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Abstract: In this paper, we introduce the concept of (pair-wise) domination graphs for hypergraphs
endowed with a choice function on edges. We are interested, for instance, in minimal numbers of
edges for associated domination graphs. Theorems regarding the existence of balanced (zero-edge)
domination graphs are presented. Several open questions are posed.
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1. Introduction

In this paper, we introduce the concept of pair-wise domination for hypergraphs endowed
with a choice function on edges. A hypergraph is a pair H = (V, E), where V = {v1, v2, . . . , vn}
is a set of n vertices (or nodes) and E = {e1, e2, . . . , em} is a set of m non-empty subsets of V called
hyperedges or edges (see for instance [1]). A k-hypertournament is a complete k-hypergraph H = (V, E)
(i.e., E consists of all the (n

k) possible k-subsets), with each k-edge endowed with an orientation. Here
we are interested in hypergraphs where each edge, e, has a chosen element C(e) ∈ e (in place of a
complete orientation). We will refer to the pair (H, C) as a (complete) k-hypergraph with choice (or
an (n, k) choice-hypergraph). For various considerations of choice functions, see for instance [2,3].
For some recent work related to choice in the context of Cayley graphs, see [4].

In the case k = 2, both k-hypertournaments and hypergraphs with choice reduce to standard
tournaments. For discussion of tournaments, see for instance [5–7]. The following is an example of a
standard tournament with n = 5 vertices.

Example 1. Consider the complete 2-hypertournament with five nodes and ten edges, depicted via the table
in Figure 1a. Here, for instance, vertex 1 is chosen in the presence of vertices 2 and 4 (the first and third lines
in the table). In fact, in this particular instance, each vertex is chosen for exactly two of the (5

2) = 10 edges.
Figure 1b gives a graphical display with a directed edge from vertex v to vertex w whenever vertex v is chosen in
the presence of w.

In the next example, we consider a complete 3-hypergraph with choice.

Example 2. Consider the complete 3-hypergraph with choice with five vertices and 10 edges, depicted in the
table in Figure 2a. Here, vertex 1 is chosen once in the presence of vertices 2 and 4 (for edges {1, 2, 3} and
{1, 3, 4}, respectively), twice in the presence of vertex 3 (again edges {1, 2, 3} and {1, 3, 4}) and never in the
presence of vertex 5. Note that again, as in Example 1, each node is chosen in the case of exactly two edges.

In considering possible analogues to Figure 1b, summarizing domination, one might include a directed edge
from vertex v to vertex w, if and only if, for edges that include both v and w, the tally of wins for v exceeds that
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of w. The resulting graph is depicted in Figure 2b. Note that there is a directed edge from vertex 1 to vertex 2,
since vertex 1 is chosen for edge {1, 2, 3}, while there is no edge, e, where vertex 2 is chosen when 1 ∈ e. It may
be noted that in this case the associated graph is path connected.

e orientation C(e)
1 {1, 2} (1,2) 1
2 {1, 3} (3,1) 3
3 {1, 4} (1,4) 1
4 {1, 5} (5,1) 5
5 {2, 3} (2,3) 2
6 {2, 4} (4,2) 4
7 {2, 5} (2,5) 2
8 {3, 4} (3,4) 3
9 {3, 5} (5,3) 5

10 {4, 5} (4,5) 4

(a)

1

2

3

4

5

(b)

Figure 1. (a) An example of a standard tournament with five vertices; and (b) an associated graphical
display with a directed edge from vertex v to vertex w whenever vertex v is chosen in the presence
of w.

e C0(e)
1 {1, 2, 3} 1
2 {1, 2, 4} 4
3 {1, 2, 5} 5
4 {1, 3, 4} 1
5 {1, 3, 5} 3
6 {1, 4, 5} 4
7 {2, 3, 4} 3
8 {2, 3, 5} 2
9 {2, 4, 5} 2

10 {3, 4, 5} 5

(a)

1

2

3

4

5

(b)

Figure 2. (a) An example of a possible (5,3) choice-hypergraph; (b) with a possible graph summarizing
pair-wise domination.

Now, define the function τ : V ×V → Z+ via:

τ(v, w) = |{e ∈ E : v, w ∈ e and C(e) = v}|, (1)

i.e., τ(v, w) is the number of edges for which v is chosen in the presence of w.
Example 2 leads to consideration of potential appropriate graphs on n vertices reflecting

domination properties among vertices. Here, we mention three possibilities.

(i) There is a directed edge from vertex v to vertex w if:

τ(w, v) = 0, (2)
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i.e., if vertex w is never chosen in the presence of vertex v.
(ii) There is a directed edge from vertex v to vertex w if:

τ(v, w) > τ(w, v),

(3)

i.e., among the edges containing both v and w, v is chosen with greater frequency.
(iii) There is a directed edge from vertex v to vertex w if:

τ(v, w) >
(n−2

k−2)

2
, (4)

i.e., v is chosen for a majority of the edges containing both v and w.

We will restrict attention henceforth to Option (ii), above, unless stated otherwise. It should
be noted that for a standard tournament graph (i.e., k = 2) all three formulations are equivalent;
furthermore, Option (iii) is a stricter requirement than Option (ii). For discussion of ranking for vertices
in hypertournaments, see for instance [8].

We refer to graphs as in Figures 2b and 3 (below) as (n, k)-choice-domination graphs or simply
(n, k)-domination graphs. When n and k are clear from context, we will at times simply refer to these as
domination graphs. As with tournaments, domination graphs could be valuable in considerations of
individual dominance in competitive settings, as may arise for instance in biology, game theory or
decision analysis. Note that hypergraphs with choice allow for analysis of scenarios wherein selection
(but not full orientation) information is available.

Example 3. Table 1 gives a 3-hypergraph with n = 5 vertices and m = 10 edges, along with four possible choice
functions, C0 (from Example 2), C1, C2 and C3 on E, while Figure 3 includes the associated domination graphs,
for comparison.

For fixed n and k, many natural questions arise as to the properties of the resulting domination
graphs; for instance:

1. What are the maximal and minimal number of edges possible for an (n, k)-domination graph?
2. What proportion of (n, k)-domination graphs are strongly path connected (for example,

Figure 3a,b?
3. What is the distribution of the number of edges in the domination graph for a uniformly selected

choice function on the edges of a k-hypergraph on n vertices?
4. What is the number of non-isomorphic (n, k)-domination graphs?

Table 1. Four possible (5, 3) choice-hypergraphs.

e C0(e) C1(e) C2(e) C3(e)

1 {1, 2, 3} 1 1 1 1
2 {1, 2, 4} 4 1 2 2
3 {1, 2, 5} 5 5 5 5
4 {1, 3, 4} 1 3 4 4
5 {1, 3, 5} 3 5 3 3
6 {1, 4, 5} 4 4 1 1
7 {2, 3, 4} 3 2 3 4
8 {2, 3, 5} 2 2 2 2
9 {2, 4, 5} 2 4 4 4

10 {3, 4, 5} 5 3 5 3
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Figure 3. Domination graphs arising from choice-hypergraphs with choice functions (a) C0; (b) C1;
(c) C2; and (d) C3 as in Table 1.

Example 4. ((5, 3) domination graphs.) For (n, k) = (5, 3), we have that |E| = 10 and the number of
distinct choice functions on E is 310 = 59049. Tables 2 and 3 give frequency tables for the number of choice
functions leading to domination graphs with a given number of edges, and a given number of strongly connected
components, respectively. Note that 3348 choice functions result in strongly connected domination graphs.
There are 225 non-isomorphic (5, 3)-domination graphs (of which 21 are strongly connected); plots of these are
provided in the Supplementary Materials; Table 4 gives the frequencies for these graphs. The two most frequent
domination graphs (each occurring for 1560 distinct choice functions, C), are given in Figure 4a,b respectively;
the most frequently occurring strongly connected domination graph is given in Figure 4c.

(a) (b) (c)

Figure 4. Three frequently occurring (5, 3)-domination graphs. The two most frequent domination graphs
are given in (a,b). The most frequently occurring strongly connected domination graph is given in (c).

Table 2. Edge distribution for (5,3)-domination graphs.

Edges 0 2 3 4 5 6 7 8 9 10

Frequency 6 60 120 1035 3324 10080 15180 16920 9180 3144

Table 3. Component distribution for (5,3)-domination graphs.

Components 1 2 3 5

Frequency 3348 6630 11760 37311
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Table 4. Frequency distribution for non-isomorphic (5, 3)-domination graphs.

Ind. Freq. Ind. Freq. Ind. Freq. Ind. Freq. Ind. Freq. Ind. Freq. Ind. Freq.

1 1560 2 510 3 360 4 300 5 840 6 480 7 240
8 480 9 120 10 600 11 840 12 240 13 960 14 120

15 720 16 120 17 480 18 360 19 240 20 120 21 420
22 840 23 240 24 120 25 120 26 960 27 180 28 180
29 180 30 120 31 120 32 240 33 120 34 840 35 240
36 480 37 240 38 120 39 600 40 120 41 240 42 360
43 600 44 180 45 360 46 300 47 15 48 180 49 1200
50 720 51 1560 52 240 53 960 54 480 55 120 56 360
57 600 58 240 59 120 60 240 61 240 62 840 63 360
64 840 65 480 66 840 67 360 68 120 69 240 70 720
71 480 72 360 73 240 74 240 75 480 76 240 77 480
78 360 79 120 80 240 81 120 82 240 83 120 84 120
85 240 86 240 87 120 88 120 89 240 90 360 91 480
92 360 93 480 94 120 95 240 96 240 97 120 98 120
99 120 100 240 101 360 102 360 103 120 104 120 105 720
106 240 107 120 108 210 109 120 110 240 111 120 112 120
113 120 114 600 115 120 116 360 117 360 118 120 119 240
120 360 121 120 122 120 123 120 124 120 125 240 126 120
127 360 128 240 129 240 130 120 131 120 132 120 133 360
134 120 135 240 136 300 137 120 138 120 139 120 140 60
141 360 142 120 143 120 144 120 145 60 146 120 147 300
148 240 149 120 150 120 151 360 152 240 153 240 154 120
155 120 156 120 157 120 158 120 159 120 160 120 161 120
162 120 163 240 164 120 165 480 166 120 167 240 168 240
169 120 170 240 171 120 172 120 173 240 174 120 175 120
176 120 177 240 178 120 179 120 180 120 181 240 182 120
183 120 184 120 185 240 186 120 187 120 188 120 189 120
190 120 191 120 192 120 193 120 194 120 195 120 196 120
197 120 198 120 199 120 200 120 201 120 202 120 203 120
204 120 205 120 206 120 207 120 208 120 209 120 210 60
211 360 212 120 213 120 214 120 215 120 216 24 217 120
218 120 219 120 220 120 221 120 222 240 223 120 224 24
225 6

In reference to Question 1 above, in Section 2 below, we will prove the following two results.

Theorem 1. Suppose n, k ≥ 1 and H = (V, E) is a complete k-hypergraph on n vertices. If k is odd and
gcd(n, k) = 1, then there exists a choice function, C, on E resulting in a zero-edge domination graph.

Theorem 2. If (H, C) is a choice-hypergraph with a zero-edge domination graph, then for all v ∈ V:

|{e ∈ E : C(e) = v}| = 1
n
·
(

n
k

)
(5)

that is, each vertex is chosen for an equal number of edges, in E.

The question of minimal edges in associated domination graphs may be of interest in instances
where notions of “fairness” and equitable distribution are of importance, such as in resource
allocation, decision theory, data and network processing, and clinical trials. Fairness and choice
have been considered in the past, notably in the context of social welfare and information processing.
The interested reader might like to consult, for instance [2–4,9–13].

Figure 5 provides an example of a (9, 5) choice-hypergraph with vertex set V = {1, 2, . . . , 9},
possessing a zero edge domination graph (employing the construction in the proof of Theorem 1).
Note that |E| = (9

5) = 126, and τ(1, 2) = 8 = τ(2, 1) (as highlighted in red; C(e) for e ∈ E satisfying
{1, 2} ∈ e are indicated in bold). It may also be verified that |{e ∈ E : C(e) = 1}| = 126/9 = 14,
as required by Theorem 2.
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Figure 5. A (9,5)-choice hypergraph resulting in a zero-edge domination graph. For a given e ∈ E,
the value of C(e) is listed to the right of the five elements of e in a demarcated column.

Before turning to the proofs of Theorems 1 and 2, we will briefly mention some recent related
work on hypertournaments, which carry over to choice-hypergraphs. Recall that a k-hypertournament
is a complete k-hypergraph H = (V, E), with each edge endowed with an orientation. We will refer to
the oriented edges as arcs.

One concept considered extensively in the literature is score sequences (see for instance [6,7,14–18]).
In particular, for a given 1 ≤ i ≤ n define the score, si of a vertex vi of a k-hypertournament on
H = (V, E) as the number of arcs containing vi in which vi is not the last element (this is with a
complete orientation on the edges, rather than a choice function solely selecting a single element).
Similarly, define the losing score, ri as the number of arcs containing vi in which vi is the last element.
The total score, ti, is then given by ti = si − ri. Finally, we obtain the score sequences (s1, . . . , sn),
(r1, . . . , rn) and (t1, . . . , tn). Guofei et al. proved the following results regarding the existence of score
sequences (see also [16,19]).

Theorem 3. (Guofei et al. [14]) Given two non-negative integers n and k with n ≥ k > 1, a non-decreasing
sequence R = (r1, r2, . . . , rn) of non-negative integers is a losing score sequence of some k-hypertournament if
and only if for each j (k ≤ j ≤ n):

j

∑
i=1

ri ≥
(

j
k

)
, (6)

with equality when j = n.

Theorem 4. (Guofei et al. [14]) Given two non-negative integers n and k with n ≥ k > 1, a non-decreasing
sequence S = (s1, s2, . . . , sn) of non-negative integers is a score-sequence of some k-hypertournament if and
only if for each j (k ≤ j ≤ n):

j

∑
i=1

si ≥ j
(

n− 1
k− 1

)
+

(
n− j

k

)
−
(

n
k

)
, (7)
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with equality when j = n.

A k-hypertournament is said to be regular if for each vertex, v, the tally of arcs containing v as the
last element is (n

k)/n. Koh and Ree [16] proved the following.

Theorem 5. (Koh and Ree, [16]) A regular (n, k) hypertournament exists if and only if n|(n
k).

For alternative considerations of regularity, see [8,20].
Compare Theorem 5 with Theorems 1 and 2, above. Note that symmetry in domination

(i.e., the existence of choice functions resulting in zero-edge domination graphs) is a stronger requirement
than regularity. To see this, simply note that all standard tournaments have (n

k)-edge domination graphs.
For further work on hypertournaments or score sequences, see for instance Pirizda et al. [15],

Landau [18], Marshall [8], Khan et al. [6], Guofei et al. [14], Gunderson et al. [21], Li et al. [22], Guo and
Surmacs [23], and Chou and Guofei [24].

In the next section, we prove Theorems 1 and 2.

2. Proof of Theorems 1 and 2

Before moving on to the proofs of Theorems 1 and 2, we introduce some preliminary notation.
First, suppose n ≥ k ≥ 1 are fixed and (H, C) is an (n, k)-hypergraph with choice, where H = (V, E) is a
complete k-hypergraph on n vertices. Without loss of generality, we assume that V = {0, 1, . . . , n− 1}.
Similar to in [16], define the rotation operator P : E → E, via P(e) = e + 1 (mod n), i.e., P acts
on k-subsets of V by shifting the elements (cyclically) to the right by one. Here, e + 1 indicates
{v + 1 : v ∈ e}.g For e ∈ E and j ≥ 0, define Pj as the j-fold iteration of P and the order of e, αe, via:

αe
de f
= min{γ ≥ 1 : Pγ(e) = e}. (8)

We will denote the set of equivalence classes under successive application of P by R =

{R1, . . . , Rq}. Note that for R ∈ R, |R| is the order of each e ∈ R. We will refer to elements of
R as rotation classes of H.

In general, addition of the form S + c for S ⊆ Z and c ∈ Z, will be modulo n, unless stated otherwise.
The set e ∈ E is said to be symmetric if −e = e (mod n), and more generally R ∈ R is symmetric

if, for all e ∈ R, −e ∈ R. Note that if for some e ∈ R, e = −e, then for 1 ≤ i ≤ n, −(e + i) = −e− i =
e− i ∈ R, and hence if e ∈ R is symmetric, then R is symmetric. If R is not symmetric, then there exists
an R′ ∈ R \ R such that e ∈ R implies −e ∈ R′.

Let Hn,k be the set of all (n, k)-choice hypergraphs for fixed n, k ∈ Z+ and Gn be the set of
all directed graphs on n vertices. Suppose a domination scheme, D is fixed (see (i)–(iii), above,
for examples) and define GD : Hn,k → Gn, where GD(T) is the domination graph for choice-hypergraph
T = (H, C) under domination scheme D.

We have the following elementary lemma:

Lemma 1. Suppose H is a k-hypertournament on n vertices with gcd(n, k) = 1. Then, for any R ∈ R,
|R| = n.

Proof. Suppose gcd(n, k) = 1, andR = {R1, R2, . . . , Rq} for some q ≥ 1. For any R ∈ R and any e ∈ R,
set α = αe and represent e as a binary vector ζ = (ζ1, ζ2, . . . , ζn). We then have, with a = ∑1≤i≤α ζi and
b = n/α:

k = ba, n = bα. (9)

Now, suppose n = αp + r, with p ≥ 0 and 0 ≤ r ≤ α− 1. Then:

e = Pα(p+1)(e) = Pn−r+α(e) = Pα−r(e). (10)
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Since α is minimal, we have r = 0 and hence b = n/α ∈ Z. Thus, since gcd(n, k) = 1, (9) gives
that b = 1, α = n and finally |R| = n.

For convenience of notation, as in (1), define the function τR : V ×V → Z+ via:

τR(v, w) = |{e ∈ R : v, w ∈ e and C(e) = v}|, (11)

i.e., τR(v, w) is the number of edges in the rotation class R ∈ R for which v is chosen in the presence of
w. Note that

τ(v, w) = ∑
R∈R

τR(v, w). (12)

Lemma 2. Suppose n, k ≥ 1 with k odd, H = (V, E) is a complete k-hypergraph on n vertices, and R ∈ R.
If R is symmetric and e ∈ R, then there exists a ξ ∈ V and T = {δ1, δ2, . . . , δk}, such that e = ξ + T , and
δ ∈ T implies −δ ∈ T .

Proof. Suppose that R is symmetric and e = {x1, . . . , xk} ∈ R. Then, there exists an i such that
e + i = −e, and hence a permutation (j1, j2, . . . , jk) of (1, 2, . . . , k) such that:

xjq + i = −xq, 1 ≤ q ≤ k. (13)

Since k is odd, there exists a Q such that:

xQ + i = −xQ, (14)

and taking differences, (13) and (14) imply:

xjq − xQ = xQ − xq = −(xq − xQ), 1 ≤ q ≤ k. (15)

The result follows upon setting ξ = xQ, and T = {xq − xQ : 1 ≤ q ≤ k}.

We will now prove Theorem 1 regarding the existence of choice functions with symmetry
in domination.

Proof of Theorem 1. Suppose gcd(n, k) = 1, k is odd, and (H, C) is an (n, k)-choice hypergraph.
Consider E, the set of all edges in H, and letR = {R1, R2, . . . , Rq} be the set of all rotation classes of
H, where, by Lemma 1, for R ∈ R, |R| = n, and |R| = (n

k)/n. Fix v, w ∈ V, with v 6= w, and choose
some R ∈ R.

Suppose R is symmetric and fix an e ∈ R. Then, by Lemma 2, e = ξ + T , where ξ ∈ V and T is
closed under additive inverses. For u = e + i ∈ R, set C(u) = ξ + i. Suppose v = ξ + jv and w = ξ + jw
for jv, jw ∈ {0, 1, ..., n− 1}. For f ∈ R, C( f ) = v implies f = e + jv and C( f ) = w implies f = e + jw.
Note that w ∈ e + jv if and only if jw − jv ∈ T . Similarly, v ∈ e + jw if and only if jv − jw ∈ T . Since T
is closed under inverses, we have:

τR(v, w) = |{e ∈ R : v, w ∈ e and C(e) = v}|
= |{e ∈ R : v, w ∈ e and C(e) = w}|
= τR(w, v). (16)

Suppose R is not symmetric, and consider R′ = {−e : e ∈ R}, and note that R ∩ R′ = ∅. Fix an
e ∈ R and ξ ∈ e, and write e = ξ + T (note that T is not closed under inverses). For f ∈ R ∪ R′, set:
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C( f ) =

{
ξ + i if f = e + i = ξ + i + T ∈ R
−ξ + i if f = −e + i = −ξ + i− T ∈ R′.

(17)

Now, suppose v = ξ + jv and w = ξ + jw. For f ∈ R ∪ R′, C( f ) = v implies f = e + jv or
f = −e + jv, and C( f ) = w implies f = e + jw or f = −e + jw. Note that w ∈ e + jv if and only if
jw − jv ∈ T , and w ∈ −e + jv if and only if jw − jv ∈ −T (i.e., jv − jw ∈ T ). Similarly, v ∈ e + jw if and
only if jv − jw ∈ T , and v ∈ −e + jw if and only if jv − jw ∈ −T (i.e., jw − jv ∈ −T ). Thus:

τR∪R′(v, w) = |{ f ∈ R ∪ R′ : v, w ∈ f and C( f ) = v}|
= |{ f ∈ R ∪ R′ : v, w ∈ f and C( f ) = w}|
= τR∪R′(w, v). (18)

Employing (16), (18) and (12), the result follows.

We will now prove Theorem 2.

Proof of Theorem 2. Suppose (H, C) is a choice-hypergraph with a zero-edge domination graph,
where H = (V, E) is a complete k-hypergraph on n vertices. For a fixed vertex v ∈ V, define
σv = {e ∈ E : v ∈ e} and ωv = {e ∈ σv : C(e) = v}, i.e., σv is the set of edges to which v
belongs and ωv is the set of edges for which v is selected. Note that:

|ωv| ≤ |σv| =
(

n− 1
k− 1

)
. (19)

Assume |ωv| < (n
k)/n. Since (H, C) has a zero-edge domination graph, τ(w, v) = τ(v, w) for all

w ∈ V and hence: (
n− 1
k− 1

)
= |σv| = (k− 1)|ωv|+ |ωv| (20)

< k
1
n

(
n
k

)
=

(
n− 1
k− 1

)
. (21)

Thus, |ωv| ≥ (n
k)/n for all v ∈ V. The result follows upon noting that:

∑
v∈V

ωv = |E| =
(

n
k

)
. (22)

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/9/3/46/s1,
File S1: Plots of the 225 distinct non-isomorphic (5,3) domination graphs. File S2: Plots of the 21 distinct strongly
connected, non-isomorphic (5,3) domination graphs
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