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Abstract: In this work, we study the (2 + 1)-dimensional Zoomeron equation which is an extension
of the famous (1 + 1)-dimensional Zoomeron equation that has been studied extensively in the
literature. Using classical Lie point symmetries admitted by the equation, for the first time we
develop an optimal system of one-dimensional subalgebras. Based on this optimal system, we obtain
symmetry reductions and new group-invariant solutions. Again for the first time, we construct the
conservation laws of the underlying equation using the multiplier method.
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1. Introduction

Many physical phenomena of the real world are governed by nonlinear partial differential
equations (NLPDEs). It is therefore absolutely necessary to analyse these equations from the point of
view of their integrability and finding exact closed form solutions. Although this is not an easy task,
many researchers have developed various methods to find exact solutions of NLPDEs. These methods
include the sine-cosine method [1], the extended tanh method [2], the inverse scattering transform
method [3], the Hirota’s bilinear method [4], the multiple exp-function method [5], the simplest
equation method [6,7], non-classical method [8], method of generalized conditional symmetries [9],
and the Lie symmetry method [10,11].

This paper aims to study one NLPDE; namely, the (2 + 1)-dimensional Zoomeron equation [12](uxy

u

)
tt
−
(uxy

u

)
xx

+ 2(u2)tx = 0, (1)

which has attracted some attention in recent years. Many authors have found closed-form solutions of
this equation. For example, the (G′/G)−expansion method [12,13], the extended tanh method [14],
the tanh-coth method [15], the sine-cosine method [16,17], and the modified simple equation
method [18] have been used to find closed-form solutions of (1). The (2 + 1)-dimensional Zoomeron
equation with power-law nonlinearity was studied in [19] from a Lie point symmetries point of view
and symmetry reductions, and some solutions were obtained. Additionally, in [19], the authors have
given a brief history of the (1 + 1)-dimensional Zoomeron equation. See also [20–22].

In this paper we first use the classical Lie point symmetries admitted by Equation (1) to find an
optimal system of one-dimensional subalgebras. These are then used to perform symmetry reductions
and determine new group-invariant solutions of (1). It should be noted that such approach was
previously used for examination of a wide range of nonlinear PDEs [23–31]. Furthermore, we derive
the conservation laws of (1) using the multiplier method [32,33].
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The paper is organized as follows: in Section 2, we compute the Lie point symmetries of (1)
and use them to construct the optimal system of one-dimensional subalgebras. These are then used
to perform symmetry reductions and determine new group-invariant solutions of (1). In Section 3,
we derive conservation laws of (1) by employing the multiplier method. Finally, concluding remarks
are presented in Section 4.

2. Symmetry Reductions and Exact Solutions of (1) Based on Optimal System

In this section, firstly we use the Lie point symmetries admitted by (1) to construct an
optimal system of one-dimensional subalgebras. Thereafter, we obtain symmetry reductions and
group-invariant solutions based on the optimal system of one-dimensional subalgebras [23,24].

2.1. Lie Point Symmetries of (1)

The Lie point symmetries of the Zoomeron Equation (1) are given by [19]

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 = t

∂

∂t
+ x

∂

∂x
− y

∂

∂y
, X5 = 2y

∂

∂y
− u

∂

∂u
,

which generate a five-dimensional Lie algebra L5.

2.2. Optimal System of One-Dimensional Subalgebras

In this subsection, we use the Lie point symmetries of (1) to compute an optimal system of
one-dimensional subalgebras. We employ the method given in [23,24], which takes a general element
from the Lie algebra and reduces it to its simplest equivalent form by using the chosen adjoint
transformations

Ad(exp(εXi))Xj =
∞

∑
n=0

εn

n!
(adXi)

n(Xj) = Xj − ε[Xi, Xj] +
ε2

2!
[Xi, [Xi, Xj]]− · · · ,

where ε is a real number, and [Xi, Xj] denotes the commutator defined by

[Xi, Xj] = XiXj − XjXi.

The table of commutators of the Lie point symmetries of Equation (1) and the adjoint
representations of the symmetry group of (1) on its Lie algebra are given in Tables 1 and 2, respectively.
Then, Tables 1 and 2 are used to construct the optimal system of one-dimensional subalgebras
for Equation (1).

Using Tables 1 and 2, we can construct an optimal system of one-dimensional subalgebras, which
is given by {X3, X4, X5, X1 + X3, X2 + X3, X1 + X5, X2 + X5, X4 + X5, X1 + X2 + X3, X1 + X2 + X5}.

Table 1. Lie brackets for Equation (1).

[, ] X1 X2 X3 X4 X5

X1 0 0 0 X1 0
X2 0 0 0 X2 0
X3 0 0 0 −X3 2X3
X4 −X1 −X2 X3 0 0
X5 0 0 −2X3 0 0
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Table 2. Adjoint representation of subalgebras.

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 X4 − εX1 X5
X2 X1 X2 X3 X4 − εX2 X5
X3 X1 X2 X3 X4 + εX3 X5 − 2εX3
X4 eεX1 eεX2 e−εX3 X4 X5
X5 X1 X2 e2εX3 X4 X5

2.3. Symmetry Reductions

In this subsection, we use the optimal system of one-dimensional subalgebras computed
in the previous subsection, and present symmetry reductions of (1) to two-dimensional partial
differential equations.

For the first operator X3 of the optimal system, we have the three invariants s = t, r = x, f = u,
and using these invariants, (1) reduces to

( f 2)sr = 0.

Likewise for X4, the invariants s = ty, r = xy, f = u transforms (1) to(
frr

f 2 −
fss

f 2 +
2 f 2

s
f 3 −

2 f 2
r

f 3

)
(s fs + r fr)r +

2 fr

f 2 (s fs + r fr)rr −
2 fs

f 2 (s fs + r fr)sr

+
1
f
(s fs + r fr)ssr −

1
f
(s fs + r fr)rrr + 2

(
f 2
)

sr
= 0.

The invariants s = t, r = x, f = u
√

y of X5 reduces (1) to(
fr

2 f

)
rr
−
(

fr

2 f

)
ss
+ 2

(
f 2
)

sr
= 0.

Using the invariants s = x, r = y− t, f = u of X1 + X3, (1) reduces to(
fsr

f

)
rr
−
(

fsr

f

)
ss
− 2

(
f 2
)

sr
= 0.

Similarly, the invariants s = t, r = y− x, f = u of X2 + X3 reduces (1) to(
frr

f

)
rr
−
(

frr

f

)
ss
− 2

(
f 2
)

sr
= 0.

The symmetry X1 + X5 has invariants s = x, r = ye−2t, f = uy1/2, and these reduce (1) to

8r2 f 2
r fsr

f 3 +
f 3
s

r f 3 −
2 f 2

s fsr

f 3 − 4r f 2
r fs

f 3 − 4r2 frr fsr

f 2 − 8r2 fr fsrr

f 2 +
2 fr fs

f 2 +
2r frr fs

f 2 − 3 fss fs

2r f 2

+
2 fs fssr

f 2 − 8r fr fsr

f 2 +
fss fsr

f 2 +
2 fsr

f
+

10r fsrr

f
+

4r2 fsrrr

f
+

fsss

2r f
− fsssr

f
− 4

(
f 2
)

sr
= 0.
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The invariants s = t, r = ye−2x, f = uy1/2 of X2 + X5 transform (1) to

16r3 f 2
r frr

f 3 +
8r2 f 3

r
f 3 − 4r frr f 2

s
f 3 − 2 fr f 2

s
f 3 − 8r3 f 2

rr
f 2 − 16r3 fr frrr

f 2 − 52r2 fr frr

f 2

+
4r fs fsrr

f 2 − 12r f 2
r

f 2 +
2r frr fss

f 2 +
2 fs fsr

f 2 +
fr fss

f 2 −
2r fssrr

f
+

44r2 frrr

f
+

44r frr

f

+
8r3 frrrr

f
+

4 fr

f
− fssr

f
− 8 fsr − 8 fr fs = 0.

Using the invariants s = x/t, r = y/t, f = tu of X4 + X5, (1) reduces to

2r2 f 2
r fsr

f 3 − r2 frr fsr

f 2 − 2r2 fr fsrr

f 2 +
r2 fsrrr

f
+

2s2 f 2
s fsr

f 3 − s2 fss fsr

f 2 − 2s2 fs fssr

f 2

+
s2 fsssr

f
− 2rs f 2

sr
f 2 − 4r f fsr −

6r fr fsr

f 2 +
4rs fr fs fsr

f 3 − 2rs fs fsrr

f 2 +
6r fsrr

f

− 2rs fr fssr

f 2 +
2rs fssrr

f
− 12 fs f − 6s fs fsr

f 2 +
6 fsr

f
− 4s fss f +

6s fssr

f

− 4r fr fs − 4s f 2
s +

(
fsr

f

)
ss
= 0.

The operator X1 + X2 + X3 has invariants s = x− t, r = y− t, f = u, and with the use of these
invariants, (1) reduces to (

( fs + fr)r
f

)
rr
−
(
( fs + fr)r

f

)
ss
+ 2

(
f 2
)

sr
= 0.

Finally, X1 + X2 + X5 has invariants s = x− t, r = ye−2t, f = uet, and their use reduces (1) to

8r2 f 2
r fsr

f 3 +
8r fr fs fsr

f 3 − 4r2 frr fsr

f 2 − 8r2 fr fsrr

f 2 − 4r f 2
sr

f 2 −
12r fr fsr

f 2

− 4r fs fsrr

f 2 − 4r fr fssr

f 2 − 4 fs fsr

f 2 +
4r fssrr

f
+

12r fsrr

f
+

4 fsr

f

+
4 fssr

f
+

4r2 fsrrr

f
− 8 fs f − 8r fr fs − 8r f fsr − 4 f 2

s − 4 fss f = 0.

2.4. Group-Invariant Solutions

We now obtain group-invariant solutions based on the optimal system of one-dimensional
subalgebras. However, in this paper we are looking only at some interesting cases.

Case 1. X5 = 2y∂/∂y− u∂/∂u

The associated Lagrange system to the operator X4 yields three invariants

s = t, r = x, u = y−1/2U(r, s),

which give group-invariant solution u = y−1/2U(s, r) and transforms (1) to(
Ur

U

)
ss
−
(

Ur

U

)
rr
− 4

(
U2
)

rs
= 0. (2)

This equation has three Lie point symmetries, viz.,

Γ1 =
∂

∂s
, Γ2 =

∂

∂r
, Γ3 = 2s

∂

∂s
+ 2r

∂

∂r
−U

∂

∂U
.
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The symmetry Γ1 − νΓ2 gives the two invariants z = r + νs and F = U. Using these invariants,
(2) transforms to the nonlinear third-order ordinary differential equation(

F′

F

)′′
+

4ν

1− ν2

(
F2
)′′

= 0. (3)

Integrating (3) twice with respect to z, we obtain

F′(z) +
4ν

1− ν2 (F(z))3 − k1zF(z)− k2F(z) = 0, (4)

where k1 and k2 are constants of integration. The solutions of this equation are given by

F(z) = ±
√ √

k1(1− ν2) exp {(k1z + k2)2/k1}
k3
√

k1(1− ν2) exp
{

k2
2/k1

}
+ 4ν
√

π erfi
(
(k1z + k2)/

√
k1
) ,

where k3 is a constant of integration and erfi(z) is the imaginary error function [34]. Thus, solutions
of (1) are

u(t, x, y) = ± y−1/2

√ √
k1(1− ν2) exp {(k1(x + νt) + k2)2/k1}

k3
√

k1(1− ν2) exp
{

k2
2/k1

}
+ 4ν
√

π erfi
(
(k1(x + νt) + k2)/

√
k1
) .

Case 2. X1 + X5 = ∂/∂t + 2y∂/∂y− u∂/∂u

The associated Lagrange system to this operator yields the three invariants

s = x, r = ye−2t, u = e−tU,

which give group-invariant solution u = e−tU(s, r) and transforms (1) to

U
(
Usr

(
4r2Urr −Uss

)
+ 4rUr (3Usr + 2rUsrr)− 2UsUssr

)
+ 8U4 (rUsr + Us) + 8rUrUsU3

+U2 (Usssr − 4 (Usr + r (3Usrr + rUsrrr))) + 2
(
U2

s − 4r2U2
r
)

Usr = 0.
(5)

The Lie point symmetries of the above equation are

Γ1 =
∂

∂s
, Γ2 = 2r

∂

∂r
−U

∂

∂U
.

The symmetry Γ2 gives the two invariants z = s and U = r−1/2F, and using these
invariants, (2) transforms to the nonlinear third-order ordinary differential equation(

F′

F

)′′
= 0. (6)

Integrating (6) twice with respect to z, we obtain

F′(z) = k1zF(z) + k2F(z), (7)

where k1 and k2 are constants of integration. The solution of this equation is given by

F(z) = k3 exp
(

k1

2
z2 + k2z

)
,
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where k3 is a constant of integration. Thus, a solution of (1) is

u(t, x, y) = k3y−1/2exp
(

k1

2
x2 + k2x

)
,

which is a steady-state solution.

Case 3. X1 + X2 + X3

The associated Lagrange system to this symmetry operator gives three invariants, viz.,

s = x− t, r = y− t, U = u,

which give group-invariant solution u = U(s, r) and reduces (1) to

U2 (Usrrr + 2Ussrr)− 4U4 (Usr + Uss)− 4UsU3 (Ur + Us) + 2Ur (Ur + 2Us)Usr

−U
(
UrrUsr + 2

(
Usr

2 + UsUsrr + Ur (Usrr + Ussr)
))

= 0.
(8)

The Lie point symmetries of the above equation are

Γ1 =
∂

∂s
, Γ2 =

∂

∂r
, Γ3 = s

∂

∂s
+ r

∂

∂r
−U

∂

∂U
.

The symmetry Γ1 − νΓ2 gives the two invariants z = r + νs and F = U. Using these invariants,
(8) transforms to the nonlinear fourth-order ordinary differential equation(

F′′

F

)′′
− 2(ν + 1)

2ν + 1

(
F2
)′′

= 0. (9)

Integrating (9) twice with respect to z, we obtain

F′′ − 2(ν + 1)
2ν + 1

F3 − k1zF− k2F = 0, (10)

where k1 and k2 are constants of integration. This equation can not be integrated in the closed form.
However, by taking k1 = 0, one can obtain its solution in the closed form in the following manner.
Multiplying (10) with k1 = 0 by F′ and integrating, we obtain

F′2 =
ν + 1

2ν + 1
F4 + k2F2 + k3, (11)

where k3 is a constant of integration. The solution of this equation is given by

F(z) =

√
2k3(2ν + 1)

C
sn

√ C
2(2ν + 1)

z + k4, 2

√
−k3(ν + 1)

Ck2 + 4k3 + 4k3ν

 ,

where k4 is a constant of integration, C =
√

4k2
2ν2 + 4k2

2ν + k2
2 − 16k3ν2 − 24k3ν− 8k3 − 2k2ν− k2 6= 0

and sn is the Jacobi elliptic sine function [35]. Thus, a solution of (1) is

u(t, x, y) =

√
2k3(2ν + 1)

C
sn

√ C
2(2ν + 1)

(y + νx− (ν + 1)t) + k4, 2

√
−k3(ν + 1)

Ck2 + 4k3 + 4k3ν

 .
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For k3 = 0 we have the solution given by

u(t, x, y) =
2k2(2ν + 1) exp[

√
k2{±(νx + y− (ν + 1)t)}]

2ν + 1− k2(ν + 1) exp[2
√

k2{±(νx + y− (ν + 1)t)}]

and when C = 0 we have

u(t, x, y) =

{√
ν + 1

2ν + 1
(νx + y− (ν + 1)t)

}−1

.

Likewise, one may obtain more group-invariant solutions using the other symmetry operators of
the optimal system of one-dimensional subalgebras. For example, the symmetry operator X2 + X3 of
the optimal system gives us the group-invariant solution (2.9) of [19] in terms of the Airy functions.

3. Conservation Laws of (1)

Conservation laws describe physical conserved quantities, such as mass, energy, momentum and
angular momentum, electric charge, and other constants of motion [32]. They are very important
in the study of differential equations. Conservation laws can be used in investigating the existence,
uniqueness, and stability of the solutions of nonlinear partial differential equations. They have also
been used in the development of numerical methods and in obtaining exact solutions for some partial
differential equations.

A local conservation law for the (2 + 1)-dimensional Zoomeron Equation (1) is a
continuity equation

DtT + DxX + DyY = 0 (12)

holding for all solutions of Equation (1), where the conserved density T and the spatial fluxes X and
Y are functions of t, x, y, u. The results in [11] show that all non-trivial conservation laws arise from
multipliers. Specifically, when we move off of the set of solutions of Equation (1), every non-trivial
local conservation law (12) is equivalent to one that can be expressed in the characteristic form

DtT̃ + DxX̃ + DyỸ =
((uxy

u

)
tt
−
(uxy

u

)
xx

+ 2(u2)tx

)
Q (13)

holding off of the set of solutions of Equation (1) where Q(x, y, t, u . . .) is the multiplier, and where
(T̃, X̃, Ỹ) differs from (T, X, Y) by a trivial conserved current. On the set of solutions u(x, y, t) of
Equation (1), the characteristic form (13) reduces to the conservation law (12).

In general, a function Q(x, t, u . . .) is a multiplier if it is non-singular on the set of solutions u(x, y, t)
of Equation (1), and if its product with Equation (1) is a divergence expression with respect to t, x, y.
There is a one-to-one correspondence between non-trivial multipliers and non-trivial conservation
laws in characteristic form.

The determining equation to obtain all multipliers is

δ

δu

( (uxy

u

)
tt
−
(uxy

u

)
xx

+ 2(u2)tx

)
Q = 0, (14)

where δ/δu is the Euler–Lagrange operator given by

δ

δu
=

∂

∂u
+ ∑

s≥1
(−1)sDi1 · · ·Dis

∂

∂ui1i2···is
.

Equation (14) must hold off of the set of solutions of Equation (1). Once the multipliers are
found, the corresponding non-trivial conservation laws are obtained by integrating the characteristic
Equation (13) [11].
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We will now find all multipliers Q(x, y, t, u) and obtain corresponding non-trivial (new)
conservation laws. The determining Equation (14) splits with respect to the variables
ut, ux, uy, utt, utx, uty, uxy, uyy, uttt, uttx, utxy, utyy, uxyy, utttx, utxyy. This yields a linear determining
system for Q(x, y, t, u) which can be solved by the same algorithmic method used to solve the
determining equation for infinitesimal symmetries. By applying this method, for Equation (1), we
obtain the following linear determining equations for the multipliers:

Qu (t, x, y, u) = 0, (15)

Qty (t, x, y, u) = 0, (16)

Qyyy (t, x, y, u) = 0, (17)

Qtt (t, x, y, u)−Qyy (t, x, y, u) = 0. (18)

It is straightforward using Maple to set up and solve this determining system (15)–(18), and we
get the four multipliers given by

Q1 =
1
2

(
t2 + y2

)
f1(x), (19)

Q2 = f2(x)y, (20)

Q3 = f3(x)t, (21)

Q4 = f4(x). (22)

For each solution Q, a corresponding conserved density and flux can be derived (up to local
equivalence) by integration of the divergence identity (13) [11,36]. We obtain the following results.

Corresponding to these multipliers, we obtain four conservation laws. Thus, the multiplier (19)
gives the conservation law with the following conserved vector:

T1 = f1(x)
{

1
2
(t2 + y2)

(
ut

2ux

u3 −
uxutt

u2

)
+

tuxut

u2 − 2yu2
}

+ f ′1(x)
{

1
2
(t2 + y2)

(
utt

u
− 1

2
ut

2

u2

)
− tut

u

}
,

X1 = f1(x)
{

1
2
(t2 + y2)

(
2ututt

u2 − uttt

u
− ut

3

u3

)
− 1

2
ut

2t
u2 +

ut

u

}
,

Y1 = f1(x)
{

1
2
(t2 + y2)

(
4uut +

utxy

u
−

uyutx

u2

)
− yutx

u

}
.

Likewise, the multiplier (20) yields

T2 = f2(x)y
(

4 uuy −
uxutt

u2 +
ut

2ux

u3

)
+ f ′2(x)y

(
utt

u
− 1

2
ut

2

u2

)
,

X2 = f2(x)y
(

2ututt

u2 − uttt

u
− ut

3

u3

)
,

Y2 = f2(x)
(yutxy

u
−

yuyutx

u2 − utx

u

)
as conserved vector.
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Similarly, the multiplier (21) results in the following conserved vector

T3 = f3(x)
(

4 tuuy −
tuxutt

u2 +
tut

2ux

u3 +
uxut

u2

)
+ f ′3(x)

(
tutt

u
− 1

2
tut

2

u2 −
ut

u

)
,

X3 = f3(x)
(

2tututt

u2 − tut
3

u3 −
1
2

ut
2

u2 −
tuttt

u

)
,

Y3 = f3(x)

(
tuutxy − 2 u4 − tuyutx

)
u2 .

Lastly, the multiplier (22) gives the conserved vector whose components are

T4 = f4(x)
(

4uuy −
uxutt

u2 +
ut

2ux

u3

)
+ f ′4(x)

(
utt

u
− 1

2
ut

2

u2

)
,

X4 = f4(x)
(

2ututt

u2 − uttt

u
− ut

3

u3

)
,

Y4 = f4(x)
(utxy

u
−

uyutx

u2

)
.

4. Concluding Remarks

In this paper, we studied the (2 + 1)-dimensional Zoomeron Equation (1). For the first time,
the classical Lie point symmetries were used to construct an optimal system of one-dimensional
subalgebras. This system was then used to obtain symmetry reductions and new group-invariant
solutions of (1). Again for the first time, we derived the conservation laws for (1) by employing the
multiplier method. We note that since we had arbitrary functions in the multipliers, we obtained
infinitely many conservation laws for Equation (1).
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