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Abstract: Extended hesitant fuzzy sets (EHFSs), which allow the membership degree of an element
to a set represented by several possible value-groups, can be considered as a powerful tool to express
uncertain information in the process of group decision making. Therefore, we derive some correlation
coefficients between EHFSs, which contain two cases, the correlation coefficients taking into account
the length of extended hesitant fuzzy elements (EHFEs) and the correlation coefficients without taking
into account the length of EHFEs, as a new extension of existing correlation coefficients for hesitant
fuzzy sets (HFSs) and apply them to decision making under extended hesitant fuzzy environments.
A real-world example based on the energy policy problem is employed to illustrate the actual need
for dealing with the difference of evaluation information provided by different experts without
information loss in decision making processes.
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1. Introduction

When people make a decision, they are usually hesitant and irresolute for one thing or another,
which makes it difficult to reach a final agreement, that is there usually exists a hesitation or uncertainty
about the degree of sureness about the final decision. Torra et al. [1,2] proposed the hesitant fuzzy
set, which permits the membership to have a set of possible values, and discussed the relationship
between hesitant fuzzy sets and Atanassov’s intuitionistic fuzzy sets [3]. The hesitant fuzzy set is a very
useful tool to deal with uncertainty; more and more decision making theories and methods under the
hesitant fuzzy environment have been developed since its appearance. Yi [4] gave some properties
of operations and algebraic structures of hesitant fuzzy sets. Xia and Xu [5] proposed hesitant fuzzy
information aggregation techniques and their application in decision making. Then, Xu and Xia [6]
introduced a variety of distance measures for hesitant fuzzy sets and their corresponding similarity
measures. Meanwhile, Xu and Xia [7] defined the distance and correlation measures for hesitant fuzzy
information and then discussed their properties in detail. Xu et al. [8] developed some hesitant fuzzy
aggregation operators with the aid of quasi-arithmetic means and applied them to group decision
making problems. Gu et al. [9] investigated a evaluation model for risk investment with hesitant fuzzy
information; they utilized the hesitant fuzzy weighted averaging operator to aggregate the hesitant
fuzzy information corresponding to each alternative and then ranked the alternatives and selected
the most desirable one(s) according to the score function for hesitant fuzzy sets. Wei [10] developed
some prioritized aggregation operators to aggregate hesitant fuzzy information and then applied
them to hesitant fuzzy multiple attribute decision making problems, in which the attributes are at
different priority levels. Alcantud et al. [11] introduced a novel methodology for ranking hesitant
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fuzzy sets and built on a recent, theoretically-sound contribution in social choice. Chen et al. [12]
proposed some correlation coefficient formulas for hesitant fuzzy sets and applied them to clustering
analysis under hesitant fuzzy environments. Additionally, a position and perspective analysis of
hesitant fuzzy sets [13] is given to show the important role of hesitant fuzzy sets on information fusion
in decision making.

However, hesitant fuzzy sets have some drawbacks. if the two decision makers (DMs) both assign
the same value, we can only save one value by the hesitant fuzzy element and lose the other one, which
appears to be an information loss problem of HFSs. Further, since generally the DMs have different
importance in group decision making [14,15] due to their different social importance, position in the
group, previous merits, etc., for example, the loss of information provided by the leading DM may
lead to ineffective results.

To resolve the information loss problem, Zhu and Xu [16] introduced the definition of EHFS,
which is an extension of the hesitant fuzzy set [1,2]. EHFSs can better deal with the situations that
permit the membership of an element to a given set having value-groups, which can avoid giving
DMs’ preferences anonymously that cause information loss. EHFSs increase the richness of numerical
representation based on the value-groups, enhance the modeling abilities of HFSs and can identify
different DMs in decision making, which expand the applications of HFSs in practice.

Correlation is one of the most broadly applied indices in many fields and also an important
measure in data analysis and classification, pattern recognition, decision making, and so on [17–23].
As many real-world data may be fuzzy, the concept of correlation has been extended to fuzzy
environments [21,24–26] and intuitionistic fuzzy environments [27–33]. For instance, Gerstenkorn and
Manko [27] introduced the correlation coefficients of intuitionistic fuzzy sets. Hong and Hwang [26]
also defined them in probability spaces. Mitchell [31] derived the correlation coefficient of intuitionistic
fuzzy sets by interpreting an intuitionistic fuzzy set as an ensemble of ordinary fuzzy sets. Hung
proposed a method to calculate the correlation coefficients of intuitionistic fuzzy sets by means of
the centroid. Because of the potential applications of correlation coefficients, they have been further
extended by Bustince and Burillo [32] and Hong [33] for interval-valued intuitionistic fuzzy sets.
Several new methods of deriving the correlation coefficients for both intuitionistic fuzzy sets and
interval-valued intuitionistic fuzzy sets have also been proposed in [18]. In 2013, Chen et al. [12]
proposed correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis.
Thus, we urgently need to put forward the correlation coefficients of EHFSs to deal with these problems.
In this paper, we further introduce the correlation of EHFSs, which is a new extension of the correlation
of hesitant fuzzy sets and intuitionistic fuzzy sets. Then, we utilize the weighted correlation coefficient
to solve extended hesitant fuzzy group decision making problems in which attribute values take the
form of extended hesitant fuzzy elements.

The remainder of the paper is organized as follows: In Section 2, we review some basic notions of
hesitant fuzzy sets and EHFSs; the correlation coefficients between hesitant fuzzy sets are given as
a basis of the main body of the paper in the next section. In Section 3, we propose some correlation
coefficients between EHFSs, which contain two cases: the correlation coefficients taking into account
the length of EHFEs and the correlation coefficients without taking into account the length of EHFEs.
In Section 4, we present methods to deal with group decision making based on extended hesitant
fuzzy information, and an example is given to show the actual need for dealing with the difference
of evaluation information provided by different experts without information loss in decision making
processes. Finally, in Section 5, some conclusions are given.
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2. Preliminaries

In this section, we carry out a brief introduction to EHFSs and correlation coefficients of HFSs as
a basis of the main body of the paper.

2.1. Several Basic Concepts about HFSs and EHFSs

Torra et al. [1,2] firstly proposed the concept of a hesitant fuzzy set, which is defined as follows:

Definition 1. Let X be a fixed set; a hesitant fuzzy set A on X is defined in terms of a function hA that
when applied to X returns to a finite subset of [0,1], which can be represented as the following mathematical
symbol [1,2]:

A = {< x, hA(x) > |x ∈ X|}, (1)

where hA(x) is a set of some different values of [0,1], denoting the possible membership degrees of the element
x ∈ X to A. For convenience, we call hA(x) a hesitant fuzzy element denoted by h.

Zhu et al. [16] defined an EHFS, which is an extension of the hesitant fuzzy set, in terms of
a function that returns a finite set of membership value-groups.

Definition 2. Let X be a fixed set, hD(x) =
⋃

γD∈hD(x){γD} (D = 1, ..., m) be HFSs on X. Then,
an EHFS,that is HhD , is defined as [16]:

HhD (x) = h1(x)× ...× hm(x) =
⋃

γ1∈h1(x),γ2∈h2(x),...,γm∈hm(x)

{< x, (γ1(x), ..., γm(x)) > |x ∈ X}. (2)

For convenience, we call:

H = h1×, ...,×hm =
⋃

γ1∈h1(x),γ2∈h2(x),...,γm∈hm(x)

{(γ1, ..., γm)} (3)

an extended hesitant fuzzy element (EHFE) and let u = (γ1, ..., γm); then, we call u a membership unit
(MU), Based on u, an EHFE H, can also be indicated by:

H =
⋃

u∈hm(x)

{u} =
⋃

γ1∈h1(x),γ2∈h2(x),...,γm∈hm(x)

{(γ1, ..., γm)}. (4)

From Definition 2, we can see that EHFS increases the richness of numerical representation
based on the value-groups, enhances the modeling abilities of hesitant fuzzy sets and can identify
different decision makers in decision making processes, which expand the applications of hesitant
fuzzy sets in practice. HFSs can be used to construct EHFSs. On the contrary, EHFSs can reduce to
HFSs. The existing sets, including fuzzy sets, intuitionistic fuzzy sets, fuzzy multisets, type-2 fuzzy
sets, dual hesitant fuzzy sets and especially hesitant fuzzy sets, can handle a more exemplary and
flexible access to assign values for each element in the domain.

Example 1. Let X = {x1, x2} be the reference set, H(x1) = {(0.2, 0.4), (0.2, 0.5), (0.3, 0.4), (0.3, 0.5)} and
H(x2) = {(0.1, 0.4), (0.1, 0.5)} be the EHFEs of xi (i = 1, 2) to a set A, respectively. Then H can be considered
as a EHFS, i.e.,

A = {< x1, {(0.2, 0.4), (0.2, 0.5), (0.3, 0.4), (0.3, 0.5)} >,< x2, {(0.1, 0.4), (0.1, 0.5)} >}.

To compare the EHFEs, Zhu et al. [16] gave the concepts of score function and deviation function:
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Definition 3. For an MU, u = (γ1, ..., γm), then we call s(u) = (1/]u)∑γ∈u γ the score function of u,
where ]u is the number of memberships in u. For any two MUs, u1 and u2, if s(u1) > s(u2), then u1 � u2;
if s(u1) = s(u2), then u1 ∼ u2, where “�” denotes “be superior to” and “∼” means “be indifferent to” [16].

Definition 4. For an MU, u = (γ1, ..., γm), let s(u) be the score function of u, then we call p(u) =

[(1/]u)∑γ∈u(γ − s(u))2]1/2 the deviation function of HFSs, where ]u is the number of memberships in
u [16].

Based on the score function and the deviation function, we develop the following comparison law.

Definition 5. Let u1 and u2 be two MUs, s(u1) and s(u2) the scores of u1 and u2, respectively, and p(u1) and
p(u2) the deviation degrees of u1 and u2, respectively, then [16]:

(1) if s(u1) < s(u2), then u1 ≺ u2;
(2) if s(u1) = s(u2), then

(1) if p(u1) = p(u2), then u1 is equivalent to u2, denoted by u1 ∼ u2;
(2) if p(u1) < p(u2), then u1 is superior to u2, denoted by u1 � u2;
(3) if p(u1) > p(u2), then u1 is superior to u2, denoted by u1 ≺ u2.

The comparison laws of fuzzy set theory [1,4,16,34] play an important role in decision making
problems, and the score function and accuracy function of EHFEs are the basis of the main body of the
next part.

2.2. Correlation Coefficient of Hesitant Fuzzy Sets

Correlation coefficients are an effective tool for addressing the relationship between elements
with uncertain information that have been deeply studied [21,24–27]. Chen et al. [12] introduced the
informational energy, correlation and correlation coefficients of hesitant fuzzy sets. For a hesitant
fuzzy element h, let σ : (1, 2, ..., n) → (1, 2, ..., n) be a permutation satisfying hσ(j) ≥ hσ(j+1) for
j = 1, 2, ..., n− 1 and hσ(j) be the j-th largest value in h; the informational energy of hesitant fuzzy sets
is given as follows:

Definition 6. Let A be a hesitant fuzzy set on a universe of discourse X = {x1, x2, ..., xn} denoted as
A = {< xi, hA(xi) > |xi ∈ X}. Then, the informational energy of A is defined as [12]:

EHFS(A) =
n

∑
i=1

(
1
li

li

∑
j=1

h2
Aσ(j)(xi)), (5)

where li = l(hA(xi)) represents the number of values in hA(xi), xi ∈ X.

Definition 7. Let A and B be two hesitant fuzzy sets on a universe of discourse X = {x1, x2, ..., xn} denoted as
A = {< xi, hA(xi) > |xi ∈ X} and B = {< xi, hB(xi) > |xi ∈ X}, respectively. Then, the correlation
between A and B is defined as [12]:

CHFS(A, B) =
n

∑
i=1

(
1
li

li

∑
j=1

hAσ(j)(xi)hBσ(j)(xi)), (6)

here, li = max{l(hA(xi)), l(hB(x))} for each xi in X, where l(hA(xi)) and l(hB(xi)) represent the number
of values in hA(xi) and hB(xi), respectively. When l(hA(xi)) 6= l(hB(xi)), one can make them have the
same number of elements through adding some values to the hesitant fuzzy element, which has less values.
According to the pessimistic principle, the smallest element will be added. Therefore, if l(hA(xi)) < l(hB(xi)),
hA(xi) should be extended by adding the minimum value in it until it has the same length as hB(xi).
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Definition 8. Let A and B be two hesitant fuzzy sets on a universe of discourse X = {x1, x2, ..., xn}, denoted as
A = {< xi, hA(xi) > |xi ∈ X} and B = {< xi, hB(xi) > |xi ∈ X}, respectively. Then, the correlation
coefficient between A and B is defined as [12]:

ρHFS(A, B) = CHFS(A,B)√
CHFS(A,A)

√
CHFS(B,B)

=
∑n

i=1(
1
li

∑
li
j=1 hAσ(j)(xi)hBσ(j)(xi))√

∑n
i=1(

1
li

∑
li
j=1 h2

Aσ(j)(xi))

√
∑n

i=1(
1
li

∑
li
j=1 h2

Bσ(j)(xi))
. (7)

Theorem 1. The correlation coefficient between two hesitant fuzzy sets A and B satisfies the following
properties [12]:

(1) ρHFS(A, B) = ρHFS(B, A);
(2) 0 ≤ ρHFS(A, B) ≤ 1;
(3) ρHFS(A, B) = 1, if A = B.

3. Correlation and Correlation Coefficients of EHFSs

The correlation and correlation coefficients of hesitant fuzzy sets were introduced by Chen et al. [12]
to solve practical decision making problems. In this section, we introduce the informational energy,
correlation and correlation coefficients of EHFSs as a new extension.

Let X = {x1, x2, ..., xn} be a discrete universe of discourse, A be a EHFS on X denoted as
A = {< xi,∪uA∈HA{uA(xi)} > |xi ∈ X}. The MUs of an EHFE are usually given in disorder, and for
convenience, we arrange them in a decreasing order. Based on Definitions 3–5, for a EHFE H, let σ :
(1, 2, .., n)→ (1, 2, ..., n) be a permutation satisfying uσ(i) � uσ(i+1), i = 1, 2..., n− 1 and Hσ(i) be the j-th
largest value in H. As is shown in Example 1, A = {< x1, {(0.2, 0.4), (0.2, 0.5), (0.3, 0.4), (0.3, 0.5)} >,<
x2, {(0.1, 0.4), (0.1, 0.5)} >}, so we obtain that EHFEs H(x1) = {(0.2, 0.4), (0.2, 0.5), (0.3, 0.4), (0.3, 0.5)}
and H(x2) = {(0.1, 0.4), (0.1, 0.5)}, according to Definitions 3–5, as s((0.2, 0.4)) = 0.3 � s((0.2, 0.5)) =
0.35 ∼ s((0.3, 0.4)) = 0.35 � s((0.3, 0.5)) = 0.4 and p((0.2, 0.5)) = 0.2121 � p((0.3, 0.4)) = 0.071,
then Hσ(x1) = {(0.3, 0.5), (0.3, 0.4), (0.2, 0.5), (0.2, 0.4)}; similarly, Hσ(x2) = {(0.1, 0.5), (0.1, 0.4)}.

It is noted that the number of values in different EHFEs may be different. To compute the
correlation coefficients between two EHFSs, let ]H = max{l(HA(xi)), l(HB(xi))} for each xi in X,
where l(HA(xi)) and l(HB(xi)) represent the number of MUs in HA(xi) and HB(xi), respectively.
When l(HA(xi)) 6= l(HB(xi)), one can make them have the same number of MUs through adding
some elements to the EHFE, which has less MUs. Similarly, ]u = max{l(u(xi)), u(xi))} for each xi in
X, where l(uA(xi)) and l(uB(xi)) represent the number of values in uA(xi) and uB(xi), respectively.
Motivated by the optimized parameter, Zhu et al. [16] gave the following definitions.

Definition 9. For a MU, u = (γ1, ..., γm}, let u− = min{γ|γ ∈ u} and u+ = max{γ|γ ∈ u} be the
minimum and maximum memberships in u, respectively, and ς(0 ≤ ς ≤ 1) be the optimized parameter, then we
call γ̃ = ςu+ + (1− ς)u− an added membership [16].

For two EFHFEs with different numbers of MUs, we further utilize the optimized parameter to
obtain an MU.

Definition 10. Given an EHFE, HhD =
⋃

γ1∈h1,...,γm∈hm{(γ1, ..., γm)} (D = 1, ..., m), let h−D and h+D be the
minimum and maximum memberships in hD, respectively, and ς(0 ≤ ς ≤ 1) be the optimized parameter,
then an added MU is defined as ũ = (γ̃1, ..., γ̃m), where γ̃ = ςu+ + (1− ς)u− (D = 1, ..., m) [16].

Similar to the existing works [12], we define the informational energy for EHFSs and the
corresponding correlation.
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Definition 11. Let A be an EHFS on a universe of discourse X = {x1, x2, ..., xn}, denoted as A = {<
xi,∪u∈H{u(xi)} > |xi ∈ X}. Then, the informational energy of A is defined as:

EEHFS1(A) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪γσ(k)(xi)∈uσ(j)(xi)
{(γσ(k)(xi))

2|uσ(j)(xi) ∈ H(xi)})), (8)

where ]H and ]u are the number of MUs in H and values in MU u, respectively, Ss is a function that indicates
a summation of all values in the set of uσ(j)(xi) in H(xi), γσ(k)(xi) is the k-th largest membership in u to
xi ∈ X and uσ(j)(xi) is the j-th largest MUs in H.

Definition 12. Let A and B be two EHFSs on a universe of discourse X = {x1, x2, ..., xn}, denoted as
A = {< xi,∪uA∈HA{uA(xi)} > |xi ∈ X} and B = {< xi,∪uB∈HB{uB(xi)} > |xi ∈ X}, respectively.
Then, the correlation between A and B is defined as:

CEHFS1(A, B) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

A (xi)γ
σ(k)
B (xi)|u

σ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)})),

(9)

here, ]H = ]HA = ]HB, ]u = ]uA = ]uB, Ss is a function that indicates a summation of all values in the
set of uσ(j)(xi) in H(xi), γ

σ(k)
A (xi) and γ

σ(k)
B (xi) are the k-th largest memberships in uA and uB, respectively,

and uσ(j)
A (xi) and uσ(j)

B (xi) are the j-th largest MUs in HA and HB, respectively.

It is obvious that the correlation of two EHFSs satisfies the following properties:

(1) CEHFS1(A, A) = EEHFS1(A);
(2) CEHFS1(A, B) = CEHFS1(B, A).

Definition 13. Let A and B be two EHFSs on a universe of discourse X = {x1, x2, ..., xn}, denoted as
A = {< xi,∪uA∈HA{uA(xi)} > |xi ∈ X} and B = {< xi,∪uB∈HB{uB(xi)} > |xi ∈ X}, respectively.
Then, the correlation coefficient between A and B is defined as:

ρEHFS1(A, B) =
CEHFS1(A, B)√

CEHFS1(A, A)
√

CEHFS1(B, B)
, (10)

where:

CEHFS1(A, B) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

A (xi)γ
σ(k)
B (xi)|u

σ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)})),

CEHFS1(A, A) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)})),

CEHFS1(B, B) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

B (xi))
2|uσ(j)

B (xi) ∈ HB(xi)})).
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Theorem 2. The correlation coefficient between two EHFSs A and B satisfies the following properties:

(1) ρEHFS1(A, B) = ρEHFS1(B, A);
(2) 0 ≤ ρEHFS1(A, B) ≤ 1;
(3) ρEHFS1(A, B) = 1, if A = B.

Proof.

(1) It is straightforward.
(2) The inequality ρEHFS1(A, B) ≥ 0 is obvious. Below, let us prove ρEHFS1(A, B) ≤ 1:

CEHFS1 (A, B)

=
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

A (xi)γ
σ(k)
B (xi)|u

σ(j)
A (xi) ∈ HA(xi), uσ(j)

B (xi) ∈ HB(xi)}))

=
1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (x1)∈uσ(j)

A ,γσ(k)
B (x1)∈uσ(j)

B (x1)
{γσ(k)

A (x1)γ
σ(k)
B (x1)|u

σ(j)
A (x1) ∈ HA(x1), uσ(j)

B (x1) ∈ HB(x1)}))+

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (x2)∈uσ(j)

A ,γσ(k)
B (x2)∈uσ(j)

B (x2)
{γσ(k)

A (x2)γ
σ(k)
B (x2)|u

σ(j)
A (x2) ∈ HA(x2), uσ(j)

B (x2) ∈ HB(x2)})) + ...+

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xn)∈uσ(j)

A ,γσ(k)
B (xn)∈uσ(j)

B (xn)
{γσ(k)

A (xn)γ
σ(k)
B (xn)|uσ(j)

A (xn) ∈ HA(xn), uσ(j)
B (xn) ∈ HB(xn)}))

=
]H

∑
j=1

1
]u Ss(∑

]u
k=1(∪γ

σ(k)
A (x1)∈uσ(j)

A
{γσ(k)

A (x1)|u
σ(j)
A (x1) ∈ HA(x1)}))

√
]H

·

1
]u Ss(∑

]u
k=1(∪γ

σ(k)
B (x1)∈uσ(j)

B (x1)
{γσ(k)

B (x1)|u
σ(j)
B (x1) ∈ HB(x1)}))

√
]H

+

]H

∑
j=1

1
]u Ss(∑

]u
k=1(∪γ

σ(k)
A (x2)∈uσ(j)

A
{γσ(k)

A (x2)|u
σ(j)
A (x2) ∈ HA(x2)}))

√
]H

·

1
]u Ss(∑

]u
k=1(∪γ

σ(k)
B (x2)∈uσ(j)

B (x2)
{γσ(k)

B (x2)|u
σ(j)
B (x2) ∈ HB(x2)}))

√
]H

+ ...+

]H

∑
j=1

1
]u Ss(∑

]u
k=1(∪γ

σ(k)
A (xn)∈uσ(j)

A
{γσ(j)

A (xn)|uσ(j)
A (xn) ∈ HA(xn)}))

√
]H

·

1
]u Ss(∑

]u
k=1(∪γ

σ(k)
B (xn)∈uσ(j)

B (xn)
{γσ(k)

B (xn)|uσ(j)
B (xn) ∈ HB(xn)}))

√
]H

,

using the Cauchy–Schwarz inequality:

(x1y1 + x2y2, ..., xnyn)2 ≤ (x2
1 + x2

2+, ..., x2
n)(y2

1 + y2
2+, ..., y2

n),

where (x1, x2, ..., xn) ∈ Rn, (y1, y2, ..., yn) ∈ Rn; we obtain:
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(CEHFS1(A, B))2

≤ [
1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (x1)∈uσ(j)

A (x1)
{(γσ(k)

A (x1))
2|uσ(j)

A (x1) ∈ HA(x1)}))+

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (x2)∈uσ(j)

A (x2)
{(γσ(k)

A (x2))
2|uσ(j)

A (x2) ∈ HA(x2)})) + ...,+

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xn)∈uσ(j)

A (xn)
{(γσ(k)

A (xn))
2|uσ(j)

A (xi) ∈ HA(xn)}))]

× [
1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
B (x1)∈uσ(j)

B (x1)
{(γσ(k)

B (x1))
2|uσ(j)

B (x1) ∈ HB(x1)}))+

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
B (x2)∈uσ(j)

B (x2)
{(γσ(k)

B (x2))
2|uσ(j)

B (x2) ∈ HB(x2)})) + ...,+

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
B (xn)∈uσ(j)

B (xn)
{(γσ(k)

B (xn))
2|uσ(j)

B (xi) ∈ HB(xn)}))]

= [
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)}))]×

[
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

B (xi))
2|uσ(j)

B (xi) ∈ HB(xi)}))]

= CEHFS1(A, A) · CEHFS1(B, B).

Therefore,

CEHFS1(A, B) ≤
√

CEHFS1(A, A) ·
√

CEHFS1(B, B).

Therefore, 0 ≤ ρEHFS1(A, B) ≤ 1.
(3) A = B⇒ γ

σ(j)
A (xi) = γ

σ(j)
B (xi), xi ∈ X ⇒ ρEHFS1(A, B) = 1.

Based on the concepts of HFSs, EHFSs and their informational energies, the correlations and the
correlation coefficients, we can easily obtain the following remark:

Remark 1. If EHFSs reduce to HFSs, the informational energy, the correlation and the correlation coefficient
about EHFSs will reduce to the informational energy, the correlation and the correlation coefficient about
HFSs, respectively.

In what follows, we give a new formula of calculating the correlation coefficient, which is similar
to that used in HFSs [12]:

Definition 14. Let A and B be two EHFSs on a universe of discourse X = {x1, x2, ..., xn}, denoted as
A = {< xi,∪uA∈HA{uA(xi)} > |xi ∈ X} and B = {< xi,∪uB∈HB{uB(xi)} > |xi ∈ X}, respectively.
Then, the correlation coefficient between A and B is defined as:

ρEHFS2(A, B) =
CEHFS1(A, B)

max{CEHFS1(A, A), CEHFS1(B, B)} . (11)

Theorem 3. The correlation coefficient of two EHFSs A and B, ρEHFS2(A, B), follows the same properties
listed in Theorem 2.
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Proof.
The process to prove Properties (1) and (3) is analogous to that in Theorem 2; we do not repeat

it here.
(2) ρEHFS2(A, B) ≥ 0 is obvious. We now only prove ρEHFS2(A, B) ≤ 1.
Based on the proof process of Theorem 2, we have

CEHFS1(A, B) ≤
√

CEHFS1(A, A) ·
√

CEHFS1(B, B),
and then

CEHFS1(A, B) ≤ max{CEHFS1(A, A), CEHFS1(B, B)};
thus, ρEHFS2(A, B) ≤ 1.

Example 2. Let A and B be two EHFSs in X = {x1, x2}, and
A = {< x1, {(0.3, 0.4, 0.5), (0.3, 0.4, 0.6)},< x2, {(0.4, 0.3, 0.2), (0.4, 0.3, 0.1), (0.4, 0.3, 0.5)} >},
B = {< x1, {(0.1, 0.2, 0.5)},< x2, {(0.4, 0.4, 0.2), (0.4, 0.4, 0.1)} >}.

By applying Equation (9), we calculate:

CEHFS1 (A, A) = EEHFS1 (A) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)}))

=
1
2
[
1
3
(0.32 + 0.42 + 0.52) +

1
3
(0.32 + 0.42 + 0.62)] +

1
3
[
1
3
(0.42 + 0.32 + 0.22)

+
1
3
(0.42 + 0.32 + 0.12) +

1
3
(0.52 + 0.32 + 0.42)]

= 0.3017,

and similarly:

CEHFS1 (B, B) = EEHFS1 (B) =
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

B (xi))
2|uσ(j)

B (xi) ∈ HB(xi)}))

=
1
2
[
1
3
(0.12 + 0.22 + 0.52)× 2] +

1
3
[
1
3
(0.42 + 0.42 + 0.22) +

1
3
(0.42 + 0.42 + 0.12)

+
1
3
(0.42 + 0.42 + 0.152)]

= 0.2147.

With ς = 0.5, we obtain:

CEHFS1 (A, B)

=
n

∑
i=1

1
]H

1
]u

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

A (xi)γ
σ(k)
B (xi)|u

σ(j)
A (xi) ∈ HA(xi), uσ(j)

B (xi) ∈ HB(xi)}))

=
1
2
[
1
3
(0.5× 0.5 + 0.4× 0.2 + 0.3× 0.1) +

1
3
(0.6× 0.5 + 0.4× 0.2 + 0.3× 0.1)]

+
1
3
[
1
3
(0.4× 0.4 + 0.3× 0.4 + 0.5× 0.2) +

1
3
(0.4× 0.4 + 0.3× 0.4 + 0.2× 0.15)

+
1
3
(0.4× 0.4 + 0.3× 0.4 + 0.2× 0.1)]

= 0.2372.

Finally, we can calculate the correlation coefficient ρEHFS1(A, B) as:

ρEHFS1(A, B) = CEHFS(A,B)√
CEHFS(A,A)

√
CEHFS(B,B)

= 0.2372√
0.3017

√
0.2147

= 0.9320,

and similarly, we can calculate the correlation coefficient ρEHFS2(A, B) as:

ρEHFS2(A, B) = CEHFS(A,B)
max{CEHFS(A,A),CEHFS(B,B)} =

0.2372
0.3017 = 0.7862.

From Example 2, we can find that different results are obtained by extending different values in
the short EHFE, so we present several new correlation coefficients of EHFSs, not taking into account
the length of EHFEs and the arrangement of their possible value-groups.
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Definition 15. Let HA and HB be any two MUs with uA ∈ HA, then:

d(uA, HB) = minuB∈HB ∑
γ

σ(i)
A ∈uA ,γσ(i)

B ∈uB

|γσ(i)
A − γ

σ(i)
B | (12)

is called the distance between the value uA in HA and the EHFE HB; by uB′ , we denote the value in HB
such that d(uA, HB). If there is more that one value in HB such that d(uA, HB), then uB′ = min{uB|uB ∈
HB, ∑

γ
σ(i)
A ∈uA ,γσ(i)

B ∈uA
|γσ(i)

A − γ
σ(i)
B |} = d(uA, HB). For convenience, uB′ = {γB′} and uA′ = {γA′}.

It is obvious that the above distance d(uA, HB) satisfies the following properties:

(1) d(uA, HB) = d(HB, uA);
(2) 0 ≤ d(uA, HB) ≤ 1;
(3) d(uA, HB) = 0 if and only if uA = uB for any uB ∈ HB, where uA = uB means γ

σ(i)
A = γ

σ(i)
B ,

γ
σ(i)
A ∈ uA, γ

σ(i)
B ∈ uA.

Definition 16. Let A and B be two EHFSs on a universe of discourse X = {x1, x2, ..., xn}, denoted as
A = {< xi,∪uA∈HA{uA(xi)} > |xi ∈ X} and B = {< xi,∪uB∈HB{uB(xi)} > |xi ∈ X}, respectively.
Then, the correlation between A and B is defined as:

CEHFS2(A, B) =
n

∑
i=1

(
1

]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γA(xi)

σ(k)(xi)∈uσ(j)
A (xi)

{γσ(k)
A (xi)γ

σ(k)
B′ (xi)|u

σ(j)
A (xi)

∈ HA(xi)})) +
1

]HB(xi)

1
]uB(xi)

Ss(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

B (xi)γ
σ(k)
A′ (xi)|u

σ(j)
B (xi) ∈ HB(xi)}))),

where ]HA and ]HB are the numbers of extended hesitant fuzzy elements HA and HB, respectively. Additionally,
γ

σ(k)
A (xi), γ

σ(k)
A′ (xi), γ

σ(k)
B (xi) and γ

σ(k)
B′ (xi) are shown in Definition 15.

It is easy to prove that the above correlation CEHFS2(A, B) satisfies the following theorem:

Theorem 4. Let A and B be any two EHFSs in X; the correlation CEHFS2(A, B) satisfies:

(1) CEHFS2(A, B) = CEHFS2(B, A);
(2) CEHFS2(A, A) = 2EEHFS2(A) with EEHFS2(A) = ∑n

i=1
1

]HA(xi)
1

]uA(xi)
Ss

(∑
]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)})).

According to the correlation of EHFSs, the correlation coefficient of EHFSs is given as follows:

Definition 17. Let A and B be any two EHFSs in X; the correlation coefficient between A and B is defined as:

ρEHFS3(A, B) =
CEHFS2(A, B)√

EEHFS2(A)EEHFS2(BA) +
√

EEHFS2(B)EEHFS2(AB)
, (13)

where:

EEHFS2(A) = ∑n
i=1

1
]HA(xi)

1
]uA(xi)

Ss(∑
]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)})),

EEHFS2(B) = ∑n
i=1

1
]HB(xi)

1
]uB(xi)

Ss(∑
]HB(xi)
j=1 ∑

]uB(xi)
k=1 (∪

γ
σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

B (xi))
2|uσ(j)

B (xi) ∈ HB(xi)})),

EEHFS2(AB) = ∑n
i=1

1
]HA(xi)

1
]uA(xi)

Ss(∑
]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A′ (xi)∈uσ(j)

A (xi)
{(γσ(k)

A′ (xi))
2|uσ(j)

A (xi) ∈ HA(xi)})),
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EEHFS2(BA) = ∑n
i=1

1
]HB(xi)

1
]uB(xi)

Ss(∑
]HB(xi)
j=1 ∑

]uB(xi)
k=1 (∪

γ
σ(k)
B′ (xi)∈uσ(j)

B (xi)
{(γσ(k)

B′ (xi))
2|uσ(j)

B (xi) ∈ HB(xi)})).

Theorem 5. The correlation coefficient ρEHFS3(A, B) for any two EHFSs A and B in X satisfies:

(1) ρEHFS3(A, B) = ρEHFS3(B, A);
(2) 0 ≤ ρEHFS3(A, B) ≤ 1;
(3) ρEHFS3(A, B) = 1, if A = B.

Proof.

(1) It is straightforward.
(2) From Definition 17, it is apparent that ρEHFS3(A, B) ≥ 0. For ρEHFS3(A, B) ≤ 1, using the

Cauchy–Schwarz inequality:

(x1y1 + x2y2, ..., xnyn)2 ≤ (x2
1 + x2

2+, ..., x2
n)(y2

1 + y2
2+, ..., y2

n),

where (x1, x2, ..., xn) ∈ Rn, (y1, y2, ..., yn) ∈ Rn, we drive:

(
n

∑
i=1

(
1

]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{γσ(k)

A (xi)γ
σ(k)
B′ (xi)|u

σ(j)
A (xi) ∈ HA(xi)})))2

= (
1

]HA(x1)

1
]uA(x1)

Ss(
]HA(x1)

∑
j=1

]uA(x1)

∑
k=1

(∪
γ

σ(k)
A (x1)∈uσ(j)

A (x1)
{γσ(k)

A (x1)γ
σ(k)
B′ (x1)|u

σ(j)
A (x1) ∈ HA(x1)}))+

(
1

]HA(x2)

1
]uA(x2)

Ss(
]HA(x2)

∑
j=1

]uA(x2)

∑
k=1

(∪
γ

σ(k)
A (x2)∈uσ(j)

A (x2)
{γσ(k)

A (x2)γ
σ(k)
B′ (x2)|u

σ(j)
A (x2) ∈ HA(x2)})) + ...+

(
1

]HA(xn)

1
]uA(xn)

Ss(
]HA(xn)

∑
j=1

]uA(xn)

∑
k=1

(∪
γ

σ(k)
A (xn)∈uσ(j)

A (xn)
{γσ(k)

A (xn)γ
σ(k)
B′ (xn)|uσ(j)

A (xn) ∈ HA(xn)})))2

= (
1

]uA(x1)
Ss(

]HA(x1)

∑
j=1

]uA(x1)

∑
k=1

(∪
γ

σ(k)
A (x1)∈uσ(j)

A (x1)
{

γ
σ(k)
A (x1)√
]HA(x1)

γ
σ(k)
B′ (x1)√
]HA(x1)

|uσ(j)
A (x1) ∈ HA(x1)}))+

(
1

]uA(x2)
Ss(

]HA(x2)

∑
j=1

]uA(x2)

∑
k=1

(∪
γ

σ(k)
A (x2)∈uσ(j)

A (x2)
{

γ
σ(k)
A (x2)√
]HA(x2)

γ
σ(k)
B′ (x2)√
]HA(x2)

|uσ(j)
A (x2) ∈ HA(x2)})) + ...+

(
1

]uA(xn)
Ss(

]HA(xn)

∑
j=1

]uA(xn)

∑
k=1

(∪
γ

σ(k)
A (xn)∈uσ(j)

A (xn)
{

γ
σ(k)
A (xn)√
]HA(xn)

γ
σ(k)
B′ (xn)√
]HA(xn)

|uσ(j)
A (xn) ∈ HA(xn)})))2

≤ (
n

∑
i=1

1
]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)})))·

n

∑
i=1

1
]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A′ (xi)∈uσ(j)

A (xi)
{(γσ(k)

A′ (xi))
2|uσ(j)

A (xi) ∈ HA(xi)}))

= CEHFS1(A, A) · CEHFS1(B, B).

Namely,

∑n
i=1(

1
]HA(xi)

1
]uA(xi)

Ss(∑
]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A (xi)∈uσ(j)

A (xi)
{γσ(k)

A (xi)γ
σ(k)
B′ (xi)|u

σ(j)
A (xi) ∈

HA(xi)}))) ≤
√

EEHFS2(A)EEHFS2(BA).

Similarly, one can have

∑n
i=1(

1
]HB(xi)

1
]uB(xi)

Ss(∑
]HB(xi)
j=1 ∑

]uB(xi)
k=1 (∪

γ
σ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

B (xi)γ
σ(k)
A′ (xi)|u

σ(j)
B (xi) ∈

HB(xi)}))) ≤
√

EEHFS2(B)EEHFS2(AB).

Thus,
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CEHFS2(A, B) ≤
√

EEHFS2(A)EEHFS2(BA) +
√

EEHFS2(B)EEHFS2(AB)

The result is obtained.
(3) A = B ⇒ CEHFS2(A, B) = EEHFS2(A) = EEHFS2(BA) = EEHFS2(B) = EEHFS2(AB)⇒

ρWEHFS3(A, B) = 1.

Similar to the correlation coefficient of Definition 14, a modified form of the correlation coefficient
of EHFSs is defined by:

ρEHFS4(A, B) =
1
2
(

CEHFS3(A, B)√
EEHFS2(A)EEHFS2(BA)

+
CEHFS3(B, A)√

EEHFS2(B)EEHFS2(AB)
), (14)

where:

CEHFS3(A, B) = ∑n
i=1(

1
]HA(xi)

1
]uA(xi)

Ss(∑
]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A (xi)∈uσ(j)

A (xi)
{γσ(k)

A (xi)γ
σ(k)
B′ (xi)|u

σ(j)
A (xi) ∈ HA(xi)})),

CEHFS3(B, A) = ∑n
i=1(

1
]HB(xi)

1
]uB(xi)

Ss(∑
]HB(xi)
j=1 ∑

]uB(xi)
k=1 (∪

γ
σ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

B (xi)γ
σ(k)
A′ (xi)|u

σ(j)
B (xi) ∈ HB(xi)}))).

Theorem 6. The correlation coefficient ρEHFS4(A, B) for any two EHFSs A and B in X satisfies:

(1) ρEHFS4(A, B) = ρEHFS4(B, A);
(2) 0 ≤ ρEHFS4(A, B) ≤ 1;
(3) ρEHFS4(A, B) = 1, if A = B.

Proof. Similar to the proof of Theorem 2, we can easily obtain the conclusions.

Inspired by Definition 14, the correlation coefficients of EHFSs, for any two EHFSs A and B in X,
are defined as follows:

ρEHFS5(A, B) =
CEHFS2(A, B)

max{EEHFS2(A), EEHFS2(BA)}+ max{EEHFS2(B), EEHFS2(AB)}
, (15)

ρEHFS6(A, B) =
1
2
(

CEHFS3(A, B)
max{EEHFS2(A), EEHFS2(BA)}

+
CEHFS3(B, A)

max{EEHFS2(B), EEHFS2(AB)} ), (16)

Theorem 7. The correlation coefficients ρEHFSi (A, B) (i = 5, 6) for any two EHFSs A and B in X satisfies:

(1) ρEHFSi (A, B) = ρEHFSi (B, A);
(2) 0 ≤ ρEHFSi (A, B) ≤ 1;
(3) ρEHFSi (A, B) = 1, if A = B.

Proof. Similar to the proofs of Theorems 2 and 5, the conclusions obviously hold.

Example 3. Now, we calculate Example 2 by the new correlation coefficients ρEHFSi (A, B) (i = 3, 4, 5, 6)
without taking into account the length of EHFEs.

The calculation process is given as follows:

EEHFS2 (A) =
n

∑
i=1

1
]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

A (xi))
2|uσ(j)

A (xi) ∈ HA(xi)}))

=
1
2
[
1
3
(0.32 + 0.42 + 0.52) +

1
3
(0.32 + 0.42 + 0.62)] +

1
3
[
1
3
(0.42 + 0.32 + 0.22)

+
1
3
(0.42 + 0.32 + 0.12) +

1
3
(0.52 + 0.32 + 0.42)]

= 0.3017,
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EEHFS2 (B) =
n

∑
i=1

1
]HB(xi)

1
]uB(xi)

Ss(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

B (xi))
2|uσ(j)

B (xi) ∈ HB(xi)}))

=
1
3
(0.12 + 0.22 + 0.52) +

1
2
(

1
3
(0.42 + 0.42 + 0.22) +

1
3
(0.42 + 0.42 + 0.12)]

= 0.2150,

EEHFS2 (AB) =
n

∑
i=1

1
]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A′ (xi)∈uσ(j)

A (xi)
{(γσ(k)

A′ (xi))
2|uσ(j)

A (xi) ∈ HA(xi)})),

=
1
3
(0.32 + 0.42 + 0.52) +

1
2
(

1
3
(0.42 + 0.32 + 0.22) +

1
3
(0.42 + 0.32 + 0.12)]

= 0.2583,

EEHFS2 (BA) =
n

∑
i=1

1
]HB(xi)

1
]uB(xi)

Ss(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B′ (xi)∈uσ(j)

B (xi)
{(γσ(k)

B′ (xi))
2|uσ(j)

B (xi) ∈ HB(xi)}))

=
1
2
[
1
3
(0.12 + 0.22 + 0.52) +

1
3
(0.12 + 0.22 + 0.52)] +

1
3
[
1
3
(0.42 + 0.42 + 0.22)

+
1
3
(0.42 + 0.42 + 0.22) +

1
3
(0.42 + 0.42 + 0.12)]

= 0.2167,

CEHFS3 (A, B) =
n

∑
i=1

(
1

]HA(xi)

1
]uA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{γσ(k)

A (xi)γ
σ(k)
B′ (xi)|u

σ(j)
A (xi) ∈ HA(xi)}))

=
1
2
[
1
3
(0.3× 0.1 + 0.4× 0.2 + 0.5× 0.5) +

1
3
(0.3× 0.1 + 0.4× 0.2 + 0.6× 0.5)] +

1
3
[
1
3
(0.4× 0.4+

0.3× 0.4 + 0.2× 0.2) +
1
3
(0.4× 0.4 + 0.3× 0.4 + 0.1× 0.1) +

1
3
(0.5× 0.4 + 0.4× 0.4 + 0.4× 0.2)]

= 0.2450,

CEHFS3 (B, A) =
n

∑
i=1

(
1

]HB(xi)

1
]uB(xi)

Ss(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

B (xi)γ
σ(k)
A′ (xi)|u

σ(j)
B (xi) ∈ HB(xi)})))

=
1
3
(0.1× 0.3 + 0.2× 0.4 + 0.5× 0.5) +

1
2
(

1
3
(0.4× 0.4 + 0.4× 0.3 + 0.2× 0.2)+

1
3
(0.4× 0.4 + 0.4× 0.3 + 0.1× 0.1)]

= 0.2217,

CEHFS2(A, B) = CEHFS3(A, B) + CEHFS3(B, A) = 0.4667.

Finally, we can calculate the correlation coefficients:

ρEHFS3(A, B) =
CEHFS2 (A,B)√

EEHFS2 (A)EEHFS2 (BA)+
√

EEHFS2 (B)EEHFS2 (AB)
= 0.9498,

ρEHFS4(A, B) = 1
2 (

CEHFS3 (A,B)√
EEHFS2 (A)EEHFS2 (BA)

+
CEHFS3 (B,A)√

EEHFS2 (B)EEHFS2 (AB)
) = 0.8333,

ρEHFS5(A, B) =
CEHFS2 (A,B)

max{EEHFS2 (A),EEHFS2 (BA)}+max{EEHFS2 (B),EEHFS2 (AB)} = 0.9495,

ρEHFS6(A, B) = 1
2 (

CEHFS3 (A,B)
max{EEHFS2 (A),EEHFS2 (BA)} +

CEHFS3 (B,A)

max{EEHFS2 (B),EEHFS2 (AB)} ) = 0.8352.

To save all of the information provided by the DMs, distinguish them from each other and
consider their different importance in decision making, we now propose the weighted extended
hesitant correlation coefficients considering DMs as follows. Assume a decision making problem with
m DMs. For any MU, u = {γ1, γ2, ..., γm}, the weights of DMs are ωD(D = 1, 2, ..., m) with ωD ∈ [0, 1]
and ∑m

D=1 = 1. Let γωD = ωDγD be memberships associated with the DMs’ weights. On the other
hand, in practical applications, the elements xi (i = 1, 2, ..., n) in the universe X have different weights.
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Let w = (wi, w2, ..., wn)T be the weight vector of xi (i = 1, 2, ..., n) with wi ≥ 0, i = 1, 2, ..., n and
∑n

i=1 wi = 1, we further extend the correlation coefficient formulas given in Table 1.

Table 1. The correlation coefficients of EHFSs.

ρ of EHFSs Correlation Coefficient Formulas

ρWEHFS1 (Aω , Bω)
CWEHFS1 (Aω ,Bω)√

CWEHFS1 (Aω ,Aω)
√

CWEHFS1 (Bω ,Bω)

ρWEHFS2 (Aω , Bω)
CWEHFS1 (Aω ,Bω)

max{CWEHFS1 (Aω ,Aω),CWEHFS1 (Bω ,Bω)

ρWEHFS3 (Aω , Bω)
CWEHFS2 (Aω ,Bω)√

EWEHFS2 (Aω)EWEHFS2 (BA
ω )+
√

EWEHFS2 (Bω)EWEHFS2 (AB
ω)

ρWEHFS4 (Aω , Bω)
1
2 (

CWEHFS3 (Aω ,Bω)√
EWEHFS2 (Aω)EWEHFS2 (BA

ω )
+

CWEHFS3 (Bω ,Aω)√
EWEHFS2 (Bω)EWEHFS2 (AB

ω)
)

ρWEHFS5 (Aω , Bω)
CWEHFS2 (Aω ,Bω)

max{EWEHFS2 (Aω),EWEHFS2 (BA
ω )}+max{EWEHFS2 (Bω),EWEHFS2 (AB

ω)}

ρWEHFS6 (Aω , Bω)
1
2 (

CWEHFS3 (Aω ,Bω)

max{EWEHFS2 (Aω),EWEHFS2 (BA
ω )}

+
CWEHFS3 (Bω ,Aω)

max{EWEHFS2 (Bω),EWEHFS2 (AB
ω)}

)

where:

CWEHFS1(Aω, Bω) =
n

∑
i=1

(wiSs(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

AωD
(xi)γ

σ(k)
BωD

(xi)|u
σ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)}))),

CWEHFS1(Aω, Aω) =
n

∑
i=1

(wiSs(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

AωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)}))),

CWEHFS1(Bω, Bω) =
n

∑
i=1

(wiSs(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

BωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)}))),

EWEHFS2(Aω) =
n

∑
i=1

(wiSs(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

AωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi)}))),

EWEHFS2(Bω) =
n

∑
i=1

(wiSs(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

BωD
(xi))

2|uσ(j)
B (xi) ∈ HB(xi)}))),

EWEHFS2(AB
ω) =

n

∑
i=1

(wiSs(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A′ (xi)∈uσ(j)

A (xi)
{(γσ(k)

A′ωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi)}))),

EWEHFS2(BA
ω) =

n

∑
i=1

(wiSs(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B′ (xi)∈uσ(j)

B (xi)
{(γσ(k)

B′ωD
(xi))

2|uσ(j)
B (xi) ∈ HB(xi)}))).

CWEHFS3(Aω, Bω) = ∑n
i=1(wiSs(∑

]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A (xi)∈uσ(j)

A (xi)
{γAωD

σ(k)(xi)γ
σ(k)
B′ωD

(xi)|u
σ(j)
A (xi) ∈ HA(xi)}))),

CWEHFS3(Bω, Aω) = ∑n
i=1(wiSs(∑

]HB(xi)
j=1 ∑

]uB(xi)
k=1 (∪

γ
σ(k)
B (xi)∈uσ(j)

B (xi)
{γBωD

σ(k)(xi)γ
σ(k)
A′ωD

(xi)|u
σ(j)
B (xi) ∈ HB(xi)}))).

CWEHFS2(A, B) = CWEHFS3(A, B) + CWEHFS3(B, A).

It can be seen that if wi = (1/n, 1/n, ..., 1/n)T and ωi = (1/m, 1/m, ..., 1/m), then
ρWEHFSi (Aω, Bω) (i = 1, 2, 3, ..., 6) reduce to ρEHFSi (A, B) (i = 1, 2, 3, ..., 6). Additionally, it is easy to
prove that ρWEHFSi (Aω, Bω) (i = 1, 2, 3, ..., 6) also have the following properties:
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Theorem 8. Let w = (wi, w2, ..., wn)T be the weight vector of xi (i = 1, 2, ..., n) with wi ≥ 0, i = 1, 2, ..., n
and ∑n

i=1 wi = 1 and ω = (ωi, ω2, ..., ωn)T be the weight vector of DMs with ωi ≥ 0, i = 1, 2, ..., n and
∑n

i=1 ωi = 1; the correlation coefficients ρWEHFSi (Aω, Bω) (i = 1, 2, 3, ..., 6) between two EHFSs A and
B satisfy:

(1) ρWEHFSi (Aω, Bω) = ρWEHFSi (Bω, Aω);
(2) 0 ≤ ρWEHFSi (Aω, Bω) ≤ 1;
(3) ρWEHFSi (Aω, Bω) = 1, if A = B.

However, sometimes, the exact weights wi of elements xi are unknown, we present the weighted
extended hesitant correlation coefficient of EHFEs as Table 2.

Table 2. The correlation coefficients of EHFEs.

ρ of EHFEs Correlation Coefficient Formulas

ρEHFE1 (Aω , Bω)
CEHFE1 (Aω ,Bω)√

CEHFE1 (Aω ,Aω)
√

CEHFE1 (Bω ,Bω)

ρEHFE2 (Aω , Bω)
CEHFE1 (Aω ,Bω)

max{CEHFE1 (Aω ,Aω),CEHFE1 (Bω ,Bω)

ρEHFE3 (Aω , Bω)
CEHFE2 (Aω ,Bω)√

EEHFE2 (Aω)EEHFE2 (BA
ω )+
√

EEHFE2 (Bω)EEHFE2 (AB
ω)

ρEHFE4 (Aω , Bω)
1
2 (

CEHFS3 (Aω ,Bω)√
EEHFE2 (Aω)EEHFE2 (BA

ω )
+

CEHFE3 (Bω ,Aω)√
EEHFE2 (Bω)EEHFE2 (AB

ω)
)

ρEHFE5 (Aω , Bω)
CEHFE2 (Aω ,Bω)

max{EEHFE2 (Aω),EEHFE2 (BA
ω )}+max{EEHFE2 (Bω),EEHFE2 (AB

ω)}

ρEHFS6 (Aω , Bω)
1
2 (

CEHFE3 (Aω ,Bω)

max{EEHFE2 (Aω),EEHFE2 (BA
ω )}

+
CEHFE3 (Bω ,Aω)

max{EEHFE2 (Bω),EEHFE2 (AB
ω)}

)

where:

CEHFE1(Aω, Bω) =
1
]H

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{γσ(k)

AωD
(xi)γ

σ(k)
BωD

(xi)|u
σ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)})),

CEHFE1(Aω, Aω) =
1
]H

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

AωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)})),

CEHFE1(Bω, Bω) =
1
]H

Ss(
]H

∑
j=1

]u

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A ,γσ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

BωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi),

uσ(j)
B (xi) ∈ HB(xi)})),

EEHFE2(Aω) =
1

]HA(xi)
Ss(

]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A (xi)∈uσ(j)

A (xi)
{(γσ(k)

AωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi)})),

EEHFE2(Bω) =
1

]HB(xi)
Ss(

]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B (xi)∈uσ(j)

B (xi)
{(γσ(k)

BωD
(xi))

2|uσ(j)
B (xi) ∈ HB(xi)})),

EEHFE2(AB
ω) =

1
]HA(xi)

Ss(
]HA(xi)

∑
j=1

]uA(xi)

∑
k=1

(∪
γ

σ(k)
A′ (xi)∈uσ(j)

A (xi)
{(γσ(k)

A′ωD
(xi))

2|uσ(j)
A (xi) ∈ HA(xi)})),

EEHFE2(BA
ω) =

1
]HB(xi)

Ss(
]HB(xi)

∑
j=1

]uB(xi)

∑
k=1

(∪
γ

σ(k)
B′ (xi)∈uσ(j)

B (xi)
{(γσ(k)

B′ωD
(xi))

2|uσ(j)
B (xi) ∈ HB(xi)})).

CEHFE3(Aω, Bω) =
1

]HA(xi)
Ss(∑

]HA(xi)
j=1 ∑

]uA(xi)
k=1 (∪

γ
σ(k)
A (xi)∈uσ(j)

A (xi)
{γAωD

σ(k)(xi)γ
σ(k)
B′ωD

(xi)|u
σ(j)
A (xi) ∈ HA(xi)}),
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CEHFE3(Bω, Aω) =
1

]HB(xi)
Ss(∑

]HB(xi)
j=1 ∑

]uB(xi)
k=1 (∪

γ
σ(k)
B (xi)∈uσ(j)

B (xi)
{γBωD

σ(k)(xi)γ
σ(k)
A′ωD

(xi)|u
σ(j)
B (xi) ∈ HB(xi)})),

CEHFE2(A, B) = CEHFE3(A, B) + CEHFE3(B, A).
Additionally, it is easy to prove that ρEHFEi (Aω, Bω) (i = 1, 2, 3, ..., 6) also have the following

properties:

Theorem 9. Let ω = (ωi, ω2, ..., ωn)T be the weight vector of DMs with ωi ≥ 0, i = 1, 2, ..., n and
∑n

i=1 ωi = 1; the correlation coefficients ρEHFEi (Aω, Bω) (i = 1, 2, 3, ..., 6) between two EHFSs A and
B satisfy:

(1) ρEHFEi (Aω, Bω) = ρEHFEi (Bω, Aω);
(2) 0 ≤ ρEHFEi (Aω, Bω) ≤ 1;
(3) ρEHFEi (Aω, Bω) = 1, if A = B.

4. Application of the Weighted Correlation Coefficients of the Extend Hesitant Fuzzy Environment

In this section, we shall utilize the weighted correlation coefficients of EHFEs and EHFSs to
decision making with extended hesitant fuzzy information.

At first, we utilize the weighted correlation coefficients of EHFSs for decision making problems
with extended hesitant fuzzy information. For a decision making problem with extended hesitant
fuzzy information, let A = {A1, A2, ..., Am} be a discrete set of alternatives and S = {S1, S2, ..., Sn}
be a set of attributes. If the decision makers provide several values for the alternative Ai
(i = 1, 2, ..., m) under the attribute Cj (j = 1, 2, ..., n), these values can be considered as an EHFE
Hij(j = 1, 2, .., n; i = 1, 2, ..., m). Therefore, we can elicit an extended hesitant fuzzy decision matrix
H = (Hij)m×n, where Hij(i = 1, 2, .., m; j = 1, 2, ..., n) is in the form of extended hesitant fuzzy
elements. In multiple attribute decision making environments, the concept of ideal point has been used
to help the identification of the best alternative in the decision set. Although the ideal alternative does
not exist in the real world, it does provide a useful theoretical construct to evaluate alternatives.
Therefore, we define each ideal EHFE H∗ in the ideal alternative A∗ = {< sj, H∗ > |sj ∈ S}
(j = 1, 2, .., n).

Method 1:

Step 1. Use the information given by decision makers to establish extended hesitant fuzzy model
and construct the extended hesitant fuzzy decision matrix H = (Hij)m×n by EHFEs.

Step 2. Assume that the weights of decision makers ωD and attributes w and a standard EHFE
H∗ = {(1, 1, 1, 1)} are known; calculate the weighted correlation coefficients between an alternative
Ai(i = 1, 2, .., m) and the ideal alternative A∗ by using the formulas ρWEHFSi (Aω, Bω) (i = 1, 2, ..., 6)
(see Table 1).

Step 3. Rank the alternatives in accordance with the values of ρWEHFSi (Aω, Bω) (i = 1, 2, ..., 6).
We may obtain different results and rankings to analyze different weighted correlation coefficients.

Step 4. Select the best alternative according to the maximum values of the weighted correlation
coefficients ρWEHFSi (Aω, Bω) (i = 1, 2, ..., 6).

Step 5. End.

However, sometimes, the exact weights wi of elements xi are unknown; we present the weighted
extended hesitant correlation coefficient of EHFEs with the Dempster–Shafer belief structure [35].
Let Cij be a payoff to the alternative Ai, and the state of nature is Sj, C = (Cij)m×n a payoff matrix
and ς the optimized parameter. The DMs knowledge of the states of nature is captured in terms of
a belief structure p with the focal elements B1, B2, ..., Br, each of which is associated with a weight p(Bk)

,
where ∑r

k=1 p(Bk)
= 1. We now develop the following approach to deal with group decision making.

The method is similar to Zhu et al.’s (see [16] in detail) as follows.
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Method 2:

Step 1. Use the information given by decision makers to establish the extended hesitant fuzzy
model and construct the extended hesitant fuzzy decision matrix H = (Hij)m×n by EHFEs.

Step 2. Assume a standard EHFE H∗ = {(1, 1, 1, 1)} and the optimized parameter, then calculate
the correlation coefficients between H∗ and Hij by the extended hesitant correlation coefficients of
EHFEs in Table 2. Let Cij be equal to the weighted correlation coefficients, and construct the payoff
matrix of ρEHFEij(Aω, Bω)(i = 1, 2, ..., 6, j = 1, 2, ..., 5), denoted as Cij.

Step 3. Calculate the belief function p about the states of nature (see [16] in detail).
Step 4. Utilize the optimized parameter to calculate the collection of weights [36,37], which are

used in the OWA aggregation for each cardinality of focal elements (see [16] in detail).
Step 5. Determine the payoff collection, Mik = {Cij|Sj ∈ Bk}, which is a set of payoffs that are

possible if we select the alternative Ai and the focal element Bk occurs, and calculate the aggregated
payoff, Vik = OWA(Mik) (see [16] in detail).

Step 6. Calculate Ci = ∑r
k=1 Vik p(Bk), and select the alternative that has the best generalized

expected value as the optimal alternative (see [16] in detail).
Step 7. End.

Example 4. [16] Energy is an indispensable factor for the social-economic development of societies.
Thus, the correct energy policy affects economic development and the environment; the most appropriate energy
policy selection is very important. Suppose that there are five alternatives (energy projects) Ai (i = 1, 2, 3, 4, 5)
to be invested and four criteria to be considered: S1-technological; S2-environmental; S3-socio-political;
S4-economic. Five DMs are invited to evaluate the performances of the five alternatives.

In order to avoid giving DMs’ preferences anonymously given by [6] and deal with this energy policy
problem without information loss, the DMs Dk(k = 1, 2, 3, 4, 5) provide their preferences over all of the
alternatives Ai(i = 1, 2, ..., 5) with respect to the criteria Sj(j = 1, 2, 3, 4) based on hesitant fuzzy sets,
then Zhu et al. [16] saved the DMs’ preferences by an extended hesitant fuzzy matrix H = (Hij)5×4 shown
in Table 3 (see [16] for detail).

Table 3. Extended hesitant fuzzy decision matrix.

S1 S2

A1 {(0.3, 0.4, 0.3, 0.4, 0.5)} {(0.7, 0.8, 0.3, 0.8, 0.6), (0.7, 0.8, 0.4, 0.8, 0.6)}

A2 {(0.3, 0.4, 0.5, 0.2, 0.5), (0.3, 0.4, 0.5, 0.3, 0.5)} {(0.5, 0.6, 0.5, 0.6, 0.6)}

A3 {(0.4.0.5.0.5.0.5.0.6)} {(0.5,0.6,0.7,0.6,0.5), (0.6,0.6,0.7,0.6,0.5),
(0.5,0.6,0.8,0.6,0.5), (0.6,0.6,0.8,0.6,0.5)}

A4 {(0.3, 0.2, 0.2, 0.3, 0.1)} {(0.6, 0.5, 0.7, 0.5, 0.5)}

A5 {(0.3, 0.4, 0.6, 0.2, 0.2), (0.3, 0.3, 0.6, 0.2, 0.2)} {0.6, 0.8, 0.5, 0.4, 0.6), (0.6, 0.8, 0.5, 0.5, 0.6)}

S3 S4

A1
{(0.3,0.4,0.2,0.3,0.2), (0.4,0.4,0.2,0.3,0.2,),
(0.3,0.4,0.3,0.3,0.2), (0.4,0.4,0.3,0.3,0.2)} {(0.6,0.5,0.5,0.4,0.6)}

A2 {(0.6,0.4,0.5,0.3,0.5), (0.6,0.4,0.4,0.3,0.5)} {(0.3,0.4,0.5,0.2,0.2),(0.3,0.4,0.4,0.2,0.2)}

A3 {(0.7.0.3.0.9.0.8.0.6), (0.7,0.3,0.8,0.8,0.6)} {(0.7,0.8,0.7,0.8,0.8)}

A4 {(0.4,0.3,0.2,0.3,0.5)} {(0.3,0.2,0.7,0.2,0.1)}

A5 {(0.7,0.5,0.6,0.8,0.6)} {(0.6,0.4,0.5,0.4,0.6), (0.7,0.4,0.5,0.4,0.6)}
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(i) We now use Method 2 to solve the decision making problem first as a comparison to Zhu et al. [16].

Step 1. The decision makers Dk(k = 1, 2, 3, 4, 5) provide their preferences over all of the
alternatives Ai(i = 1, 2, ..., 5) with respect to the criteria Sj(j = 1, 2, 3, 4) shown in Table 3.

Step 2. Let A∗ = {(1, 1, 1, 1, 1)} be the ideal values of the alternative seen as a standard EHFE H∗,
ς = 0.75 be the optimized parameter and ω = (0.3, 0.1, 0.3, 0.2, 0.1) be the weighting vector of the DMs.
By Table 2, we can calculate the correlation coefficients between H∗ and Hij. Then, construct the payoff
matrix shown as Tables 4–8.

Table 4. The payoff matrix of ρEHFE1 (Aω , Bω).

S1 S2 S3 S4

A1 0.986883 0.988202 0.97547 0.990684
A2 0.967077 0.996616 0.974345 0.958094
A3 0.993058 0.987096 0.986648 0.998221
A4 0.974355 0.991976 0.955336 0.88474
A5 0.922226 0.989024 0.992889 0.982754

Table 5. The payoff matrix of ρEHFE2 (Aω , Bω).

S1 S2 S3 S4

A1 0.329167 0.608333 0.3 0.525
A2 0.38125 0.525 0.48125 0.339583
A3 0.466667 0.633333 0.752083 0.725
A4 0.25 0.6125 0.955336 0.88474
A5 0.39375 0.545833 0.666667 0.539583

Table 6. The payoff matrix of ρEHFE3 (Aω , Bω).

S1 S2 S3 S4

A1 0.986883 0.989857 0.981194 0.990684
A2 0.968555 0.996616 0.976718 0.953532
A3 0.993058 0.987891 0.98561 0.998221
A4 0.974355 0.991976 0.955336 0.88474
A5 0.922823 0.990514 0.992889 0.980396

Table 7. The payoff matrix of ρEHFE4 (Aω , Bω).

S1 S2 S3 S4

A1 0.986883 0.989843 0.980905 0.990684
A2 0.968545 0.996616 0.976679 0.953671
A3 0.993058 0.987869 0.985624 0.998221
A4 0.974355 0.991976 0.955336 0.88474
A5 0.922822 0.990505 0.992889 0.980441

Table 8. The payoff matrix of ρEHFE5 (Aω , Bω) and ρEHFE6 (Aω , Bω).

S1 S2 S3 S4

A1 0.329167 0.614583 0.31875 0.525
A2 0.384375 0.525 0.490625 0.348958
A3 0.466667 0.662083 0.761458 0.725
A4 0.25 0.6125 0.955336 0.88474
A5 0.394792 0.55 0.666667 0.548958
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Step 3. The DMs analyze the energy policy problem so as to obtain the probabilistic information
about the states of nature. Assume that the DMs; knowledge of the states of nature consists of the
following belief structure, shown in Table 9 (see [16]).

Table 9. Belief structure.

Focal Element Weights (w)

B1 = {S1, S3} 0.15
B2 = {S2, S4} 0.25

B3 = {S1, S3, S4} 0.6

Step 4. In order to contrast with the method’s results given by [16], we still use the O’Hagan
method [36] to obtain weighting vectors associated with the OWA operators for various numbers of
arguments. Since ς = 0.75, then we can get the weighting vectors shown in Table 10 (see [16]).

Table 10. Weighting vectors for various numbers of arguments.

Number of Arguments w1 w2 w3

2 0.75 0.25
2 0.62 0.27 0.11

Step 5. We get Vik for all i and k(i = 1, 2, 3, 4; k = 1, 2, 3, 4, 5) as Mik = {Cij|Sj ∈ Bk} and
Vik = OWA(Mik).

Step 6. Calculate Ci = ∑r
k=1 Vik p(Bk), the results are given in Table 11. Thus, A3 is the optimal

alternative closest to the ideal values of alternative, which is the same with Zhu and Xu (see the
Example in [16]).

Step 7. End.

Table 11. Weighting vectors for various numbers of arguments.

A1 A2 A3 A4 A5 Rankings

Results about ρEHFE1 0.985342 0.972911 0.991325 0.962349 0.956626 A3 � A1 � A2 � A4 � A5
Results about ρEHFE2 0.400856 0.422799 0.588053 0.351558 0.495452 A3 � A5 � A2 � A1 � A4
Results about ρEHFE3 0.986794 0.973515 0.991267 0.962349 0.956892 A3 � A1 � A2 � A4 � A5
Results about ρEHFE4 0.986734 0.97352 0.991265 0.962349 0.956895 A3 � A1 � A2 � A4 � A5
Results about ρEHFE5 0.405769 0.427388 0.593439 0.351558 0.497943 A3 � A5 � A2 � A1 � A4
Results about ρEHFE6 0.405769 0.427388 0.593439 0.351558 0.497943 A3 � A5 � A2 � A1 � A4

As can be seen from Table 11, A3 is the optimal alternative closest to the ideal values of alternative,
which is the same with Zhu and Xu (see the Example in [16]), but the rankings are not always the
same: the rankings of ρEHFE2 , ρEHFE5 , ρEHFE6 and Zhu and Xu [16] are identical, but the rankings
of ρEHFE1 , ρEHFE3 and ρEHFE4 are different from [16]. Obviously, the method, which depends on the
formulas of ρEHFEi (i = 1, 2, 3, 4, 5, 6), is practical and effective.

(ii) As the weights of the elements xi (i = 1, 2, ..., n) in the universe X are easily accessible in practical
applications, in other words, the weights of Si(i = 1, 2, 3, 4) in this example are given by decision
makers. Assume that wi = (0.3, 0.2, 0.2, 0.3), then we can deal with the decision making problem
by Method 1 as follows:

Step 1. Construct the extended hesitant fuzzy decision matrix H = (Hik)m×n by EHFEs,
Hij(i = 1, ..., q; j = 1, ..., n), shown in Table 3.

Steps 2 and 3. Calculate the weighted correlation coefficient between an alternative
Ai(i = 1, 2, .., m) and the ideal alternative A∗ by using the formulas ρWEHFSi (A, B) (i = 1, 2, ..., 6).
The results are given in Table 12.
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Step 4. As can be seen from the results, we get that A3 is the optimal alternative closest to the
ideal values of the alternative.

Step 5. End.

Table 12. Weighting vectors for various numbers of arguments.

A1 A2 A3 A4 A5 Rankings

Results o f ρEHFS1 0.986005 0.971744 0.992133 0.947191 0.967877 A3 � A1 � A2 � A5 � A4
Results o f ρEHFS2 0.437917 0.4175 0.634583 0.385417 0.5225 A3 � A5 � A1 � A2 � A4
Results o f ρEHFS3 0.987480 0.971293 0.992084 0.947191 0.967646 A3 � A1 � A2 � A5 � A4
Results o f ρEHFS4 0.987420 0.971324 0.992082 0.947191 0.967658 A3 � A1 � A2 � A5 � A4
Results o f ρEHFS5 0.442917 0.4231 0.640208 0.385417 0.526458 A3 � A5 � A1 � A2 � A4
Results o f ρEHFS6 0.442917 0.4231 0.640208 0.385417 0.526458 A3 � A5 � A1 � A2 � A4

The example indicates that the proposed decision making methods are simple and effective under
extended hesitant fuzzy environments.

5. Conclusions

In this study, we develop some correlation coefficients between EHFSs, which contain two cases:
the correlation coefficients taking into account the length of EHFEs and the correlation coefficients
without taking into account the length of EHFEs. We also have studied some properties of these
correlation coefficients. At last, we give two methods to deal with decision making problems under
extended hesitant fuzzy environments, and a real-world example based on the energy policy problem
is employed to illustrate the actual need for dealing with the difference of evaluation information
provided by different experts without information loss in decision making processes. As EHFSs are
a new powerful tool to express uncertain information in the process of group decision making, we will
give more studies on the theory and applications in the future.
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