y2

)

Therefore,

u = φ(ξ)−m arcsin

(
x√

x2 + y2

)
.

Equation (2) then reduces to:

vξ = − 2ξ

ξ + m2 v3 − 2ξ + 3m2

2ξ(ξ + m2)
v, v = φξ . (60)

Solving Equation (60) leads to the invariant solution:

u(x, y) =
im
2

ln

∣∣∣∣∣2
√

2im(s0ξ − 2)1/2(m2 + ξ)1/2 + (s0m2 − 2)ξ − 4m2

ξ

∣∣∣∣∣
+

1√
2s0

ln

∣∣∣∣∣2
√

s0(s0ξ − 2)1/2(m2 + ξ)1/2 + (2ξ + m2)s0 − 2
√

s0

∣∣∣∣∣+ k0

(61)

where s0 and k0 are real constants. This completes the symmetry reduction analysis of the classical
minimal surface Equation (2) for one-dimensional Lie subalgebras.
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7. Final Remarks

In this paper, we have formulated a supersymmetric extension of the minimal surface equation
using a superspace involving two fermionic Grassmann variables and a bosonic-valued superfield.
A Lie superalgebra of symmetries was determined which included translations and a dilation.
The one-dimensional subalgebras of this superalgebra were classified into a large number of
conjugation classes under the action of the corresponding supergroup. A number of these subalgebras
were found to possess a non-standard invariant structure. For certain subalgebras, the symmetry
reduction method was used to obtain invariant solutions of the SUSY MS equation. These solutions
include algebraic solutions, radical solutions and doubly periodic multiwave solutions expressed in
terms of elliptic integrals. In addition, we have also performed a Lie symmetry analysis of the classical
minimal surface equation and compared the results with those obtained in [32]. We found fewer
one-dimensional subalgebras in the subalgebra classification by conjugation classes than obtained
in [32]. Finally, we have completed the symmetry reduction analysis for this equation. In contrast
with the supersymmetric case, where 143 representative subalgebras were found, only four such
subalgebras were found for the classical case. In both the classical and supersymmetric cases, a dilation
symmetry was found, together with translations in all independent and dependent variables.

In the future, it would be interesting to expand our analysis in several directions. One such
possibility would be to apply the above supersymmetric extension methods to the MS equation
in higher dimensions. Due to the complexity of the calculations involved, this would require the
development of a computer Lie symmetry package capable of handling odd and even Grassmann
variables. To the best of our knowledge, such a package does not presently exist. The conservation law
is well-established for the classical minimal surface Equation (3). The question of which quantities
are conserved by the supersymmetric model still remains an open question for the minimal surface
equation. We could also consider conditional symmetries of the SUSY MS equation, which could
allow us to enlarge the class of solutions and corresponding surfaces. Finally, it would be of interest to
develop the theory of boundary conditions for equations involving Grassmann variables and analyze
the existence and unicity of solutions.
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Appendix A

Each subalgebra G1 to G255 listed in Equations (26), (27), (29), (31) and (33) is identified with the
subalgebra obtained when it is transformed using the discrete transformation (34). This results in the
following list of 143 conjugacy classes of one-dimensional subalgebras of the superalgebra G generated
by the vector fields (20):

L1 = {P1}, L2 = {µP3}, L3 = {µQ1}, L4 = {P1 + µP3}, L5 = {P1 + µQ1},

L6 = {µP3 + νQ1}, L7 = {P1 + µP3 + νQ1}, L8 = {P1 + kP2}, L9 = {P1 + µP4},

L10 = {P1 + µQ2}, L11 = {P1 + kP2 + µP4}, L12 = {P1 + kP2 + µQ2},

L13 = {P1 + µP4 + νQ2}, L14 = {P1 + kP2 + µP4 + νQ2}, L15 = {µP3 + νP4},

L16 = {µP3 + νQ2}, L17 = {P2 + µP3 + νP4}, L18 = {P2 + µP3 + νQ2},

L19 = {µP3 + νP4 + ρQ2}, L20 = {P2 + µP3 + νP4 + ρQ2}, L21 = {µQ1 + νQ2},
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L22 = {P2 + µP4 + νQ1}, L23 = {P2 + µQ1 + νQ2}, L24 = {µP4 + νQ1 + ρQ2},

L25 = {P2 + µP4 + νQ1 + ρQ2}, L26 = {P1 + kP2 + µP3 + νP4},

L27 = {P1 + kP2 + µP3 + νQ2}, L28 = {P1 + µP3 + νP4 + ρQ2},

L29 = {P1 + kP2 + µP3 + νP4 + ρQ2}, L30 = {P1 + kP2 + µQ1 + νQ2},

L31 = {P1 + µP4 + νQ1 + ρQ2}, L32 = {P1 + kP2 + µP4 + νQ1 + ρQ2},

L33 = {µP3 + νP4 + ρQ1 + σQ2}, L34 = {P2 + µP3 + νP4 + ρQ1 + σQ2},

L35 = {P1 + kP2 + µP3 + νP4 + ρQ1 + σQ2}, L36 = {P5}, L37 = {P1 + kP5},

L38 = {P5 + µP3}, L39 = {P5 + µQ1}, L40 = {P1 + kP5 + µP3},

L41 = {P1 + kP5 + µQ1}, L42 = {P5 + µP3 + νQ1}, L43 = {P1 + kP5 + µP3 + νQ1},

L44 = {P1 + kP2 + `P5}, L45 = {P1 + kP5 + µP4}, L46 = {P1 + kP5 + µQ2},

L47 = {P1 + kP2 + `P5 + µP4}, L48 = {P1 + kP2 + `P5 + µQ2},

L49 = {P1 + kP5 + µP4 + νQ2}, L50 = {P1 + kP2 + `P5 + µP4 + νQ2},

L51 = {P5 + µP3 + νP4}, L52 = {P5 + µP3 + νQ2}, L53 = {P2 + kP5 + µP3 + νP4},

L54 = {P2 + kP5 + µP3 + νQ2}, L55 = {P5 + µP3 + νP4 + ρQ2},

L56 = {P2 + kP5 + µP3 + νP4 + ρQ2}, L57 = {P5 + µQ1 + νQ2},

L58 = {P2 + kP5 + µP4 + νQ1}, L59 = {P2 + kP5 + µQ1 + νQ2},

L60 = {P5 + µP4 + νQ1 + ρQ2}, L61 = {P2 + kP5 + µP4 + νQ1 + ρQ2},

L62 = {P1 + kP2 + `P5 + µP3 + νP4}, L63 = {P1 + kP2 + `P5 + µP3 + νQ2},

L64 = {P1 + kP5 + µP3 + νP4 + ρQ2}, L65 = {P1 + kP2 + `P5 + µP3 + νP4 + ρQ2},

L66 = {P1 + kP2 + `P5 + µQ1 + νQ2}, L67 = {P1 + kP5 + µP4 + νQ1 + ρQ2},

L68 = {P1 + kP2 + `P5 + µP4 + νQ1 + ρQ2}, L69 = {P5 + µP3 + νP4 + ρQ1 + σQ2},

L70 = {P2 + kP5 + µP3 + νP4 + ρQ1 + σQ2},

L71 = {P1 + kP2 + `P5 + µP3 + νP4 + ρQ1 + σQ2}, L72 = {D}, L73 = {D + εP1},

L74 = {D + µP3}, L75 = {D + µQ1}, L76 = {D + εP1 + µP3},

L77 = {D + εP1 + µQ1}, L78 = {D + µP3 + νQ1}, L79 = {D + εP1 + µP3 + νQ1},

L80 = {D + εP1 + kP2}, L81 = {D + εP1 + µP4}, L82 = {D + εP1 + µQ2},

L83 = {D + εP1 + kP2 + µP4}, L84 = {D + εP1 + kP2 + µQ2},

L85 = {D + εP1 + µP4 + νQ2}, L86 = {D + εP1 + kP2 + µP4 + νQ2},

L87 = {D + µP3 + νP4}, L88 = {D + µP3 + νQ2}, L89 = {D + εP2 + µP3 + νP4},

L90 = {D + εP2 + µP3 + νQ2}, L91 = {D + µP3 + νP4 + ρQ2},

L92 = {D + εP2 + µP3 + νP4 + ρQ2}, L93 = {D + µQ1 + νQ2},

L94 = {D + εP2 + µP4 + νQ1}, L95 = {D + εP2 + µQ1 + νQ2},

L96 = {D + µP4 + νQ1 + ρQ2}, L97 = {D + εP2 + µP4 + νQ1 + ρQ2},

L98 = {D + εP1 + kP2 + µP3 + νP4}, L99 = {D + εP1 + kP2 + µP3 + νQ2},

L100 = {D + εP1 + µP3 + νP4 + ρQ2}, L101 = {D + εP1 + kP2 + µP3 + νP4 + ρQ2},

L102 = {D + εP1 + kP2 + µQ1 + νQ2}, L103 = {D + εP1 + µP4 + νQ1 + ρQ2},
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L104 = {D + εP1 + kP2 + µP4 + νQ1 + ρQ2}, L105 = {D + µP3 + νP4 + ρQ1 + σQ2},

L106 = {D + εP2 + µP3 + νP4 + ρQ1 + σQ2},

L107 = {D + εP1 + kP2 + µP3 + νP4 + ρQ1 + σQ2}, L108 = {D + εP5},

L109 = {D + εP1 + kP5}, L110 = {D + εP5 + µP3}, L111 = {D + εP5 + µQ1},

L112 = {D + εP1 + kP5 + µP3}, L113 = {D + εP1 + kP5 + µQ1},

L114 = {D + εP5 + µP3 + νQ1}, L115 = {D + εP1 + kP5 + µP3 + νQ1},

L116 = {D + εP1 + kP2 + `P5}, L117 = {D + εP1 + kP5 + µP4},

L118 = {D + εP1 + kP5 + µQ2}, L119 = {D + εP1 + kP2 + `P5 + µP4},

L120 = {D + εP1 + kP2 + `P5 + µQ2}, L121 = {D + εP1 + kP5 + µP4 + νQ2},

L122 = {D + εP1 + kP2 + `P5 + µP4 + νQ2}, L123 = {D + εP5 + µP3 + νP4},

L124 = {D + εP5 + µP3 + νQ2}, L125 = {D + εP2 + kP5 + µP3 + νP4},

L126 = {D + εP2 + kP5 + µP3 + νQ2}, L127 = {D + εP5 + µP3 + νP4 + ρQ2},

L128 = {D + εP2 + kP5 + µP3 + νP4 + ρQ2}, L129 = {D + εP5 + µQ1 + νQ2},

L130 = {D + εP2 + kP5 + µP4 + νQ1}, L131 = {D + εP2 + kP5 + µQ1 + νQ2},

L132 = {D + εP5 + µP4 + νQ1 + ρQ2}, L133 = {D + εP2 + kP5 + µP4 + νQ1 + ρQ2},

L134 = {D + εP1 + kP2 + `P5 + µP3 + νP4},

L135 = {D + εP1 + kP2 + `P5 + µP3 + νQ2},

L136 = {D + εP1 + kP5 + µP3 + νP4 + ρQ2},

L137 = {D + εP1 + kP2 + `P5 + µP3 + νP4 + ρQ2},

L138 = {D + εP1 + kP2 + `P5 + µQ1 + νQ2},

L139 = {D + εP1 + kP5 + µP4 + νQ1 + ρQ2},

L140 = {D + εP1 + kP2 + `P5 + µP4 + νQ1 + ρQ2},

L141 = {D + εP5 + µP3 + νP4 + ρQ1 + σQ2},

L142 = {D + εP2 + kP5 + µP3 + νP4 + ρQ1 + σQ2},

L143 = {D + εP1 + kP2 + `P5 + µP3 + νP4 + ρQ1 + σQ2},
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