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Abstract: As an effective aggregation tool, power average (PA) allows the input arguments being
aggregated to support and reinforce each other, which provides more versatility in the information
aggregation process. Under the probabilistic linguistic term environment, we deeply investigate the
new power aggregation (PA) operators for fusing the probabilistic linguistic term sets (PLTSs). In this
paper, we firstly develop the probabilistic linguistic power average (PLPA), the weighted probabilistic
linguistic power average (WPLPA) operators, the probabilistic linguistic power geometric (PLPG)
and the weighted probabilistic linguistic power geometric (WPLPG) operators. At the same time,
we carefully analyze the properties of these new aggregation operators. With the aid of the WPLPA
and WPLPG operators, we further design the approaches for the application of multi-criteria group
decision-making (MCGDM) with PLTSs. Finally, we use an illustrated example to expound our
proposed methods and verify their performances.

Keywords: power average operator; probabilistic linguistic term sets; multi-criteria decision making;
group decision making

1. Introduction

Yager [1] introduced an operator of power average (PA) to provide more versatility in the
information aggregation process. PA is a nonlinear weighted average aggregation tool for which
the weight vector depends on the input arguments and that allows the values being aggregated to
support and reinforce each other [2]. It has received a large amount of attention in the literature.
For instance, Xu and Yager [2] developed power geometric operator on the basis of a geometric
mean (GM) and power average (PA). Under the linguistic environment, Xu et al. [3] developed new
linguistic aggregation operators based on the power average (PA) to address the relationship of input
arguments. Zhou and Chen [4] discussed a generalization of the power aggregation operators for
linguistic environment and its application in group decision making (GDM). By extending the PA to
the linguistic hesitant fuzzy environment, Zhu et al. [5] established a series of linguistic hesitant fuzzy
power aggregation operators. With the above-mentioned literature, PA has successfully been extended
to many complex and real situations.

One of the useful theories in dealing with the multi-criteria decision making (MCDM) problems
is the theory of probabilistic linguistic term sets (PLTSs). This theory proposed by Pang et al. [6]
plays a key role in the decision process where experts express their preferences [7–9]. Nowadays,
PLTSs have become a hot topic in the area of hesitant fuzzy linguistic term sets (HFLTSs) [10–12] and
hesitant fuzzy sets (HFSs) [13,14]. For example, Pang et al. [6] established a framework for ranking
PLTSs and they conducted a comparison method via the score or deviation degree of each PLTS.
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Bai et al. [7] stated that the existing approaches associated with PLTSs are limited or highly complex
in real applications. Thus they established more appropriate comparison method and developed
a more efficient way to handle PLTSs. Gou and Xu [15] defined novel operational laws for the
probability information. He et al. [16] proposed an algorithm for multi-criteria group decision making
(MCGDM) with probabilistic interval preference orderings. Wu and Xu [17] defined the concept of
possibility distribution and presented a new framework model to address MCDM. Zhang et al. [18]
introduced the concept of probabilistic linguistic preference relations to present the DMs preferences.
Under the hesitant probabilistic fuzzy environment, Zhou and Xu [19] studied the consensus building
with a group of decision makers. PLTSs generalize the existing models of HFLTSs and HFSs so as
to contain hesitations and probabilities. Compared with HFLTSs, the PLTSs have strong ability to
express the information vagueness and uncertainty in the hesitant situations under qualitative setting.
With respect to the PLTSs, the decision makers (DMs) can not only provide several possible linguistic
values over an object (alternative or attribute), but also reflect the probabilistic information of the set of
values [6]. In the existing literature, most aggregation operators developed for PLTSs are based on
the independence assumption and do not take into account information about the interrelationship
between PLTSs being aggregated.

For the PLTSs, it also can encounter the relationship phenomenon between the input arguments.
Meanwhile, PA provides a versatility in the aggregation process and has the ability to depict the
interrelationship of input arguments, i.e., it allows the input argument being aggregated to support and
reinforce each other. However, it rarely discusses in the research works of PLTSs. Hence, we introduce
PA into PLTSs and come out with new operators that will improved upon the existing aggregation
operators of PLTSs. In this paper, we firstly develop four new aggregation operators based on the
Power Average (PA) and the Power Geometric (PG), i.e., probabilistic linguistic power average (PLPA),
weighted probabilistic linguistic power average (WPLPA), probabilistic linguistic power geometric
(PLPG) and weighted probabilistic linguistic power geometric (WPLPG). These operators take into
account all the decision arguments and their relationships. On the basis of probabilistic linguistic GDM,
we utilize the WPLPA or WPLPG operator to aggregate the information and design the corresponding
approach. In a word, the desirable advantages of our research work are summarized as follows:
(1) We involve the probabilistic information. Our proposed methods can allow the collection of a few
different linguistic terms evaluated by the DMs and the opinions of the DMs will still remain the same.
(2) Our proposed methods also consider the interrelationship of the individual evaluation.

The rest of the paper is structured as follows: Some basic concepts and operations in relation to
PLTSs and PA are introduced in Section 2. In Section 3, we develop the PLPA operator, PLPG operator
and their own corresponding weighted forms. Meanwhile, we also study several desired properties of
these operators. In Section 4, we design the approaches for the application of MCGDM utilizing the
WPLPG and WPLPA operators. In Section 5, we give an illustrative example to elaborate and verify
our proposed methods. Section 6 concludes the paper and elaborates on future studies.

2. Preliminaries

In this section, we mainly review some basic concepts and operations in relation to PLTSs and PA.

2.1. Probabilistic Linguistic Term Sets (PLTSs)

The concept of PLTSs [6] is an extension of the concepts of HFLTSs. In the following, we review
some basic concepts of PLTSs and the corresponding operations.

Definition 1. [6] Let S = {st|t = 0, 1, · · · , τ} be a linguistic term set. Then a probabilistic linguistic term set
(PLTS) is defined as:

L(p) = {L(k)(p(k))|L(k) ∈ S, r(k) ∈ t, p(k) ≥ 0, k = 1, 2, · · · , #L(p),
#L(p)

∑
k=1

p(k) ≤ 1}, (1)
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where L(k)(p(k)) is the linguistic term L(k) associated with the probability p(k), r(k) is the subscript of L(k) and
#L(p) is the number of all linguistic terms in L(p).

Since the positions of elements in a set can be swapped arbitrarily, Pang et al. [6] proposed the
ordered PLTSs to ensure that the operational results among PLTSs can be straightforwardly determined.
It is described as:

Definition 2. Given a PLTS L(p) = {L(k)(p(k))|k = 1, 2, · · · , #L(p)}, and r(k) is the subscript of linguistic
term L(k). L(p) is called an ordered PLTS, if the linguistic terms L(k)(p(k)) are arranged according to the values
of r(k)p(k) in descending order.

Definition 3. Let S = {st|t = 0, 1, · · · , τ} be a linguistic term set. Given three PLTSs L(p), L1(p) and
L2(p), their basic operations are summarized as follows [6]:

(1) L1(p)⊕ L2(p) =
⋃

L(k)
1 ∈L1(p),L(k)

2 ∈L2(p)

{
p(k)1 L(k)

1 ⊕ p(k)2 L(k)
2

}
;

(2) L1(p)⊗ L2(p) =
⋃

L(k)
1 ∈L1(p),L(k)

2 ∈L2(p)

{
(L(k)

1 )p(k)1 ⊗ (L(k)
2 )p(k)2

}
;

(3) λ(L(p)) =
⋃

L(k)∈L(p)

{
λp(k)L(k)

}
and λ ≥ 0;

(4) (L(p))λ =
⋃

L(k)∈L(p)

{
(L(k))λp(k)

}
and λ ≥ 0.

To compare the PLTSs, Pang et al. [6] defined the score and the deviation degree of a PLTS:

Definition 4. Let L(p) = {L(k)(p(k))|k = 1, 2, · · · , #L(p)} be a PLTS, and r(k) is the subscript of linguistic
term L(k). Then, the score of L(p) is defined as follows:

E(L(p)) = sᾱ, (2)

where ᾱ = ∑
#L(p)
k=1 r(k)p(k)/ ∑

#L(p)
k=1 p(k). The deviation degree of L(p) is:

σ(L(p)) =
(∑

#L(p)
k=1 (p(k)(r(k) − ᾱ))2)0.5

∑
#L(p)
k=1 p(k)

. (3)

Based on the score and the deviation degree of a PLTS, Pang et al. [6] further proposed the
following laws to compare them.

Definition 5. Given two PLTSs L1(p) and L2(p). E(L1(p)) and E(L2(p)) are the scores of L1(p) and L2(p),
respectively. σ(L1(p)) and σ(L2(p)) denote the deviation degrees of L1(p) and L2(p). Then, we have:

(1) If E(L1(p)) > E(L2(p)), then L1(p) is bigger than L2(p), denoted by L1(p) > L2(p);
(2) If E(L1(p)) < E(L2(p)), then L1(p) is smaller than L2(p), denoted by L1(p) < L2(p);
(3) If E(L1(p)) = E(L2(p)), then we need to compare their deviation degrees:

(a) If σ(L1(p)) = σ(L2(p)), then L1(p) is equal to L2(p), denoted by L1(p) ∼ L2(p);
(b) If σ(L1(p)) > σ(L2(p)), then L1(p) is smaller than L2(p), denoted by L1(p) < L2(p);
(c) If σ(L1(p)) < σ(L2(p)), then L1(p) is bigger than L2(p), denoted by L1(p) > L2(p).

When we analyze and discuss the comparison of PLTSs, we may realise that the number of their
corresponding number of the linguistic terms may not be equal. To solve this problem, Pang et al. [6]
normalized the PLTSs by increasing the numbers of linguistic terms for PLTSs. The normalized
Definition of PLTSs is the following.
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Definition 6. Let L1(p) = {L(k)
1 (p(k)1 )|k = 1, 2, · · · , #L1(p)} and L2(p) = {L(k)

2 (p(k)2 )|k =

1, 2, · · · , #L2(p)} be any two PLTSs. #L1(p) and #L2(p) are the numbers of the linguistic terms in L1(p) and
L2(p). If #L1(p) > #L2(p), then we will add #L1(p)− #L2(p) linguistic terms to L2(p) so that the numbers
of linguistic terms in L1(p) and L2(p) are identical. The added linguistic terms are the smallest ones in L2(p)
and the probabilities of all the linguistic terms are zero. Analogously, if #L1(p) < #L2(p), we can use the
similar method.

Based on the normalized PLTSs, Pang et al. [6] further defined the deviation degree between
PLTSs. The result is shown as follows.

Definition 7. [6] Let L1(p) = {L(k)
1 (p(k)1 )|k = 1, 2, · · · , #L1(p)} and L2(p) = {L(k)

2 (p(k)2 )|k =

1, 2, · · · , #L2(p)} be any two PLTSs, if #L1(p) = #L2(p), then the deviation degree between PLTSs is
defined as:

d(L1(p), L2(p)) =

√√√√#L1(p)

∑
k=1

(r(k)1 p(k)1 − r(k)2 p(k)2 )2/#L1(p). (4)

2.2. Power Average (PA)

Information fusion is a process of aggregating data operators from different resources by
proper aggregating operators. Power average (PA) operator, as a technique of fusing information,
was introduced by Yager [1], which allows the arguments to support each other in the
aggregation process.

Definition 8. [1] Let A = {a1, a2, · · · , an} be a collection of non-negative numbers. The power aggregation is
defined as follows:

PA(a1, a2, · · · , an) =
∑n

i=1(1 + T(ai))ai

∑n
i=1(1 + T(ai))

, (5)

where

T(ai) =
n

∑
j=1,j 6=i

sup(ai, aj). (6)

In this case, sup(ai, aj) is denoted as the support for ai from aj, which satisfies the following three properties:

(1) sup(ai, aj) ∈ [0, 1];
(2) sup(ai, aj) = sup(aj, ai);
(3) sup(ai, aj) ≥ sup(ai, ak), if |ai − aj| < |ai − ak|.

From the result of Definition 7, the supports among the input arguments are involved in the
PA. In general, sup(ai, aj) can be measured by the distance between the arguments, e.g., d(ai, aj).
By introducing geometric mean (GM), Xu and Yager [2] defined a power geometric (PG) operator
as follows:

PG(a1, a2, · · · , an) =
n

∏
i=1

ai

(1+T(ai))
∑n

i=1(1+T(ai)) , (7)

where ai (i = 1, 2, · · · , n) are a collection of arguments, and T(ai) satisfies the condition above.
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3. Probabilistic Linguistic Power Aggregation Operators

Under the probabilistic linguistic environment, we assume that the input arguments are PLTSs and
we mainly study the extension of power average (PA) and power geometric (PG) aggregation operators.

3.1. Probabilistic Linguistic Power Average (PLPA) Aggregation Operators

In this section, we discuss the extension of power average (PA) aggregation operators to
accommodate the probabilistic linguistic environment. In the following, some probabilistic linguistic
power average aggregation operators should be developed, which allow the input data to support each
other in the aggregation process, i.e., Probabilistic Linguistic Power Average (PLPA) and Weighted
Probabilistic Linguistic Power Average (WPLPA).

3.1.1. PLPA

Based on the results of Definitions 1 and 7, we present the Definition of the PLPA aggregation
operator as follows:

Definition 9. Let L(p) =

{
L(k)

i (p(k)i ) | k = 1, 2, · · · , #Li(p)
}

(i = 1, 2, ..., n) be a collection of PLTSs.

A probabilistic linguistic power average (PLPA) is a mapping Ln(p)→ L(p) such that:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

(1 + T(Li(p)))Li(p)
∑n

i=1(1 + T(Li(p)))
, (8)

where:

T(Li(p)) =
n

∑
j=1,j 6=i

sup(Li(p), Lj(p)). (9)

and sup(Li(p), Lj(p)) is considered to be the support for Li(p) from Lj(p) which satisfies the
following properties:

(1) sup(Li(p), Lj(p)) ∈ [0, 1];
(2) sup(Li(p), Lj(p)) = sup(Lj(p), Li(p));
(3) sup(Li(p), Lj(p)) ≥ sup(Li(p), Lk(p)) if d(Li(p), Lj(p)) < d(Li(p), Lk(p)).

In light of the operations law (1) of Definition 3, Definition 8 can be transformed into the
following form:

PLPA(L1(p), L2(p), · · · , Ln(p))

=
(1 + T(L1(p)))

∑n
i=1(1 + T(Li(p)))

L1(p)⊕ (1 + T(L2(p)))
∑n

i=1(1 + T(Li(p)))
L2(p)⊕ · · · ⊕ (1 + T(Ln(p)))

∑n
i=1(1 + T(Li(p)))

Ln(p).

Hence, we can deduce the following result from Definition 8.

Proposition 1. Let L(p) =

{
L(k)

i (p(k)i ) | k = 1, 2, · · · , #Li(p)
}

(i = 1, 2, ..., n) be a collection of PLTSs.

A probabilistic linguistic power average (PLPA) is calculated as:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

viLi(p)

=
⋃

L(k)
1 ∈L1(p)

{
v1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v2 p(k)2 L(k)

2

}
⊕ · · · ⊕

⋃
L(k)

n ∈Ln(p)

{
vn p(k)n L(k)

n

}
, (10)
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where vi =
(1+T(Li(p)))

∑n
j=1(1+T(Lj(p))) (i = 1, 2, ..., n).

On the basis of Definition 8 and Proposition 1, it can easily be proven that the PLPA aggregation
operator has the following desirable properties.

Theorem 1. (Commutativity) Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) be any permutation of
(L1(p), L2(p), · · · , Ln(p)), then PLPA(L1(p), L2(p), · · · , Ln(p)) =PLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Proof. According to the result of Definition 2, Li(p) is called an ordered PLTS (i = 1, 2, ..., n).
By Proposition 1 and the operations law (1) of Definition 3, we can conclude that:

PLPA(L1(p), L2(p), · · · , Ln(p)) = PLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Therefore, we complete the proof of Theorem 1.

Theorem 2. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs. If all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then PLPA(L1(p), L2(p), · · · , Ln(p)) = L(p).

Proof. If Li(p) = L(p) for all i, then PLPA(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

(1 + T(Li(p)))
∑n

i=1(1 + T(Li(p)))
Li(p)

=
n⊕

i=1

1
n

Li(p) = Li(p).

Hence, the statement of Theorem 2 holds.

Theorem 3. (Boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i ,

where L ∈ PLPA(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Proposition 1, PLPA(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

viLi(p)

=
⋃

L(k)
1 ∈L1(p)

{
v1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v2 p(k)2 L(k)

2

}
⊕ · · · ⊕

⋃
L(k)

n ∈Ln(p)

{
vn p(k)n L(k)

n

}
.

Then, we can deduce the following relationship:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ p(k)i L(k)

i ≤
n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i .

By utilizing the result of Theorem 2, we can easily finish the proof of Theorem 1.

Theorem 4. (Monotonicity) Let Li(p) and Li(p)∗ be two sets of PLTSs and the numbers of linguistic terms
in Li(p) and Li(p)∗ are identical (i = 1, 2, · · · , n). If L(k)

i (p(k)i ) ≤ L(k)
i (p(k)i )∗ for all i, i.e., Li(p) ≤ Li(p)∗,

then PLPA(L1(p), L2(p), · · · , Ln(p)) ≤ PLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).
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Theorem 5. Let sup(Li(p), Lj(p)) = k for all i 6= j, then PLPA(L1(p), L2(p), · · · , Ln(p)) =
⊕ 1

n Li(p).

Proof. If sup(Li(p), Lj(p)) = k for all i 6= j, it indicates that all the supports are the same. In this
situation, the PLPA operator is computed as follows:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

(1 + T(Li(p)))
∑n

i=1(1 + T(Li(p)))
Li(p)

=
n⊕

i=1

(1 + (n− 1)k)
∑n

i=1(1 + (n− 1)k)
Li(p) =

n⊕
i=1

1
n

Li(p).

It is a simple probabilistic linguistic averaging operator. Hence, the statement of Theorem 5 holds.

3.1.2. WPLPA

With respect to the PLPA operator, the weights of the arguments should be considered, because
each argument that is being aggregated has a weight indicating its importance [3]. Based on this idea,
we extend the PLPA and give the Definition of the weighted probabilistic linguistic power average
(WPLPA) operator as follows:

Definition 10. Let Li(p) be a collection of PLTSs. w = (w1, w2, ..., wn)T denotes the weighting vector of
Li(p) and wi ∈ [0, 1], ∑n

i=1 wi = 1. Given the value of the weight vector w = (w1, w2, ..., wn)T , we define
weighted probabilistic linguistic power average (WPLA) operator as follows:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + T′(Li(p)))Li(p)
∑n

i=1 wi(1 + T′(Li(p)))
. (11)

In this case, T′(Li(p)) = ∑n
j=1,j 6=i wjsup(Li(p), Lj(p)).

Based on the operations of the PLTSs described in Definition 3, we can derive the following
Proposition 2.

Proposition 2. Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then their aggregated values by using the
WPLPA operator is also a PLTS, and:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
⋃

L(k)
1 ∈L1(p)

{
v′1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v′2 p(k)2 L(k)

2

}

⊕ · · · ⊕
⋃

L(k)
n ∈Ln(p)

{
v′n p(k)n L(k)

n

}
. (12)

where v′i =
wi(1+T′(Li(p)))

∑n
j=1 wj(1+T′(Lj(p))) (i = 1, 2, · · · , n).

Especially, if sup(Li(p), Lj(p)) = 0 for all i 6= j, then T(Li(p) = 0.
Thus, WPLPA(L1(p), L2(p), · · · , Ln(p)) =

⊕n
i=1 wiLi(p). Under this situation, the WPLPA operator

reduces to PLWA proposed by Ref. [6]. If the weight vector w = (w1, w2, ..., wn)T = ( 1
n , 1

n , · · · , 1
n )

T ,
v′i of Proposition 2 is computed as:

v′i =
wi(1 + T′(Li(p)))

∑n
j=1 wj(1 + T′(Lj(p)))

=
(1 + T′(Li(p)))

∑n
i=1(1 + T′(Li(p)))

= vi.
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Thus, the WPLPA operator is computed as:

WPLPA(L1(p), L2(p), · · · , Ln(p))

=
⋃

L(k)
1 ∈L1(p)

{
v1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v2 p(k)2 L(k)

2

}
⊕ · · · ⊕

⋃
L(k)

n ∈Ln(p)

{
vn p(k)n L(k)

n

}
= PLPA(L1(p), L2(p), · · · , Ln(p)).

It indicates that the WPLPA reduces to the PLPA operator. According to the results of
Definitions 3 and 10, it can easily prove that the WPLPA operator has the following properties.

Theorem 6. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, if all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then WPLPA(L1(p), L2(p), · · · , Ln(p)) = L(p).

Proof. If Li(p) = L(p) for all i, then WPLPA(L1(p), L2(p), · · · , Ln(p)) is computed as:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + T′(Li(p)))Li(p)
∑n

i=1 wi(1 + T′(Li(p)))

=
n⊕

i=1

1
n

Li(p) = Li(p).

Thus, the statement of Theorem 6 holds.

Theorem 7. (Boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i .

where L ∈WPLPA(L1(p), L2(p), · · · , Ln(p)).

If we let sup(Li(p), Lj(p)) = k for all i 6= j, we have: T′(Li(p)) = ∑n
j=1,j 6=i wjsup(Li(p), Lj(p)) =

k ∑n
j=1,j 6=i wj (i = 1, 2, · · · , n). Based on the result of Definition 10, we have:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + k ∑n
j=1,j 6=i wj)

∑n
i=1 wi(1 + k ∑n

j=1,j 6=i wj)
Li(p).

In this case, WPLPA(L1(p), L2(p), · · · , Ln(p)) is not equivalent to
PLPA(L1(p), L2(p), · · · , Ln(p)) = 1

n
⊕n

i=1 Li(p).

Theorem 8. Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) be any permutation of (L1(p), L2(p), · · · , Ln(p)), then we
can deduce the following relationship:

WPLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗) 6= WPLPA(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Definition 10, we can obtain:

T′(L∗p) =
n

∑
j=1,j 6=i

wjsup(Li(p)∗, Lj(p)∗).
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Then, we can deduce:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + T′(Li(p)∗))
∑n

i=1 wi(1 + T′(Li(p)∗))
Li(p)∗.

Since (T′(L1(p)∗), T′(L2(p)∗), · · · , T′(L2(p)∗)) may not be the permutation of
(T′(L1(p)), T′(L2(p)), · · · , T′(Ln(p))), we can judge that the WPLPA operator is not commutative.
Therefore, we complete the proof of Theorem 8.

3.2. Probabilistic Linguistic Power Geometric (PLPG) Aggregation Operators

In this section, we investigate the extension of power geometric (PG) aggregation operators under
the probabilistic linguistic environment, i.e., the probabilistic linguistic power geometric (PLPG) and
weighted probabilistic linguistic power geometric (WPLPG).

3.2.1. PLPG

By utilizing the results of Definition 1 and Equation (7), we present the Definition of the PLPG
operator as follows.

Definition 11. Let L(p) =

{
L(k)

i (pk
i )|k = 1, 2, · · · , #Li(p)

}
(i = 1, 2, · · · , n) be a collection of PLTSs.

A probabilistic linguistic power geometric (PLPG) operator is a mapping Ln(p)→ L(p) such that:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
(1+T(Li(p)))

∑n
i=1(1+T(Li(p))) , (13)

where T(Li(p)) = ∑n
j=1,j 6=i sup(Li(p), Lj(p)). sup(Li(p), Lj(p)) is considered to be the support of Li(p)

from Lj(p) which also satisfies the following properties:

(1) sup(Li(p), Lj(p)) ∈ [0, 1];
(2) sup(Li(p), Lj(p)) = sup(Lj(p), Li(p));
(3) sup(Li(p), Lj(p)) ≥ sup(Lj(p), Li(p)) if d(Li(p), Lj(p)) < d(Li(p), Lk(p)).

By the operations law (2) of Definition 3, Definition 11 can be transformed into the following form:

PLPG(L1(p), L2(p), · · · , Ln(p))

= (L1(p))
(1+T(L1(p)))

∑n
i=1(1+T(Li(p))) ⊗ (L2(p))

(1+T(L2(p)))
∑n

i=1(1+T(Li(p))) ⊗ · · · ⊗ (Ln(p))
(1+T(Ln(p)))

∑n
i=1(1+T(Li(p))) .

Therefore, we can deduce the following based on the results of Definition 9:

Proposition 3. Let L(p) =

{
L(k)

i (pk
i )|k = 1, 2, · · · , #Li(p)

}
(i = 1, 2, · · · , n) be a collection of PLTSs.

A probabilistic linguistic power geometric (PLPG) operator is calculated as:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))vi

=
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v2 p(k)2

}
⊗ · · · ⊗

⋃
L(k)

n ∈Ln(p)

{
(L(k)

n )vn p(k)n

}
, (14)

where vi =
(1+T(Li(p)))

∑n
j=1(1+T(Lj(p))) (i = 1, 2, ..., n).

On the basis of Definition 11 and Proposition 3, it can be proved that the PLPG operator has the
following desirable properties:
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Theorem 9. (Commutativity) Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) be any permutation of
(L1(p), L2(p), · · · , Ln(p)) then PLPG(L1(p), L2(p), · · · , Ln(p))=PLPG(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Proof. According to the result of Definition 2, Li(p) is called an ordered PLTS (i = 1, 2, · · · , n). By the
results of Proposition 3 and the operations laws (2) of Definition 3, we can conclude that:

PLPG(L1(p), L2(p), · · · , Ln(p)) = PLPG(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Therefore, we complete the proof of Theorem 9.

Theorem 10. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs. If all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then PLPG(L1(p), L2(p), · · · , Ln(p)) = L(p).

Proof. If Li(p) = L(p) for all i, then PLPG(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
(1+T(Li(p)))

∑n
i=1(1+T(Li(p)))

=
n⊗

i=1

(Li(p))
1
n = L(p).

Hence, the statement of Theorem 10 holds.

Theorem 11. (boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

(L(k)
i )p(k)i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

(L(k)
i )p(k)i ,

where L ∈ PLPG(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Proposition 3, PLPG(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))vi

=
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v2 p(k)2

}
⊗ · · · ⊗

⋃
L(k)

n ∈Ln(p)

{
(L(k)

n )vn p(k)n

}
.

Then, we can deduce the following relationship:

n
min
i=1

#Li(p)
min
k=1

(L(k)
i )p(k)i ≤ (L(k)

i )p(k)i ≤ n
max
i=1

#Li(p)
max
k=1

(L(k)
i )p(k)i .

In light of the results of Theorem 10, we can easily finish the proof of Theorem 11.

3.2.2. WPLPG

Considering the importance of the aggregated arguments, we extend the PLPG and give the
Definition of the weighted probabilistic linguistic power geometric (WPLPG) operator as following.
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Definition 12. Let Li(p) be a collection of PLTSs. w = (w1, w2, · · · , wn)T denotes the weighting vector of
Li(p), wi ∈ [0, 1] and ∑n

i=1 wi = 1. Given the value of the weight vector w = (w1, w2, · · · , wn)T , we define
weighted probabilistic linguistic power geometric (WPLPG) operator as follows:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
wi(1+T′(Li(p)))

∑n
i=1 wi(1+T′(Li(p))) . (15)

In this case, T′(Li(p)) = ∑n
j=1,j 6=i wjsup(Li(p), Lj(p)).

Based on the operations of the PLPTs described in Definition 3, we can derive the
following Proposition:

Proposition 4. Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then their aggregated values by using the
WPLPG operator is also a PLTS, and:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v′1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v′2 p(k)2

}

⊗ · · · ⊗
⋃

L(k)
n ∈Ln(p)

{
(L(k)

n )v′n p(k)n

}
. (16)

where v′i =
wi(1+T′(Li(p)))

∑n
j=1 wj(1+T′(Lj(p))) (i = 1, 2, · · · , n).

For the result of Proposition 4, if sup(Li(p), Lj(p)) = 0 for all i 6= j, then T(Li(p)) = 0.
Thus, we have:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))wi .

Under this situation, the WPLPG operator reduces to PLWG proposed by Ref. [6]. If the weight
vector w = (w1, w2, ..., wn)T = ( 1

n , 1
n , · · · , 1

n )
T , v′i of Proposition 4 is computed as:

v′i =
wi(1 + T′(Li(p)))

∑n
j=1 wj(1 + T′(Lj(p)))

=
(1 + T′(Li(p)))

∑n
i=1(1 + T′(Li(p)))

= vi.

Hence, the WPLPG operator is computed as:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v′1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v′2 p(k)2

}

⊗ · · · ⊗
⋃

L(k)
n ∈Ln(p)

{
(L(k)

n )v′n p(k)n

}
= PLPG(L1(p), L2(p), · · · , Ln(p)).

Thus, it indicates that the WPLPG can be reduced to the PLPG operator. According to the results
of Definitions 3 and 12, it can easily prove that the WPLPG operator has the following properties.

Theorem 12. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, if all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then WPLPG(L1(p), L2(p), · · · , Ln(p)) = L(p).
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Proof. If Li(p) = L(p) for all i, then WPLPG(L1(p), L2(p), · · · , Ln(p)) is computed as:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
wi(1+T′(Li(p)))

∑n
i=1 wi(1+T′(Li(p)))

=
n⊗

i=1

(Li(p))
1
n = L(p).

Thus, the statement of Theorem 12 holds.

Theorem 13. (Boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i ,

where L ∈WPLPG(L1(p), L2(p), · · · , Ln(p)).

Theorem 14. Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) is any permutation of (L1(p), L2(p), · · · , Ln(p)), then we
can deduce the following relationship:

WPLPG(L1(p)∗, L2(p)∗, · · · , Ln(p)∗) 6= WPLPG(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Definition 12, we can obtain:

T′(L∗p) =
n

∑
j=1,j 6=i

wjsup(Li(p)∗, Lj(p)∗).

Then, we can deduce:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p)∗)
wi(1+T′(Li(p)∗)

∑n
i=1 wi(1+T′(Li(p)∗) .

Since (T′(L1(p)∗), T′(L2(p)∗), · · · , T′(L2(p)∗)) may not be the permutation of
(T′(L1(p)), T′(L2(p)), · · · , T′(Ln(p))), we can judge that the WPLPG operator is not commutative.
Hence, we complete the proof of Theorem 14.

4. Approaches to Multi-Criteria Group Decision Making with Probabilistic Linguistic Power
Aggregation Operators

In this section, we firstly present a MCGDM problem in which the evaluation information may
be expressed by PLTSs. Then, we utilize the WPLPA or WPLPG operator to support our decision.
Let X = {x1, x2, · · · , xm} be a finite set of m alternatives and C = {c1, c2, · · · , cn} be a set of n
attributes. Suppose that D = {d1, d2, · · · , de} denotes the set of DMs. By using the linguistic scale
S = {sα|α = 0, 1, · · · , τ}, each DM dq provides his or her linguistic evaluations over the alternative
xi with respect to the attribute aj, i.e., Aq = (Lq

ij)m×n (i = 1, 2, · · · , m; j = 1, 2, · · · , n; q = 1, 2, · · · , e).
Then, we determine the collective evaluations of DMs for each alternative in terms of PLTSs. In the
context of GDM, the linguistic evaluation values L(k)

ij (k = 1, 2, · · · , #Lij(p)) with the corresponding

probability p(k)ij are described as the PLTS Lij(p) = {L(k)
ij (p(k)ij )|k = 1, 2, · · · , #Lij(p)} and #Lij(p) is the

number of linguistic terms in Lij(p). The PLTS Lij(p) denotes the evaluation values over the alternative

xi (i = 1, 2, · · · , m) with respect to the attributes cj (j = 1, 2, · · · , n), where L(k)
ij is the kth value of Lij(p),

and p(k)ij is the probability of L(k)
ij (k = 1, 2, · · · , #Lij(p)). In the case, p(k)ij ≥ 0 and ∑

#Lij(p)
k=1 p(k)ij = 1.
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All the PLTSs are contained in the probabilistic linguistic decision matrix R. Hence, the result is shown
as follows:

R = (Lij(p))m×n =


L11(p) L12(p) · · · L1n(p)
L21(p) L22(p) · · · L2n(p)

...
...

...
...

Lm1(p) Lm2(p) · · · Lmn(p)

 . (17)

Without loss of generality, we assume that each PLTS Lij(p) is an ordered PLTS.
w = (w1, w2, · · · , wn)T denotes the weighting vector of the attributes C and wj ∈ [0, 1], ∑n

j=1 wj = 1.
Based on the above results, we will use the WPLPA or WPLPG aggregation operator to develop the
corresponding approach for MCGDM with probabilistic linguistic information. This approach is
designed as follows:

Step 1: According to the practical decision-making problem, we determine the alternatives
X = {x1, x2, · · · , xm} and a set of the attributes C = {c1, c2, · · · , cn}. Then, we can obtain the decision
matrix Aq = (Lq

ij)m×n provided by the DM dq. By using the PLTSs, we construct the collective matrix
R = (Lij(p))m×n.

Step 2: With respect to the collective matrix R = (Lij(p))m×n, we can normalize the entries of R
as stated in Definition 6.

Step 3: Based on the matrix R and the result of Definition 7, the deviation degree between PLTSs
Lij(p) and Lit(p) is calculated below (i = 1, 2, · · · , m; j, t = 1, 2, · · · , n):

d(Lij(p), Lit(p)) =

√√√√∑
#Lij(p)
k=1 (p(k)ij r(k)ij − p(k)it r(k)it )2

#Lij(p)
.

Step 4: By using the results of Definitions 7 and 8, we calculate the support of the alternative xi
as follows:

sup(Lij(p), Lit(p)) = 1−
d(Lij(p), Lit(p))

∑n
g=1,g 6=j d(Lij(p), Lig(p))

, (18)

which satisfies the support conditions (1)–(3) of Definition 9.
Step 5: According to the result of Definition 10, we can calculate the support T

′
(Lij(p)) of Lij(p)

by all of other Lit(p) (j, t = 1, 2, · · · , n; t 6= j):

T
′
(Lij(p)) =

n

∑
t=1,t 6=j

wtsup(Lij(p), Lit(p)).

Step 6: With the aid of Proposition 2, we further compute the weight v
′
ij associated with the

PLTS Lij(p):

v
′
ij =

wj(1 + T
′
(Lij(p)))

∑n
j=1 wj(1 + T′(Lij(p)))

.
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Step 7: If the DM prefers the WPLPA operator, then the aggregated value of the alternative xi is
determined based on Equation (12). The result is:

WPLPA(Li1(p), Li2(p), · · · , Lin(p)) =
⋃

L(k)
i1 ∈Li1(p)

{
v′i1 p(k)i1 L(k)

i1

}
⊕

⋃
L(k)

i2 ∈Li2(p)

{
v′i2 p(k)i2 L(k)

i2

}

⊕ · · · ⊕
⋃

L(k)
in ∈Lin(p)

{
v′in p(k)in L(k)

in

}
.

If the DM uses the WPLPG operator, then the aggregated value of the alternative xi is determined
based on Equation (16). The result is:

WPLPG(Li1(p), Li2(p), · · · , Lin(p)) =
⋃

L(k)
i1 ∈Li1(p)

{
(L(k)

i1 )v′i1 p(k)i1

}
⊗

⋃
L(k)

i2 ∈Li2(p)

{
(L(k)

i2 )v′i2 p(k)i2

}

⊗ · · · ⊗
⋃

L(k)
in ∈Lin(p)

{
(L(k)

in )v′in p(k)in

}
.

In this case, we denote the aggregated value of the alternative xi as Zi.
Step 8: Based on the results of Definition 4, the score and the deviation degree of Zi of the

alternative xi are computed, i.e., E(Zi) and σ(Zi) (i = 1, 2, · · · , m).
Step 9: Rank all of the alternatives in accordance with the ranking results of Definition 5.

5. An Illustrative Example

In recent years, there has been considerable concern regarding problems associated with
undergraduate school rankings, graduate school rankings, evaluating and rewarding university
professors in China and other countries of the world. Katz et al. [20] mentioned that these problems
always existed and political activism together with various economic recession have worsen
them. Katz and his partners were concerned with the criteria for evaluating them. They came
out with multiple regression analysis to determine the factors important in salary and promotion
decision-making at the university level and developed a more rational means of evaluating and
rewarding university professors. They were motivated by the fact that there is a discriminatory policy
in rank and reward in the universities which is not necessarily justifiable. They went further to state
that rewarding professors goes through an arbitrary and chaotic process and a more equitable system
could be instituted to enhance decision-making process. Another concern raised was that decisions on
salaries and promotions were made in an intuitive manner in such a way that the weights attached to
the various criteria for classification lack clear understanding. In this section, we illustrate our proposed
approach by evaluating some university faculty for tenure and promotion in China adapted from
Bryson et al. [21]. Hence, we firstly present a MCGDM problem in which the evaluation information
may be expressed by PLTSs. Then, we utilize the WPLPA and WPLPG operator to support our decision.
In light of the results of Ref. [21], the criteria considered for the assessment of the decision problem are
summarized as follows: (1) teaching (c1); (2) research (c2); (3) service (c3). Let X = {x1, x2, x3, x4, x5}
be the set of five alternatives and C = {c1, c2, c3} be the set of three attributes. The linguistic scale
is S = {sα|α = 0, 1, · · · , 8}. Suppose that D = {d1, d2, d3, d4} denotes the set of DMs. Based on the
results of Ref. [22], their evaluations are shown in Tables 1–4.
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Table 1. Decision matrix A1 provided by d1.

c1 c2 c3

x1 s8 s6 s6
x2 s6 s7 s7
x3 s5 s8 s7
x4 s7 s4 s6
x5 s8 s6 s7

Table 2. Decision matrix A2 provided by d2.

c1 c2 c3

x1 s6 s8 s5
x2 s5 s6 s7
x3 s7 s6 s7
x4 s8 s6 s7
x5 s8 s7 s6

Table 3. Decision matrix A3 provided by d3.

c1 c2 c3

x1 s7 s8 s6
x2 s4 s5 s6
x3 s8 s7 s6
x4 s7 s5 s8
x5 s6 s7 s6

Table 4. Decision matrix A4 provided by d4.

c1 c2 c3

x1 s6 s7 s6
x2 s8 s7 s7
x3 s7 s6 s8
x4 s5 s7 s6
x5 s5 s6 s5

5.1. Decision Analysis with Our Proposed Approaches

Based on the proposed approaches of Section 4, we need to fuse the information presented in
the decision matrices A1 − A4 by (17). In the context of GDM, all the PLTSs are contained in the
probabilistic linguistic decision matrix R. Hence, the result is shown in Table 5.

Table 5. The probabilistic linguistic decision matrix R.

c1 c2 c3

x1

{
s8(0.25), s6(0.5), s7(0.25)

} {
s6(0.25), s8(0.5), s7(0.25)

} {
s6(0.75), s5(0.25)

}
x2

{
s6(0.25), s5(0.25), s4(0.25), s8(0.25)

} {
s7(0.5), s6(0.25), s5(0.25)

} {
s7(0.75), s6(0.25)

}
x3

{
s5(0.25), s7(0.5), s8(0.25)

} {
s8(0.25), s6(0.5), s7(0.25)

} {
s7(0.5), s6(0.25), s8(0.25)

}
x4

{
s7(0.5), s8(0.25), s5(0.25)

} {
s4(0.25), s6(0.25), s5(0.25), s7(0.25)

} {
s6(0.5), s7(0.25), s8(0.25)

}
x5

{
s8(0.5), s6(0.25), s5(0.25)

} {
s6(0.5), s7(0.5)

} {
s7(0.25), s6(0.5), s5(0.25)

}
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For Table 5, each PLTS Lij(p) is assumed to be an ordered PLTS (i = 1, 2, 3, 4, 5; j = 1, 2, 3). In this
case, the weighting vector of the attributes C is w = (w1, w2, w3)

T = (0.3, 0.4, 0.3)T . We use the WPLPA
or WPLPG aggregation operator to analyze the results of Table 5. Based on the above results and the
proposed methods of Section 4, the detailed steps are shown as follows:

Step 2: With respect to the collective matrix R = (Lij(p))5×3, we can find that the number of their
corresponding number of the linguistic terms is not equal. Thus, we normalize the entries of R as
stated in Definition 6. The normalized probabilistic linguistic decision matrix is shown in Table 6.

Table 6. The normalized probabilistic linguistic decision matrix.

c1 c2 c3

x1

{
s6(0.5), s8(0.25), s7(0.25), s6(0)

} {
s8(0.5), s7(0.25), s6(0.25), s6(0)

} {
s6(0.75), s5(0.25), s5(0), s5(0)

}
x2

{
s8(0.25), s6(0.25), s5(0.25), s4(0.25)

} {
s7(0.5), s6(0.25), s5(0.25), s5(0)

} {
s7(0.75), s6(0.25), s6(0), s6(0)

}
x3

{
s7(0.5), s8(0.25), s5(0.25), s5(0)

} {
s6(0.5), s8(0.25), s7(0.25), s6(0)

} {
s7(0.5), s8(0.25), s6(0.25), s6(0)

}
x4

{
s7(0.5), s8(0.25), s5(0.25), s5(0)

} {
s7(0.25), s6(0.25), s5(0.25), s4(0.25)

} {
s6(0.5), s8(0.25), s7(0.25), s6(0)

}
x5

{
s8(0.5), s6(0.25), s5(0.25), s5(0)

} {
s7(0.5), s6(0.5), s6(0), s6(0)

} {
s6(0.5), s7(0.25), s5(0.25), s5(0)

}

Step 3: According to the results of Definition 7 and Table 6, the deviation degree between PLTSs
Lij(p) and Lit(p) (i = 1, 2, 3, 4, 5; j, t = 1, 2, 3) can be calculated by the following equation:

d(Lij(p), Lit(p)) =

√√√√∑
#Lij(p)
k=1 (p(k)ij r(k)ij − p(k)it r(k)it )2

#Lij(p)
.

Then, we can calculate the deviation degree of any two Lij(p), respectively. For alternative x1,
the deviation degrees are shown as follows:

d(L11, L12) = 0.5303; d(L12, L13) = 0.8292; d(L11, L13) = 1.2119.

For alternative x2, the deviation degrees are shown as follows:

d(L21, L22) = 0.9014; d(L22, L23) = 1.0752; d(L21, L23) = 1.8114.

For alternative x3, the deviation degrees are shown as follows:

d(L31, L32) = 0.3536; d(L32, L33) = 0.2795; d(L31, L33) = 0.125.

For alternative x4, the deviation degrees are shown as follows:

d(L41, L42) = 1.0383; d(L42, L43) = 0.875; d(L41, L43) = 0.3536.

For alternative x5, the deviation degrees are shown as follows:

d(L51, L52) = 1.00778; d(L52, L53) = 0.9185; d(L51, L53) = 0.5154.

Step 4: Based on the results of Definitions 7 and 8, we can calculate the support of the alternative
xi by using (18) (i = 1, 2, 3, 4, 5). The results are summarized as follows:

sup(L11, L12) = 0.7938; sup(L12, L13) = 0.6775; sup(L11, L13) = 0.5287.
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sup(L21, L22) = 0.7620; sup(L22, L23) = 0.7161; sup(L21, L23) = 0.5218.

sup(L31, L32) = 0.5335; sup(L32, L33) = 0.6313; sup(L31, L33) = 0.8351.

sup(L41, L42) = 0.5419; sup(L42, L43) = 0.6140; sup(L41, L43) = 0.8440.

sup(L51, L52) = 0.5873; sup(L52, L53) = 0.6238; sup(L51, L53) = 0.7889.

Step 5: In light of the result of Definition 10, we can calculate the support T
′
(Lij(p)) of Lij(p) by

all of other Lit(p) (j, t = 1, 2, 3; t 6= j) by the following equation:

T
′
(Lij(p)) =

3

∑
t=1,t 6=j

wtsup(Lij(p), Lit(p)).

These results are shown as the following matrix:

T
′
(Lij(p)) =


0.47613 0.44139 0.42961
0.46134 0.44343 0.44298
0.46393 0.34944 0.50305
0.46996 0.34677 0.49880
0.47159 0.36333 0.48619

 .

Step 6: With the aid of Proposition 2, we further compute the weight v
′
ij associated with the PLTS

Lij(p) by the following equation (i = 1, 2, 3, 4, 5; j = 1, 2, 3):

v
′
ij =

wj(1 + T
′
(Lij(p)))

∑3
j=1 wj(1 + T′(Lij(p)))

.

These results are shown as the following matrix:

v
′
ij =


0.3057 0.3981 0.2961
0.3026 0.3986 0.2988
0.3071 0.3775 0.3154
0.3085 0.3769 0.3146
0.3082 0.3806 0.3112


Step 7: If the DM prefers the WPLPA operator, then the aggregated value of the alternative xi is

determined based on Equation (12) (i = 1, 2, 3, 4, 5). We denote the aggregated value of the alternative
xi as Zi. The results are:

Z1 = WPLPA(L11(p), L12(p), L13(p))

= ((0.9171, 0.6114, 0.5349, 0); (1.5924, 0.6967, 0.5972, 0); (1.3325, 0.3701, 0, 0))

= (3.8420, 1.6782, 1.1321, 0),

Z2 = WPLPA(L21(p), L22(p), L23(p))

= ((0.6052, 0.4539, 0.3738, 0.3026); (1.3951, 0.5979, 0.4983, 0); (1.5687, 0.4482, 0, 0))

= (3.569, 1.5, 0.8766, 0.3026),
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Z3 = WPLPA(L31(p), L32(p), L33(p))

= ((0.6052, 0.4539, 0.3738, 0.3026); (1.3951, 0.5979, 0.4983, 0); (1.5687, 0.4482, 0, 0))

= (3.3113, 2, 1.5176, 0),

Z4 = WPLPA(L41(p), L42(p), L43(p))

= ((0.6052, 0.4539, 0.3738, 0.3026); (1.3951, 0.5979, 0.4983, 0); (1.5687, 0.4482, 0, 0))

= (2.6824, 1.8116, 1.4073, 0.3769),

Z5 = WPLPA(L51(p), L52(p), L53(p))

= ((1.2326, 0.4622, 0.3852, 0); (1.3322, 1.1419, 0, 0); (0.9336, 0.5446, 0.3890, 0))

= (3.4985, 2.1488, 0.7742, 0).

If the DM uses the WPLPG operator, then the aggregated value of the alternative xi is determined
based on Equation (16) (i = 1, 2, 3, 4, 5). In the same way, we denote the aggregated value of the
alternative xi as Zi. The results are:

Z1 = WPLPG(L11(p), L12(p), L13(p))

= ((1.3150, 1.1722, 1.1603, 1); (1.5127, 1.2137, 1.1952, 1); (1.4887, 1.1265, 1, 1))

= (2.9613, 1.6026, 1.3868, 1),

Z2 = WPLPG(L21(p), L22(p), L23(p))

= ((1.1703, 1.1452, 1.1295, 1.1106); (1.4738, 1.1955, 1.1739, 1); (1.5466, 1.132, 1, 1))

= (2.6676, 1.5651, 1.3259, 1.1106),

Z3 = WPLPG(L31(p), L32(p), L33(p))

= ((1.3482, 1.1731, 1.1315, 1); (1.4024, 1.2168, 1.2016, 1); (1.3592, 1.1782, 1.1517, 1))

= (2.5698, 1.6818, 1.5658, 1),

Z4 = WPLPG(L41(p), L42(p), L43(p))

= ((1.3500, 1.1739, 1.1322, 1); (1.2012, 1.1839, 1.1637, 1.1395); (1.3256, 1.1777, 1.1654, 1))

= (2.1496, 1.6367, 1.5355, 1.1395),

Z5 = WPLPG(L51(p), L52(p), L53(p))

= ((1.3777, 1.1480, 1.1320, 1); (1.4482, 1.4064, 1, 1); (1.3216, 1.1635, 1.1334, 1))

= (2.6367, 1.8784, 1.2830, 1).

Step 8: Based on the results of Definition 4, the scores of the alternative xi can be computed,
i.e., E(Zi). If the DM uses WPLPA operator to aggregate the decision formation, the scores are
determined as follows:

E(Z1) = 1.6632; E(Z2) = 1.5620; E(Z3) = 1.7072; E(Z4) = 1.5697; E(Z5) = 1.6054.
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If the the DM uses WPLPG operator to aggregate the decision formation, the scores are determined
as follows:

E(Z1) = 1.7379; E(Z2) = 1.6673; E(Z3) = 1.7044; E(Z4) = 1.6154; E(Z5) = 1.6995.

Step 9: If the DM uses WPLPA operator, we can determine the ranking of the scores of the
alternatives based on the results of the Step 8. It is shown as follows:

E(Z3) > E(Z1) > E(Z5) > E(Z4) > E(Z2).

That is to say, the ordering of the alternatives is:

x3 > x1 > x5 > x4 > x2.

If the DM uses WPLPG operator, we can obtain the ranking of the scores of the alternatives
as follows:

E(Z1) > E(Z3) > E(Z5) > E(Z2) > E(Z4).

In this situation, the ordering of the alternatives is:

x1 > x3 > x5 > x2 > x4.

5.2. Comparison Analysis

Under the probabilistic linguistic information, Pang et al. [6] have developed an aggregation-based
method for MAGDM. In order to verify the performance of our proposed methods, we compare our
decision results with Pang et al. [6] based on our illustrative example. Torra [13], Merigó et al. [22] and
Zhang et al. [23] also developed some methods for the lingusitic information and GDM. Thus, we also
compare our results with the methods of Refs. [12,22,23]. The decision results are shown in Table 7.

Table 7. The decision results of different methods.

Method Rank

Aggregation-based method of Ref. [6] x3 > x1 > x5 > x2 > x4
The method with HFLWA of Ref. [23] x3 > x1 > x5 > x2 = x4
The method with HFLWG of Ref. [23] x1 > x2 > x5 > x3 > x4

Max lower operator of Ref. [12] x3 > x2 = x5 = x4 > x1
ILGCIA with group decision making of Ref. [22] x3 > x2 > x1 > x4 > x5

Our proposed method with WPLPA x3 > x1 > x5 > x4 > x2
Our proposed method with WPLPG x1 > x3 > x5 > x2 > x4

In Table 7, we can find the rank result of the method proposed in Ref. [6] is:
x3 > x1 > x5 > x2 > x4. Compared with the decision results of our proposed method with WPLPA,
the aggregation-based method with PLTSs can select the same best candidate, i.e., x3. Meanwhile,
for the WPLPG, the best candidate is x1. Under the result of Ref. [23], HFLWA has the rank:
x3 > x1 > x5 > x2 = x4. Meanwhile, the ranking of HFLWG is x1 > x2 > x5 > x3 > x4. By using the
max lower operator of Ref. [12], we can find the rank is: x3 > x2 = x5 = x4 > x1. For ILGCIA with
group decision making of Ref. [22], the result is x3 > x2 > x1 > x4 > x5. On the MCGDM problems
under linguistic environment, we introduced our model to achieve the same acceptable performance
with the existing techniques or to improve upon them. Unlike the existing models considered in this
paper, our model contains probabilities which normally help in getting a comprehensive and accurate
preference information of the DMs [6]. In Ref. [3], for instance, the developed approaches take all the
decisions and their relationships into account, and the decision arguments reinforce and support each



Symmetry 2017, 9, 320 20 of 21

other, but since probabilities were not considered, the accuracy of preference information of the DMs
might be questionable. In addition, without the PLTS, it might not be easy for the DMs to provide
several possible linguistic values over an alternative or an attribute. This situation translates into some
kind of limitation of the model proposed in Ref. [3] inspite of the power average (PA) involvement in
the aggregation process.The PLTSs itself as a theory has some limitations . In general, WPLPG applies
to the average of the ratio data and is mainly used to calculate the average growth (or change) rate of
the data. From the trait of Table 6, the WPLPA is much better than WPLPG.

6. Conclusions

With respect to the support and reinforcement among input arguments with PLTSs, we introduce
PA into the probabilistic linguistic environment. Meanwhile, we develop the corresponding new
operators, i.e., the PLPA, PLPG, WPLPA and WPLPG operators. In light of the PLMCGDM, we describe
the decision-making problem and design corresponding approaches by employing the WPLPA and
WPLPG. In this paper, we expanded the applied field of the original PA and enrich the research work
of PLTSs. Future research work may focus on exploring the decision-making mechanisms when the
weight information is unknown or incomplete and developing some new generalized aggregation
operators of PLTSs. In addition, we also deeply investigate a more complex case study with more
alternatives and criteria.

Acknowledgments: This work is partially supported by the National Science Foundation of China (Nos. 71401026,
71432003, 71571148), the Fundamental Research Funds for the Central Universities of China (No. ZYGX2014J100),
the Social Science Planning Project of the Sichuan Province (No. SC15C009) and the Sichuan Youth Science and
Technology Innovation Team (2016TD0013).

Author Contributions: Decui Liang designed the reaserach work and the basic idea. Agbodah Kobina analyzed
the data and finished the deduction procedure. Xin He also analyzed the data and modified the expression.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yager, R.R. The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2001, 31, 724–731.
2. Xu, Z.S.; Yager, R.R. Power-Geometric operators and their use in group decision making. IEEE Trans.

Fuzzy Syst. 2010, 18, 94–105.
3. Xu, Y.J.; Merigó, J.M.; Wang, H.M. Linguistic power aggregation operators and their application to multiple

attribute group decision making. Appl. Math. Model. 2012, 36, 5427–5444.
4. Zhou, L.G.; Chen, H.Y. A generalization of the power aggregation operators for linguistic environment and

its application in group decision making. Knowl. Based Syst. 2012, 26, 216–224.
5. Zhu, C.; Zhu, L.; Zhang, X. Linguistic hesitant fuzzy power aggregation operators and their applications in

multiple attribute decision-making. Inf. Sci. 2016, 367–368, 809–826.
6. Pang, Q.; Wang, H.; Xu, Z.S. Probabilistic linguistic term sets in multi-attribute group decision making.

Inf. Sci. 2016, 369, 128–143.
7. Bai, C.Z.; Zhang, R.; Qian, L.X.; Wu, Y.N. Comparisons of probabilistic linguistic term sets for multi-criteria

decision making. Knowl. Based Syst. 2017, 119, 284–291.
8. Merigó, J.M.; Casanovas, M.; Martínez, L. Linguistic aggregation operators for linguistic decision making

based on the Dempster-Shafer theory of evidence. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2010, 18,
287–304.

9. Zhai, Y.L.; Xu, Z.S.; Liao, H.C. Probabilistic linguistic vector-term set and its application in group decision
making with multi-granular linguistic information. Appl. Soft Comput. 2016, 49, 801–816.

10. Liao, H.C.; Xu, Z.S.; Zeng, X.J.; Merigó, J.M. Qualitative decision making with correlation coefficients of
hesitant fuzzy linguistic term sets. Knowl. Based Syst. 2015, 76, 127–138.

11. Liao, H.C.; Xu, Z.S.; Zeng, X.J. Hesitant fuzzy linguistic vikor method and its application in qualitative
multiple criteria decision making. IEEE Trans. Fuzzy Syst. 2015, 23, 1343–1355.

12. Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans.
Fuzzy Syst. 2012, 20, 109–119.



Symmetry 2017, 9, 320 21 of 21

13. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539.
14. Liang, D.C.; Liu, D. A novel risk decision making based on decision-theoretic rough sets under hesitant

fuzzy information. IEEE Trans. Fuzzy Syst. 2015, 23, 237–247.
15. Gou, X.J.; Xu, Z.S. Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and

probabilistic linguistic term sets. Inf. Sci. 2016, 372, 407–427.
16. He, Y.; Xu, Z.S.; Jiang, W.L. Probabilistic interval reference ordering sets in multi-criteria group decision

making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2017, 25, 189–212.
17. Wu, Z.B.; Xu, J.C. Possibility distribution-based approach for MAGDM with hesitant fuzzy linguistic

information. IEEE Trans. Cybern. 2016, 46, 694–705.
18. Zhang, Y.X.; Xu, Z.S.; Wang, H.; Liao, H.C. Consistency-based risk assessment with probabilistic linguistic

preference relation. Appl. Soft Comput. 2016, 49, 817–833.
19. Zhou, W.; Xu, Z.S. Consensus building with a group of decision makers under the hesitant probabilistic

fuzzy environment. Fuzzy Optim. Decis. Mak. 2016, doi:10.1007/s10700-016-9257-5.
20. Katz, D.A. Faculty salaries, promotions and productivity at a large University. Am. Econ. Rev. 1973, 63,

469–477.
21. Bryson, N.; Mobolurin, A. An action learning evaluation procedure for multiple criteria decision making

problems. Eur. J. Oper. Res. 1995, 96, 379–386.
22. Merigó, J.M.; Gil-Lafuente, A.M.; Zhou, L.G.; Chen, H.Y. Induced and linguistic generalized aggregation

operators and their application in linguistic group decision making. Group Decis. Negot. 2012, 21, 531–549.
23. Zhang, Z.M.; Wu, C. Hesitant fuzzy linguistic aggregation operators and their applications to multiple

attribute group decision making. J. Intell. Fuzzy Syst. 2014, 26, 2185–2202.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Probabilistic Linguistic Term Sets (PLTSs)
	Power Average (PA) 

	Probabilistic Linguistic Power Aggregation Operators
	Probabilistic Linguistic Power Average (PLPA) Aggregation Operators
	PLPA
	WPLPA

	Probabilistic Linguistic Power Geometric (PLPG) Aggregation Operators
	PLPG
	WPLPG


	Approaches to Multi-Criteria Group Decision Making with Probabilistic Linguistic Power Aggregation Operators
	An Illustrative Example
	Decision Analysis with Our Proposed Approaches
	Comparison Analysis

	Conclusions
	References

