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Abstract: Inspired by the generalized entropies for graphs, a class of generalized degree-based graph
entropies is proposed using the known information-theoretic measures to characterize the structure
of complex networks. The new entropies depend on assigning a probability distribution about the
degrees to a network. In this paper, some extremal properties of the generalized degree-based graph
entropies by using the degree powers are proved. Moreover, the relationships among the entropies
are studied. Finally, numerical results are presented to illustrate the features of the new entropies.
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1. Introduction

Nowadays, the research of complex networks has attracted many researchers. One interesting and
important problem is to study the network structure by using different graph and network measures.
Meanwhile, these graph and network measures have been widely applied in many different fields,
such as chemistry, biology, ecology, sociology and computer science [1–7]. From the viewpoint of
information theory, the entropy of graphs was initiated to be applied by Mowshowitz [8] and Trucco [9].
Afterwards, Dehmer introduced graph entropies based on information functionals which capture
structural information and studied their properties [10–12]. The graph entropies have been used as the
complexity measures of networks and measures for symmetry analysis. Recently, so-called generalized
graph entropies have been investigated by Dehmer and Mowshowitz [13] for better analysis and
applications such as machine learning. The generalized graph entropies can characterize the topology
of complex networks more effectively [14].

The degree powers are extremely considerable invariants and studied extensively in graph
theory and network science, so they are commonly used as the information functionals to explore
the networks [15,16]. To study more properties of graph entropies based on the degree powers,
Lu et al. obtained some upper and lower bounds which have different performances to bound
the graph entropies in different kinds of graphs and showed their applications in structural
complexity analysis [17,18]. Inspired by Dehmer and Mowshowitz [13], we focus on the relationships
between degree powers and the parametric complexity measures and then we construct generalized
degree-based graph entropies by using the concept of the mentioned generalized graph entropies. The
structure of this paper is as follows: In Section 2, some definitions and notations of graph theory and
the graph entropies we are going to study are reviewed. In Section 3, we describe the definition of
generalized degree-based graph entropies which are motivated by Dehmer and Mowshowitz [13].
In Section 4, we present some extremal properties of such entropies related to the degree powers.
Moreover, we give some inequalities among the generalized degree-based graph entropies. In Section 5,
numerical results of an exemplary network are shown to demonstrate the new entropies. Finally, a
short summary and conclusion are drawn in the last section.
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2. Preliminaries to Degree-Based Graph Entropy

A graph or network G is an ordered pair (V, E) comprising a set V of vertices together with a set
E of edges. In network science, vertices are called nodes sometimes. The order of a graph means the
number of vertices. The size of a graph means the number of edges. A graph of order n and size m is
recorded as an (n, m)-graph. The degree of a vertex v denoted by d(v) or in short dv means the number
of edges that connect to it, where an edge that connects a vertex to itself (a loop) is counted twice.
The maximum and minimum degree in a graph are often denoted by ∆(G) and δ(G). If every vertex
has the same degree (∆(G) = δ(G)), then G is called a regular graph, or is called a d-regular graph with
vertices of degree d. An unordered pair of vertices {u, v} is called connected if a path leads from u to
v. A connected graph is a graph in which every unordered pair of vertices is connected. Otherwise,
it is called a disconnected graph. Obviously, in a connected graph, 1 ≤ δ(G) ≤ ∆(G) ≤ n− 1. A tree
is a connected graph in which any two vertices are connected by exactly only one path. So tree is a
connected (n, n− 1)-graph. Pn is denoted a path graph characterized as a tree in which the degree of
all but two vertices is 2 and the degree of the two remaining vertices is 1. Sn is denoted a star graph
characterized as a tree in which the degree of all but one vertex is 1. More details can be seen in [17,18].

Next, we describe the concept of (Shannon’s) entropy [19,20]. The notation “log” means the
logarithm is based 2, and the notation “ln” means the logarithm is based e.

Definition 1. Let p = (p1, p2, · · · , pn) be a probability distribution, namely, 0 ≤ pi ≤ 1 and
n
∑

i=1
pi = 1.

The (Shannon’s) entropy of the probability distribution is defined by

H(p) := −
n

∑
i=1

pi log pi.

In the above definition, we use 0 log 0 = 0 for continuity of corresponding function.

Definition 2. Let G = (V, E) be a graph of order n. For vi ∈ V, we define

p(vi) :=
f (vi)

∑n
j=1 f (vj)

,

where f is a meaningful information functional. According to the information functional f , the vertices are
mapped to the non-negative real numbers.

Because ∑n
i=1 p(vi) = 1, the quantities p(vi) can be seen as probability values. Then the graph

entropy of G has been defined as follows [10,12,17,18].

Definition 3. Let G = (V, E) be a graph of order n and f be a meaningful information functional.
The (Shannon’s) graph entropy of G is defined by

I f (G) := −
n

∑
i=1

f (vi)

∑n
j=1 f (vj)

log
f (vi)

∑n
j=1 f (vj)

.

Definition 4. Let G = (V, E) be a graph of order n. For vi ∈ V, if f (vi) = di, then

p(vi) =
di

∑n
j=1 dj

.

Therefore, the degree-based graph entropy of G is defined as

Id(G) := −
n

∑
i=1

di

∑n
j=1 dj

log
di

∑n
j=1 dj

.
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3. Generalized Degree-Based Graph Entropy

Many generalizations of entropy measure have been proposed based on the definition of
Shannon’s entropy [21,22]. For example, Rényi entropy [23], Daròczy’s entropy [24] and quadratic
entropy [25] are representative generalized entropies. In [13], Dehmer and Mowshowitz introduce
a new class of generalized graph entropies that derive from the generalizations of entropy measure
mentioned above and present two examples.

Definition 5. Let G = (V, E) be a graph of order n. Then

(1). I1
α(G) :=

1
1− α

log

[
n

∑
i=1

(
f (vi)

∑n
j=1 f (vj)

)α]
, α 6= 1;

(2). I2
α(G) :=

1
21−α − 1

[
n

∑
i=1

(
f (vi)

∑n
j=1 f (vj)

)α

− 1

]
, α 6= 1;

(3). I3(G) :=
n

∑
i=1

f (vi)

∑n
j=1 f (vj)

[
1− f (vi)

∑n
j=1 f (vj)

]
.

Definition 6. Let G = (V, E) be a graph of order n and A its adjacency matrix. Denote by λ1, λ2, · · · , λn the
eigenvalues of G. If f (vi) =| λi |, then the generalized graph entropies are as follows:

(1). λI1
α(G) :=

1
1− α

log

[
n

∑
i=1

(
| λi |

∑n
j=1 | λj |

)α]
, α 6= 1;

(2). λI2
α(G) :=

1
21−α − 1

[
n

∑
i=1

(
| λi |

∑n
j=1 | λj |

)α

− 1

]
, α 6= 1;

(3). λI3(G) :=
n

∑
i=1

| λi |
∑n

j=1 | λj |

[
1− | λi |

∑n
j=1 | λj |

]
.

Definition 7. Let G = (V, E) be a graph of order n. Denote the collection of orbits by S = {V1, V2, · · · , Vk}
and their respective probabilities by |V1|

n , |V1|
n , · · · , |Vk |

n , where k is the number of orbits. Then another class of
generalized graph entropies are derived as

(1). oI1
α(G) :=

1
1− α

log

[
k

∑
i=1

(
| Vi |

n

)α
]

, α 6= 1;

(2). oI2
α(G) :=

1
21−α − 1

[
k

∑
i=1

(
| Vi |

n

)α

− 1

]
, α 6= 1;

(3). oI3(G) :=
k

∑
i=1

| Vi |
n

[
1− | Vi |

n

]
.

Because it is difficult to obtain the eigenvalues or the collection of orbits of graph G for a large-scale
graph, and they may not meet the requirements visually, we focus on the complexity of the graphs
or networks determined by the vertices themselves and the relationship between them in this paper.
For a given graph G, the vertex degree is a significant graph invariant, which is related to structural
properties of the graph. Most other properties of the complex network are based on the degree
distribution, such as the clustering coefficient, the community structure and so on. The vertex degree in
a graph or network is also intuitional and noticeable. The vertices with varying values of degree chosen
as the main construction of the graph or network may decide the complexity of the graph or network.
Hence, we study the generalized graph entropies based on the vertex degree and degree powers.
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According to the above definitions of generalized graph entropies, let f (vi) = di for vi ∈ V,
then we obtain the generalized degree-based graph entropies as follows:

Definition 8.

(1). I1
α,d(G) :=

1
1− α

log

[
n

∑
i=1

(
di

∑n
j=1 dj

)α]
, α 6= 1; (1)

(2). I2
α,d(G) :=

1
21−α − 1

[
n

∑
i=1

(
di

∑n
j=1 dj

)α

− 1

]
, α 6= 1; (2)

(3). I3
d(G) :=

n

∑
i=1

di

∑n
j=1 dj

[
1− di

∑n
j=1 dj

]
. (3)

4. Properties of the Generalized Degree-Based Graph Entropies

In this section, we will show the relationships among the stated generalized degree-based graph
entropies and the degree-based graph entropy. First we will present five simple propositions which
can be inferred from the Rényi entropy and [13].

Proposition 1.

I1
α,d(G) =

1
1− α

log
[
(21−α − 1)I2

α,d(G) + 1
]

; (4)

I2
α,d(G) =

1
21−α − 1

[
2(1−α)I1

α,d(G) − 1
]

; (5)

I3
d(G) = 1− 2−I1

2,d(G) =
1
2

I2
2,d(G). (6)

Proof. Noticing that

n

∑
i=1

(
di

∑n
j=1 dj

)α

= 2(1−α)I1
α,d(G) = (21−α − 1)I2

α,d(G) + 1,

we can obtain the Equations (4) and (5). Let α = 2, we have
n
∑

i=1

(
di

∑n
j=1 dj

)2
= 1− I3

d(G), then the

Equation (6) follows.

Remark 1. Proposition 1 can be seen as a special case of (12) and (16) in [13] when the value of the information
functional is the degree of every vertex.

Proposition 2.
lim
α→1

I1
α,d(G) = lim

α→1
I2
α,d(G) = Id(G) (7)

Proof. Using l’Hôspital’s rule, we can obtain the Equation (7).

Proposition 3. For α ∈ (−∞, 1) ∪ (1,+∞), I1
α,d(G) is monotonically decreasing with respect to α.

Proof. The derivative of the function I1
α,d(G) is

dI1
α,d(G)

dα
= − 1

(1− α)2

n

∑
i=1

qi log
qi
pi

,
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where qi =
dα

i
∑n

j=1 dα
j
, pi =

di
∑n

j=1 dj
. Then Q = (q1, q2, · · · , qn) and P = (p1, p2, · · · , pn) are also probability

distributions. From the nonnegativity of Kullback-Leibler divergence, we obtain
dI1

α,d(G)

dα ≤ 0.
The inequality implies that I1

α,d(G) is monotonically decreasing with respect to α.

Proposition 4. For α < 1,
I1
α,d(G) ≥ Id(G); (8)

and for α > 1,
I1
α,d(G) ≤ Id(G); (9)

Proof. Using Proposition 2 and Proposition 3, we can obtain the equalities above easily.

Remark 2. Proposition 2, Proposition 3 and Proposition 4 can be seen as the special cases of the Rényi
entropy’s properties.

Proposition 5.
I3
d(G) < ln 2 · Id(G). (10)

Proof. Using the standard inequality ln x < x − 1 when x 6= 1, we have
ln di

∑n
j=1 dj

< di
∑n

j=1 dj
− 1. Therefore,

I3
d(G) =

n

∑
i=1

di

∑n
j=1 dj

[
1− di

∑n
j=1 dj

]
= −

n

∑
i=1

di

∑n
j=1 dj

[
di

∑n
j=1 dj

− 1

]

< −
n

∑
i=1

di

∑n
j=1 dj

ln
di

∑n
j=1 dj

= − ln 2
n

∑
i=1

di

∑n
j=1 dj

log
di

∑n
j=1 dj

= ln 2 · Id(G).

Then the inequality (10) follows.

Next we define the sum of the α-th degree powers as Dα :=
n
∑

i=1
di

α, where α is an arbitrary

real number.

Theorem 1. Let G(n, m) be an (n, m)-graph. Then for α 6= 1, we have

(1). I1
α,d(G) =

1
1− α

log
Dα

(2m)α
; (11)

(2). I2
α,d(G) =

1
21−α − 1

[
Dα

(2m)α
− 1
]

; (12)

(3). I3
d(G) = 1− D2

(2m)2 . (13)

Proof. By substituting ∑n
i=1 di = 2m into the Equations (1)–(3), we have

I1
α,d(G) =

1
1− α

log

[
n

∑
i=1

(
di

2m

)α
]
=

1
1− α

log

[
n

∑
i=1

di
α

(2m)α

]

=
1

1− α
log

[
1

(2m)α

n

∑
i=1

di
α

]
=

1
1− α

log
[

Dα

(2m)α

]
;
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I2
α,d(G) =

1
21−α − 1

[
n

∑
i=1

(
di

2m

)α

− 1

]
=

1
21−α − 1

[(
n

∑
i=1

di
α

(2m)α

)
− 1

]

=
1

21−α − 1

[
1

(2m)α

(
n

∑
i=1

di
α

)
− 1

]
=

1
21−α − 1

[
Dα

(2m)α
− 1
]

;

I3
d(G) =

n

∑
i=1

di
2m

[
1− di

2m

]
=

1
(2m)2

n

∑
i=1

di(2m− di)

=
1

(2m)2

[(
2m

n

∑
i=1

di

)
−

n

∑
i=1

di
2

]
=

1
(2m)2

[
(2m)2 − D2

]
= 1− D2

(2m)2 .

So the Equations (11)–(13) hold.

From the above theorem, we know that the generalized degree-based graph entropies are closely
related to the sum of the degree powers Dα. Obviously when α = 1, D1 = ∑n

i=1 di = 2m presents the
sum of degrees. The sum of the degree powers as an invariant is called zeroth order general Randić
index [26–29]. For α = 2, D2 is also called first Zagreb index [30–33]. In [34], Chen et al. have reviewed
Dα for different values of α and discussed the relationships with some indices such as Zagreb index,
graph energies, HOMO-LUMO index, Estrada index [35–43].

Corollary 1. Let G(n, m) be an (n, m)-graph. Then we have

1− 2m + (n− 1)(n− 2)
4m(n− 1)

≤ I3
d(G) ≤ 1− 1

n
.

Proof. Using Cauchy-Buniakowsky-Schwarz inequality, we obtain

D2 =
n

∑
i=1

di
2 ≥ 1

n

(
n

∑
i=1

di

)2

=
(2m)2

n
.

In [44] de Caen obtains the following inequality

D2 =
n

∑
i=1

di
2 ≤ m

(
2m

n− 1
+ n− 2

)
.

So from Equation (13), we have

1− m
(2m)2

(
2m

n− 1
+ n− 2

)
≤ 1− D2

(2m)2 ≤ 1−
(2m)2

n
(2m)2 ,

or equivalently,

1− 2m + (n− 1)(n− 2)
4m(n− 1)

≤ I3
d(G) ≤ 1− 1

n
.

We can also find some conditions for the equalities: If G is a regular graph, then the equality
I3
d(G) = 1− 1

n holds; If G is a tree of order n, then the equality 1− 2m+(n−1)(n−2)
4m(n−1) holds.

Corollary 2. Let T be a tree of order n. Then we have

I3
d(Sn) ≤ I3

d(T) ≤ I3
d(Pn),

where Sn and Pn denote the star graph and path graph of order n, respectively.
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Proof. In [45], Li and Zhao present that among all trees of order n, for α > 1 or α < 0, the path
graph and the star graph attain the minimum and maximum value of Dα respectively; while for
0 < α < 1, the star graph and the path graph attain the minimum and maximum value of Dα

respectively. Then using the Equation (13), the result of the corollary is obtained.

Theorem 2. When α < 1, we have I1
α,d(G) < 21−α−1

(1−α) ln 2 I2
α,d(G); and when α > 1, we have I1

α,d(G) >

21−α−1
(1−α) ln 2 I2

α,d(G). Especially, when α = 0, we have I1
α,d(G) =

log n
n−1 I2

α,d(G).

Proof. First we define a new function on α on the set of real numbers R as follows

f (α) =
Dα

(2m)α
=

n
∑

i=1
di

α

(2m)α
.

Because straightforward derivative shows

d
dα

f (α) =
1

(2m)α

[(
n

∑
i=1

di
α ln di

)
− ln(2m)

(
n

∑
i=1

di
α

)]

≤ 1
(2m)α

[
ln(∆(G))

(
n

∑
i=1

di
α

)
− ln(2m)

(
n

∑
i=1

di
α

)]

=
ln(∆(G))− ln(2m)

(2m)α

n

∑
i=1

di
α < 0 (by ∆(G) < 2m),

we can claim that f (α) is a strictly decreasing function on α.
For f (1) = 1, we have

Dα

(2m)α
=

n
∑

i=1
di

α

(2m)α
=

{
> 1, α < 1;

< 1, α > 1.

Using the standard inequality ln x < x− 1 when x 6= 1, we find ln 2 · log Dα
(2m)α < Dα

(2m)α − 1 when
α 6= 1.

Therefore, for α < 1, we have

I1
α,d

I2
α,d

=

1
1−α log Dα

(2m)α

1
21−α−1

[
Dα

(2m)α − 1
] <

1
(1−α) ln 2

[
Dα

(2m)α − 1
]

1
21−α−1

[
Dα

(2m)α − 1
] =

21−α − 1
(1− α) ln 2

.

For α > 1, we have

I1
α,d

I2
α,d

=

1
1−α log Dα

(2m)α

1
21−α−1

[
Dα

(2m)α − 1
] >

1
(1−α) ln 2

[
Dα

(2m)α − 1
]

1
21−α−1

[
Dα

(2m)α − 1
] =

21−α − 1
(1− α) ln 2

.

Especially, when α = 0, I1
α,d = log n and I2

α,d = n − 1. So I1
α,d(G) =

log n
n−1 I2

α,d(G) holds in
this case.

Corollary 3. When 0 ≤ α < 1, we have I1
α,d(G) < 1

ln 2 I2
α,d(G).

Proof. First we define a new function on α on the set of real numbers R as follows

g(α) = 21−α − 1− (1− α).
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Because the second order derivative shows

d2

dα2 g(α) = 21−α(ln 2)2 > 0,

we can claim that g(α) is a convex function on α. Since g(0) = g(1) = 0, we find 21−α − 1 ≤ 1− α

for 0 ≤ α < 1, or equivalently 0 < 21−α−1
1−α ≤ 1 for 0 ≤ α < 1. Using Theorem 2, the inequality

I1
α,d(G) < 1

ln 2 I2
α,d(G) holds.

Theorem 3. When α < 1 and 1 < α < 2, we have I3
d(G) > (1− 21−α)I2

α,d(G); when α > 2, we have
I3
d(G) < (1− 21−α)I2

α,d(G); and when α = 2, we have I3
d(G) = (1− 21−α)I2

α,d(G) = 1
2 I2

α,d(G).

Proof. First we have

I2
α,d(G)− I3

d(G) =
1

21−α − 1

[
Dα

(2m)α
− 1
]
−
[

1− D2

(2m)2

]
=

1
1− 21−α

[
1− Dα

(2m)α

]
−
[

1− D2

(2m)2

]
,

and f (α) = Dα
(2m)α is a strictly decreasing function on α.

Therefore, for α < 1, f (α) > f (2) and 1
1−21−α < 0 are obtained. Then we have

I2
α,d(G)− I3

d(G) >
1

1− 21−α

[
1− D2

(2m)2

]
−
[

1− D2

(2m)2

]
=

(
1

1− 21−α
− 1
) [

1− D2

(2m)2

]
=

(
1

1− 21−α
− 1
)

I3
d(G)

This implies I3
d(G) > (1− 21−α)I2

α,d(G).
For 1 < α < 2, f (α) > f (2) and 1

1−21−α > 0 are obtained. Then we have

I2
α,d(G)− I3

d(G) <
1

1− 21−α

[
1− D2

(2m)2

]
−
[

1− D2

(2m)2

]
=

(
1

1− 21−α
− 1
) [

1− D2

(2m)2

]
=

(
1

1− 21−α
− 1
)

I3
d(G)

This implies I3
d(G) > (1− 21−α)I2

α,d(G).
For α = 2, using (6) we have I3

d(G) = (1− 21−α)I2
α,d(G) = 1

2 I2
α,d(G).

For α > 2, f (α) < f (2) and 1
1−21−α > 0 are obtained. Then we have

I2
α,d(G)− I3

d(G) >
1

1− 21−α

[
1− D2

(2m)2

]
−
[

1− D2

(2m)2

]
=

(
1

1− 21−α
− 1
) [

1− D2

(2m)2

]
=

(
1

1− 21−α
− 1
)

I3
d(G)

This implies I3
d(G) < (1− 21−α)I2

α,d(G). Thus we complete the proof.

Corollary 4. When α ≥ 2, we have I3
α(G) < I2

α,d(G).

Proof. For 1− 21−α < 1, we have the result by using Theorem 3 .

Theorem 4. When α < 1, we have I1
α,d(G) > 1

ln 2 · I
3
d(G); when 1 < α < 2, we have I1

α,d(G) < 1
(α−1) ln 2 ·

I3
d (G)

1−I3
d (G)

; and when α ≥ 2, we have I1
α,d(G) > 1

(α−1)·ln 2 I3
d(G).
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Proof. For α < 1, using (8) and (10) we have I1
α,d(G) > 1

ln 2 · I
3
d(G).

For 1 < α < 2, f (α) > f (2) and 1
α−1 > 0 are obtained. Then we have

I1
α,d(G)

I3
d(G)

=

1
1−α log Dα

(2m)α

1− D2
(2m)2

<

1
1−α log D2

(2m)2

1− D2
(2m)2

=
1

(α− 1) ln 2
·

ln (2m)2

D2

1− D2
(2m)2

Using the standard inequality ln x < x− 1 when x 6= 1, we find ln (2m)2

D2
< (2m)2

D2
− 1. So

I1
α,d(G)

I3
d(G)

<
1

(α− 1) ln 2
·
(2m)2

D2
− 1

1− D2
(2m)2

=
1

(α− 1) ln 2
· 1

D2
(2m)2

=
1

(α− 1) ln 2
· 1

1− I3
d(G)

.

This implies I1
α,d(G) < 1

(α−1) ln 2 ·
I3
d (G)

1−I3
d (G)

.

For α ≥ 2, using Theorem 2 and Theorem 3 we have I1
α,d(G) > 21−α−1

(1−α) ln 2 I2
α,d(G) and I3

d(G) ≤
(1− 21−α)I2

α,d(G). This implies I1
α,d(G) > 1

(α−1)·ln 2 I3
d(G). Thus we complete the proof.

5. Numerical Results

In order to illuminate the principle of generalized degree-based graph entropies, we show a
network in Figure 1 as an example.

Figure 1. A simple network for example.

The degree of each node of the example network is shown in Table 1.

Table 1. The degree of each node of the example network.

node number 1 2 3 4 5 6 7 8 9 10 11
degree 3 3 3 2 5 3 5 3 1 4 2

node number 12 13 14 15 16 17 18 19 20 21
degree 3 2 2 6 2 3 4 4 3 3

We can easily calculate I3
d(G) = 0.946. The details of I1

α,d(G) and I2
α,d(G) with different α are

shown in Table 2.

Table 2. The generalized degree-based graph entropies I1
α,d(G) and I2

α,d(G) of the example network.

The Value of α −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

I1
α,d(G) 4.505 4.447 4.392 4.342 4.294 4.249 4.206 4.165 4.127 4.090 4.056

I2
α,d(G) 171.633 55.146 20.000 8.457 4.294 2.631 1.892 1.527 1.329 1.214 1.143
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In Table 2 that the value of α is equal to 1.0 means α→ 1. Then I1
α,d(G) and I2

α,d(G) are degenerated
to the degree-based graph entropy Id(G) = 4.294.

It is clear that following the increase of the value of α, the values of the generalized degree-based
graph entropies I1

α,d(G) and I2
α,d(G) of the complex network are decrease. Based on the concept of the

entropy, the bigger the value of the entropy is, the more complex of the network is. From the definitions
of I1

α,d(G) and I2
α,d(G), the value of the entropic index α can be used to change the construction of the

entropies. In other words, the value of α represents the relationship among the nodes in the complex
network. Combined with the complex network, the influence of each node’s degree on the entropies is
changed by the value of α. The relationship between the value of α and the entropies of the complex
network is shown as follows:

(1) When α < 1, the nodes with small value of degree play an important part in the construction
of I1

α,d(G) and I2
α,d(G), or they are chosen as the main construction of the complex networks.

Especially when the value of α = 0, each node has the same influence on the whole network from
the entropic point of view.

(2) When α→ 1, the influence of each node on the network is based on the value of degree for each
node. The generalized degree-based graph entropies I1

α,d(G) and I2
α,d(G) are degenerated to the

degree-based graph entropy Id(G). So the structure property determined by the node’s degree
decides the complexity of the complex network.

(3) When α > 1, the nodes with big value of degree play an important part in the construction
of I1

α,d(G) and I2
α,d(G), or they are chosen as the main construction of the complex networks.

The values of the entropies tend to stabilization. The complex network is tended to orderly.

To sum up, according to the definition of the generalized degree-based graph entropies of the
complex network, the value of the entropic index α is used to describe the different relationship among
the nodes. When the value of α is smaller than 1, the nodes with small value of degree are more
important than the nodes with big value of degree. The edges among those nodes with small value
of degree become the main part of the complex network. As these nodes with small value of degree
are the majority in the complex network, the whole network has greater complexity. When the value
of α is equal to 0, the nodes in the network are equal to each other in terms of influence. When the
value of α tends to 1, I1

α,d(G) and I2
α,d(G) are degenerated to Id(G), the level of complexity for the

complex network is decided by the structure property. In other words, the complexity of the complex
network is decided by the degree sequence and degree distribution. When the value of α is trended
to ∞, the construction of the complex network is decided by the node which has a biggest value of
degree, the values of I1

α,d(G) and I2
α,d(G) decrease to stable values, and the complex network is more

orderly. The complexity of the complex network is not only decided by the structure of the complex
network, but also influenced by the kind of the relationship between each node.

From Figure 2, we can see the plotted values of the generalized degree-based graph entropies
I1
α,d(G), I2

α,d(G) and I3
d(G) relative to α (I1

α,d(G), I2
α,d(G) with a pole at α = 1). The numerical results

can be interpreted as follows: First we observe that the value of I1
α,d(G) is less than that of I2

α,d(G)

for α < 1, while the value of I1
α,d(G) is larger than that of I2

α,d(G) for α > 1. Next, for I1
α,d(G) ,

I2
α,d(G) and I3

d(G), we can have the values of I1
α,d(G) and I2

α,d(G) is always larger than that of I3
d(G).

Actually, using l’Hôspital’s rule we have that the value of I1
α,d(G) tends to 3.459 and the value of I2

α,d(G)

tends to 1 when α tends to +∞. At last, all the curves verify the inequalities in the Section 4.
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Figure 2. I1
α,d(G)(red), I2

α,d(G)(blue) and I3
d (G)(green) versus α. (I1

α,d(G), I2
α,d(G) with a pole at α = 1).

In addition, generalized graph entropy measures with parameters have been presented to be
useful in studying the complexity associated with machine learning. For example, Dehmer et al.
have described that the generalized graph entropies can be applied to the graph classification and
clustering cases in machine learning. The applications involve optimizing particular parameters
associated with graphs or networks in given sets [4,46]. So by applying supervised machine learning
methods, the generalized degree-based entropies can be used for classifying the chemical structures,
developing methods for characterizing predictive models according to optimal values of relevant
parameters in bioinformatics, systems biology, and drug design.

6. Summary and Conclusions

In this paper , we studied the generalized degree-based graph entropies, which are inspired by
Dehmer and Mowshowitz in [13] and derived from the Rényi entropy [23], Daròczy’s entropy [24] and
quadratic entropy [25]. We studied the relationships between the sum of the degree powers and the
new entropies. Then we examined the extremal values of the above stated entropies in terms of the
sum of the degree powers. We also proved some inequalities between these generalized degree-based
graph entropies. Finally, we obtained numerical values for an exemplary complex network for each
of the entropies, and concluded that their parameters can influence which kind of nodes contribute
to the main part of the network in terms of graph entropy theory. The generalized degree-based
graph entropies expand the description methods of the structural complexity of the complex networks.
They would play bigger roles in describing structural symmetry and asymmetry in real networks in
the future.
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