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Abstract: In this paper, reversible data-hiding (RDH) systems with modified fluctuation functions and
rate-matched Reed–Solomon (RS) codes are proposed to enhance the data recovery from encrypted
images. The modified fluctuation functions are used for estimating embedded codeword bits from the
correlation of pixels. Instead of direct data-bit embedding, codeword bits of RS codes are embedded
by a data-hider. With the help of the error-correcting capability of RS codes, the encrypted message
can be recovered from the weak correlation of adjacent pixels in the image. In the experimental results,
bit error rate (BER) and peak signal to noise ratio (PSNR) performances of the proposed system are
better than those of referenced data-hiding systems for three images. The proposed schemes based
on the modified fluctuation function or rate-matched codes can be applied to various RDH systems
with better data transmission and image recovery performance.
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1. Introduction

Data-hiding has a long history and has been widely used for information security for centuries.
Moreover, a good review of the recent works appeared in [1], which classified modern data-hiding
techniques and cryptography as two distinguishable domains for information security and explained
comprehensive analysis of information-hiding techniques. An interactive buyer-seller watermarking
protocol has been proposed to not allow invisible watermarked copy [2], and a secure comparison
protocol in the encrypted domain was also proposed [3].

New techniques to hide information in encrypted images have drawn much interest of researchers
who have extended its applications. Data-hiding in encrypted images involves several different
problems since it is impossible to directly use the contents of encrypted data. Therefore, applications of
data hiding in the encrypted images have been explained in a number of papers [4–23]. The usage of an
encrypted image as the cover medium for concealing data is not only a relatively new research subject,
but an interesting subject due to simultaneous consideration of both cryptography and steganography
technology, which have been independently developed. An encrypted image can be protected when it
is transmitted through a public channel, increasing the difficulty of analyzing the embedded data.

Among data-hiding technologies, reversibility is one of the major research topics since
an encrypted image should be recovered to the original image after extracting the hidden data.
Reversible data-hiding (RDH) systems are designed to assign embedded data to a cover media and to
allow recovery of the original image without distortion after extraction. Especially, for military and
medical images, which are important applications of data-hiding, there should be no distortion in the
recovered image due to data hiding.
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The embedding procedure of the RDH systems with flipping least significant bit (LSB) is first to
divide an encrypted image into blocks and to use the LSBs of pixels in the blocks according to the
embedded data. In the receiver, spatial correlation in the natural digital image is calculated to estimate
the embedded data. Zhang [4] first proposed RDH systems with flipping LSBs and suggested the
fluctuation function by using the four neighboring pixels to measure the spatial correlation between
pixels in each block. Hong’s system [5] separately calculated the horizontal and vertical fluctuations
of the correlation. Moreover, Hong [5] proposed a side-match technique that the updated border of
neighboring blocks be used for calculating the correlation in order to improve the spatial correlation,
whereas the marginal pixels of the block are not used in [4]. Modified fluctuation functions were
proposed according to the position of pixels in block [6], and the functions were composed of three
different equations. Reversible data hiding systems were proposed by using a new embedding pattern
and multiple judgments [8]. These RDH systems perfectly recovered the original image if there was no
error in the extracted data.

The RDH about lossless data compression are based on data compression to make new space for
the data hider to hide data. Research about lossless data compression was designed to develop efficient
data compression to reduce image distortion. In [7], a separable RDH scheme for encrypted images
was proposed by compressing the encrypted data using a source coding scheme with side information,
making data extraction independent of encryption. An efficient data compression from low-density
parity-check codes was proposed, and a new data extraction method using side information was
discussed in [9] to enhance rate-distortion performance. In [10,11], the recursive code construction for
binary covers was improved, and it was shown that the construction can achieve the rate-distortion
bound. To improve RDH schemes based on the distortion matrices, a system estimating the optimal
transition probability matrix for a general distortion matrix was proposed in [12].

In the RDH system with histogram shift, the histogram was first produced by the error value
between original pixels and estimated pixels. According to embedded data and the error value,
the error histogram was shifted for saving space for data embedding by shifting the bins of the
histogram. In [13], the RDH based on the histogram of the prediction vector quantization-compressed
image was proposed where the index of the image was used for embedding. Similarly, Ma [14]
proposed RDH systems for encrypted images by reserving room, where the original image was
divided into two partitions and the LSBs of one partition were embedded into the other partition
by a traditional RDH algorithm [18]. In [15], generating RDH codes according to the theoretical
expressions [19] of RDH were determined by the differences between the original pixel-values and
the corresponding values estimated from the neighbors. An efficient RDH method was proposed by
estimating pairwise prediction errors and modifying the 2D histogram of the prediction-errors in [16].
Recently, Zhang [17] proposed a combination method with a histogram modification and lossless data
compression by using an entropy coder.

Recently, modified RDH systems were proposed to have better performance. Data hiding by using
zero coefficient quantization table was proposed in JPEG images [20]. Hussain et al. [21] introduced
a hybrid data hiding method combining the right-most digit replacement (RMDR) with an adaptive
least significant bit (ALSB) for digital images. Kumar et al. [22] proposed RDH based on prediction
error and expansion based on adjacent pixels. Hong et al. [23] proposed a new data-hiding technique
for absolute moment block truncation coding (AMBTC) of a compressed image based on quantization
level modification. Improved embedding pattern and a new measurement function were proposed
in encrypted images with a high payload to enhance transmission performance [24]. One vacating
room before encryption was proposed in encrypted image, where the content owner creates room for
embedding data in the cover image before encryption [25]. Qian et al. [26] proposed a novel scheme
of RDH in encrypted images using distributed source coding to protect the secrecy of the system.
Xiao et al. [27] proposed a separable RDH technique in encrypted images based on the pixel value
ordering where homomorphism encryption is used for image encryption.
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The Reed–Solomon (RS) codes are named for their inventors who published the codes
in 1960. RS codes have good error-correction capability for bursty errors since they are non-binary
cyclic maximum distance separable codes. Therefore, they have been widely used in consumer
electronics, data transmission technologies, broadcast systems, optical communications and image
processing systems. During the past decades, research about RS codes has been updated quickly.
The Berlekamp–Massey (BM) algorithm [28] is an efficient hard decoding algorithm of RS codes that
uses a linear feedback shift register (LFSR) to determine error location polynomials with the smallest
degree and error locations by solving the roots of the polynomials. A new run-length-limited decoding
algorithm to increase the performance of RS codes in a visible light communication system has been
proposed [29].

In this paper, efficient reversible data-hiding systems are proposed by using new fluctuation
functions and rate-matched RS codes. The estimated bits of the fluctuation functions are more
correct since boundary pixels and average distance are used for calculation. With the help of the
error-correcting capability of RS codes, the embedded message can be recovered correctly. In order to
efficiently correct the errors according to weak spatial correlation, RS codes based on the BM algorithm
are considered for decoding. In the bit error rate (BER) results of three different images, our proposed
system showed better performances than the data-hiding systems. Peak signal to noise ratio (PSNR)
performances were also shown in the experimental results. To check the performance enhancements,
fundamental RDH systems are considered as referenced systems, but our fluctuation functions or
coding schemes can be applied to recently-published RDH systems with modifications.

2. System Model of the Proposed Scheme

The proposed data-hiding system is shown in Figure 1. First, a content owner encrypts the original
uncompressed image using an encryption key and creates an encrypted image. Then, a data-hider
produces codewords c from the data using an RS encoder and embeds the codewords into the
encrypted image using a data-hiding key. The two different images, the encrypted image E and
the codeword-embedded image E′, are created, and the codeword-embedded image is transmitted to
the receiver. The content owner and the data-hider can be the same or different entities. When the
data-hider is different from the content owner, the data-hider does not know the original image, but the
data-hider can embed data in the encrypted image. In a receiver, the encrypted image containing
additional data is decrypted using the encryption key. According to the data-hiding key, the estimated
values for the embedded codeword are extracted, and the hidden data must be recovered after decoding
the RS codes. From the help of the error-correction capability of the RS codewords, performance for
recovering the image can be enhanced.
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Figure 1. Block diagram of the proposed data-hiding system.

2.1. Image Encryption

The method of image encryption in this paper is similar to that in Zhang’s system [4]. It is assumed
that the original image consists of pixels with their gray values [0, 255], which are represented by
eight bits. Let the size of the original image and the gray value be L×M pixels and pi,j, respectively,
where (i, j) for 0 ≤ i < L and 0 ≤ j < M denotes the position of the pixel. In the encryption phase,
the pixels are encrypted through the bitwise exclusive-or (XOR) operations of the original pixel pi,j.
It is assumed that pseudo-random values ri,j are generated by the encryption key. Then, the encrypted
image Ei,j for pixel (i, j) is determined as:

Ei,j = pi,j ⊕ ri,j.

2.2. Rate Matching and RS Encoder

For data transmission, codewords of RS codes are embedded in order to correct errors instead of
directly embedding data in encrypted images. For data hiding, the encrypted image is segmented into
a number of non-overlapping blocks sized s× s. Then, the maximum number of blocks, Nb, that can
be embedded in an encrypted image is b L

s cb
M
s c. Therefore, in rate matching, the generated message

sequence is needed for embedding the codeword. To explain this process, the RS code parameter
should be discussed.

RS codes [28] are defined in a Galois field, GF(2q), where q is a positive integer. Then, the parameters
of RS(n, k) codes with length n and dimension k are defined as n = 2q− 1, τ = b (n−k)

2 c, where τ denotes
the maximum number of symbol errors that the RS decoder can correct. The code rate of RS codes are
defined as k/n. It is known that the message and codeword of RS codes can be expressed as:

m(X) = m0 + m1X + · · ·+ mk−1Xk−1

c(X) = c0 + c1X + · · ·+ cn−1Xn−1,

where m(X) and c(X) are a message polynomial and a codeword polynomial, respectively. The generator
polynomial is defined as:

g(X) = (X− α)(X− α2) · · · (X− α2τ) = g0 + · · ·+ g2τX2τ,
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where α is a primitive element of GF(2q). The encoding for systematic RS codes is defined as:

c(X) = p(X) + X2τm(X),

where p(X) is the parity polynomial with degree < 2τ and is a remainder polynomial when X2τm(X)

is divided by g(X).
The maximum number of codewords, Nc, in the encrypted image is bNb

nq c. In the ‘rate matching’
in Figure 1, the (kqNc)-bit message is the input for the RS encoder. The remaining Nb − kqNc bits are
zero-padded. The choice of codes parameter and block size s in the proposed system is determined by
the capability of data recovery. The s is dependent on the calculation of spatial correlation, and the
difference of the correlation for each data increases as the size s increases. The increase of s leads to
enhanced data recovery, but it needs to reduce room for data-hiding in the encrypted image. When the
code rate of RS codes decreases, the error correcting capability of the RS codes is enhanced since the τ

of RS codes increases. The decreasing code rate also leads to better data recovery, but transmission
efficiency also becomes worse. Since the data recovery in the proposed systems is strongly related
to image recovery, the choice of parameters for better data-recovery are required according to the
purpose or environment of the systems. Therefore, discussion about the proper design of the size of s
and code parameters is needed, and the analysis of performance according to code rate and the size of
s is explained in the Experimental Results.

2.3. Codeword Embedding

Using the codewords of RS codes, a data-hider can embed Nc codewords into the encrypted
image. Let cv be the v-th codeword (cv(0), cv(1), · · · cv(n− 1)) for v = 0, 1, · · · , Nc − 1, where cv(l) is
an element of GF(2q). There exists a bijection mapping B between an element in GF(2q) and q elements
in GF(2) according to a primitive polynomial of GF(2q). Therefore, the binary bit can be determined
from an element of GF(2q) by the bijection function BF2B as:

BF2B(cv(l)) = (cv,l(0), cv,l(1), · · · , cv,l(q− 1)) , (1)

where cv(l) ∈ GF(2q) for l = 0, 1, · · · , n− 1 and cv,l(t) ∈ GF(2) for t = 0, 1, · · · , q− 1. The mapping BC

can be applied to codeword cv as:

BC(cv) = (BF2B(cv(0)), BF2B(cv(1)), · · · , BF2B(cv(n− 1))) . (2)

Then, the total concatenation of all binary codeword bit is expressed as:

z = (BC(c0), BC(c1), · · · , BC(cNc−1)) . (3)

The (nqNc)-bit sequence z′ can be defined as:

z′ = π(z), (4)

where π is a permutation function. To apply z′ to the block array, y(a, b), an element of the a-th row
and the b-th column in y is mapped from the

(
abM

s c+ b
)

-th element of z′ as:

y(a, b) = z′
(

a
⌊

M
s

⌋
+ b
)

, (5)

where 0 ≤ a < b L
s c and 0 ≤ b < bM

s c.
In Figure 2, an example of codeword embedding is shown. The size of the image and s is assumed

as 512× 512 and 26, respectively. The length of RS codes is assumed as n = 15. Then, Nb and Nc are
determined as 361 and six, respectively. The gray rectangles denote the region that does not contain
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embedded codeword bits in the image. A square in Figure 2 denotes one block with 26× 26 pixels.
The square in the a-th row and b-th column array can embed one bit denoted as y(a, b). The permutation
function π in (4) is considered as the simple rearrangement of codeword bits of z in (3) according to
incremental orders of v, t and l in (1)–(3).

In the (a, b) block, the encrypted pixel Ei,j, which satisfies as ≤ i < (a + 1)s, bs ≤ j < (b + 1)s,
exists within the same block, where a, b are non-negative integers. For each (a, b) block, the s2 pixels
are pseudo-randomly divided into two sets, S0(a, b) and S1(a, b), uniformly distributed according
to a data-hiding key. The y(a, b) is embedded into the (a, b) block by flipping w LSBs in the group,
which are determined by the value of the codeword bit. If the y(a, b) is zero, the w LSBs of each
encrypted pixel in S0(a, b) are flipped. Similarly, if the y(a, b) is one, the w LSBs of pixel in S1(a, b) are
flipped. Let hw be a function for flipping w LSBs of an encrypted pixel. For example, the function for
flipping three LSBs, h3, is expressed as:

h3 = 00000111(2). (6)

The encrypted pixel with embedded codeword bits, E′i,j, can be represented as:

E′i,j =


Ei,j for (i, j) ∈ S0(a, b) and y(a, b) = 0

Ei,j for (i, j) ∈ S1(a, b) and y(a, b) = 1

Ei,j otherwise,

(7)

where Ei,j = Ei,j ⊕ hw.

Figure 2. Example of embedded codewords when s = 26, L = M = 512, n = 15.

3. Fluctuation Function and Decoding of the Proposed System

Receivers in the proposed data-hiding systems are composed of four steps: image decryption,
codeword extraction and matching, RS decoder and image recovery.

3.1. Image Decryption

It is assumed that the receiver knows both the encryption key and the data-hiding key. The receiver
first generates the ri,j, which was already used for the encrypted image, according to the encryption
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key, and the decrypted pixel p′i,j is calculated by taking the XOR of the received signal E′i,j in (7) and
ri,j. That is, for 0 ≤ i < L, 0 ≤ j < M, p′i,j is calculated as:

p′i,j = ri,j ⊕ E′i,j.

If E′i,j is the same as Ei,j, p′i,j can be expressed as:

p′i,j = ri,j ⊕ Ei,j = ri,j ⊕ pi,j ⊕ hw ⊕ ri,j = pi,j ⊕ hw = pi,j,

where pi,j is a value by flipping w LSBs of the original pixel pi,j. Therefore, the decrypted pixel p′i,j can
be expressed as:

p′i,j =

pi,j for E′i,j = Ei,j

pi,j for E′i,j = Ei,j.
(8)

3.2. Codeword Extraction and Matching

In order to extract the codeword bit that is embedded in a block located in the a-th row and b-th
column, d(0)i,j and d(1)i,j for as ≤ i < (a + 1)s, bs ≤ j < (b + 1)s are calculated as:

d(0)i,j =

p′i,j ⊕ hw for (i, j) ∈ S0(a, b)

p′i,j otherwise,
(9)

d(1)i,j =

p′i,j ⊕ hw for (i, j) ∈ S1(a, b)

p′i,j otherwise.
(10)

If the codeword bit is zero, d(0)i,j is the same as pi,j, but d(1)i,j is pi,j according to (8) and (9). Similarly,

if the codeword bit is one, then d(1)i,j is the same as pi,j, but d(0)i,j is pi,j according to (8) and (10). In each

block, this means that d(a)
i,j is the same as pi,j if a is the same as the codeword bit; otherwise, d(a)

i,j is w
LSBs flips of pi,j. The hidden codeword bits are determined by comparing each fluctuation function
and have the lower value of the fluctuation function due to spatial correlation in natural images.

We consider the two fluctuation functions to determine hidden codeword bits: Zhang’s fluctuation
function [4] and Hong’s fluctuation function [5]. The first fluctuation functions, fZ(a, b)(0) and
fZ(a, b)(1), are calculated as:

fZ(a, b)(0)=
s−1

∑
i=2

s−1

∑
j=2

∣∣∣∣∣∣d(0)i,j −
d(0)i−1,j+ d(0)i,j−1+ d(0)i+1,j+ d(0)i,j+1

4

∣∣∣∣∣∣ , (11)

fZ(a, b)(1)=
s−1

∑
i=2

s−1

∑
j=2

∣∣∣∣∣∣d(1)i,j −
d(1)i−1,j+ d(1)i,j−1+ d(1)i+1,j+ d(1)i,j+1

4

∣∣∣∣∣∣ . (12)

Hong’s fluctuation functions, fH(a, b)(0) and fH(a, b)(1), are represented as:

fH(a, b)(0)=
s

∑
i=1

s−1

∑
j=1

∣∣∣d(0)i,j − d(0)i,j+1

∣∣∣+s−1

∑
i=1

s

∑
j=1

∣∣∣d(0)i,j − d(0)i+1,j

∣∣∣ , (13)

fH(a, b)(1)=
s

∑
i=1

s−1

∑
j=1

∣∣∣d(1)i,j − d(1)i,j+1

∣∣∣+s−1

∑
i=1

s

∑
j=1

∣∣∣d(1)i,j − d(1)i+1,j

∣∣∣ . (14)

For calculating the fluctuation function, the distance from the average value from neighboring
pixels is used to find the the difference when the w LSBs in the pixels are flipped. In Zhang’s fluctuation
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functions (11) and (12), the distance from the average value is calculated. However, the distance of
boundary pixels in each block is omitted. Especially, for small s, the value of the fluctuation function
is small, and estimation from the fluctuation functions becomes worse. For example, s = 8, 56.3%
(= 36/64× 100) pixels can be used to determine the fluctuation functions. In contrast, boundary pixels
in the left or upper corner are included in Hong’s fluctuation functions (13) and (14). However,
the distances from neighboring lower and right pixels are used, and large vertical or horizontal
distance is dominant. Therefore, a small number of pixels in each block can be dominant to calculate
the fluctuation functions when the pixels are widely different from neighboring pixels.

To utilize the two fluctuation functions, the new fluctuation functions, fK(a, b)(0) and fK(a, b)(1),
are proposed as:

fK(a, b)(0) = ∑s
i=1 ∑s−1

j=2

∣∣∣∣∣d(0)i,j −
d(0)i,j−1+d(0)i,j+1

2

∣∣∣∣∣
+∑s−1

i=2 ∑s
j=1

∣∣∣∣∣d(0)i,j −
d(0)i−1,j+d(0)i+1,j

2

∣∣∣∣∣ ,
(15)

fK(a, b)(1) = ∑s
i=1 ∑s−1

j=2

∣∣∣∣∣d(1)i,j −
d(1)i,j−1+d(1)i,j+1

2

∣∣∣∣∣
+∑s−1

i=2 ∑s
j=1

∣∣∣∣∣d(1)i,j −
d(1)i−1,j+d(1)i+1,j

2

∣∣∣∣∣ .
(16)

In the proposed fluctuation functions, fK(a, b)(0) and fK(a, b)(1), vertical and horizontal average
value and boundary pixels for calculating the distance are used. Moreover, pixels in the right and left
corner are used to determine the distance from the horizontal average, and similarly pixels in the top
and bottom corner are used to determine the distance from the vertical average. In the Experimental
Results, the performance comparison among three fluctuation functions will be discussed.

Let f (a, b)(0) be one of the fluctuation functions (11), (13), (15), and similarly, let f (a, b)(1) be
one of the fluctuation functions (12), (14), (16). Then, if the f (a, b)(0) is smaller than the f (a, b)(1),
the corresponding codeword bit is zero. If otherwise, the corresponding codeword bit is one. Therefore,
the estimated bit embedded into the (a, b) block, ŷ(a, b), is given as:

ŷ(a, b) =

{
0, f (a, b)(0) < f (a, b)(1)

1, otherwise.

The estimated bit ŷ(a, b) corresponds to y(a, b) in (5). Then, the
(

a
⌊

M
s

⌋
+ b
)

-th element

ẑ′
(

a
⌊

M
s

⌋
+ b
)

of ẑ′ can be defined as:

ẑ′
(

a
⌊

M
s

⌋
+ b
)
= ŷ(a, b).

The length of ẑ′ is kqNc. From the permutation π in (4), ẑ is defined as:

ẑ = π−1(ẑ′),

where π−1 is the inverse function of π. By using the mappings BC and BF2B in (3), (2) and (1),
the estimated codeword ĉv for v = 0, · · · , Nc − 1 can be determined as:

ĉv = B−1
F2B

(
B−1

C (ẑ(nqv : (nq(v + 1)− 1))
)

, (17)

where B−1
F2B and B−1

C are inverse mappings of BF2B and BC, respectively, and ẑ(i : j) denotes the vectors
with from the i-th elements to the j-th elements in ẑ.
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3.3. RS Decoder

In the output of data extraction, there might exist errors in the estimated codewords, for which the
RS decoder can be used for error correction. Among RS decoding algorithms, the BM algorithm [28] and
Forney algorithm [30] are considered in the proposed systems. Let r be one of ĉv for v = 0, · · · , Nc − 1
and r(X) be the polynomial form of r. Then, the polynomial r(X) can be expressed as:

r(X) = r0 + r1X + r2X2 + · · ·+ rn−1Xn−1,

where rl is an element of GF(2q). The received polynomial can be regarded as the summation of a
codeword polynomial c′(X) and an error polynomial e(X):

r(X) = c′(X) + e(X).

To determine error locations and values, syndromes Si for i = 1, 2, · · · , 2τ are calculated as:

Si = c(αi) + e(αi) = e0 + e1αi + · · ·+ en−1αi(n−1), (18)

where α is a primitive element in GF(2q), c(X) = 0 for X = αi and i = 1, 2, · · · , 2τ. Let the error
location polynomial be defined as:

Λ(X) = Λ0 + Λ1X + · · ·+ Λu−1Xu−1, (19)

where u is the number of errors and u ≤ τ. There is a relation between syndromes and the coefficients
of error location polynomials:

Si = −
i−1

∑
j=1

ΛjSi−j − iΛi, for i ≤ u (20)

Si = −
u

∑
j=1

ΛjSi−j, for i > u. (21)

In the BM algorithm, coefficients of the error location polynomial are determined from
(20) and (21). LFSR can be used for the implementation to calculate the coefficients. Then, error locations
can be found by solving the roots αi0 , αi1 , · · · , αiu−1 of the polynomial.

Forney’s algorithm [30] utilizes each error location to determine corresponding error values.
Before the error values are computed, two necessary definitions, syndrome polynomial, S(x), and error
evaluator polynomial, Ω(x), are established using (18), and they are defined as:

S(X) = S1 + S2X + · · ·+ SτX2τ−1 =
2τ−1

∑
j=0

Sj+1X j,

Ω(X) = S(X)Λ(X) (modX2τ).

The error values, eik , are computed as:

eiw = − Ω(α−iw)

Λ′(α−iw)
, (22)

where Λ′(X) is the derivative of (19) and w is from zero to u − 1. The error polynomial, e(X),
is computed using (20), (21) and (22), and then, we determine the RS codeword, c(X), using the
error polynomial.

c̃(X) = r(X)− e(X) (23)
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After decoding of Nc codewords, recovered codewords c̃v for v = 0, · · · , Nc − 1 are calculated.
Since systematic RS codes are considered, the recovered messages are obtained by concatenating kq
bits of the recovered codewords.

3.4. Image Recovery

The inputs of image recovery are recovered codewords c̃ and decrypted pixels p′. The recovered
codeword bits ỹ are calculated by applying the process from (1) to (5) where recovered codewords c̃v

are used instead of cv. From the decrypted pixels p′i,j calculated in image decryption, the recovered

pixels d̃′i,j are expressed as:

d̃′i,j =


p′i,j for (i, j) ∈ S0(a, b) and ỹ(a, b) = 0

p′i,j for (i, j) ∈ S1(a, b) and ỹ(a, b) = 1

p′i,j otherwise,

where p′i,j = p′i,j ⊕ hl and ỹ(a, b) is an element on the a-th row and the b-th column in ỹ.
The PSNR can be used for evaluating the image recovery performance and can be defined as:

PSNR = 20 · log10(MAX)− 10 · log10(MSE), (24)

where MAX denotes the maximum value of pixels in the image and MSE is the mean squared error
defined as:

MSE =
1

nqNc
·

sb L
s c−1

∑
i=0

sbM
s c−1

∑
j=0

(pi,j − d̃′i,j)
2.

If the MSE is zero, the PSNR is infinite.

4. Experimental Results

In this paper, the three gray-scale Lena, Peppers and Jet images, shown in Figure 3, are considered.
The size of the three gray images is 512× 512. The range of the block size s is from six to 38, which was
already considered in [4,5]. The function hw to flip w LSBs is considered as h3, which is shown in (6).

(a) (b) (c)

Figure 3. Test images used for the simulation. (a) Lena; (b) Peppers; (c) Jet [31].

To compare the proposed data-hiding systems with the referenced systems, the error pattern of
the data-hiding system is shown in Figure 4. For a Lena image and s = 8, error positions of Zhang’s
system [4], Hong’s system [5], the proposed system with fluctuation functions in (15) and (16) and
the proposed system with the fluctuation function and RS(15,11) codes are shown in (a), (b), (c) and
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(d) in Figure 4, respectively. The small black square in a large square in Figure 4 denotes s× s error
pixels in a Lena image. From Figures 4a to 4c, the recovery performance of the system with the
proposed fluctuation functions in (15) and (16) is better than the ones of Zhang’s system [4] and Hong’s
system [5] for s = 8 and the Lena image. Moreover, there is no error pattern in (d) of Figure 4 when the
proposed system with RS(15,11) codes is used.

To investigate how RS codes can help recover the error in RDH systems, an example for the
proposed system with RS codewords is shown in Figure 5. Figure 5a is similar to Figure 4c. One error
in Figure 5a is located at y(9, 26). It is assumed that the codewords of RS(15,11) start from y(0, 0) and are
assigned to the right sequentially. Then, the error at y(9, 26) belong to the 11th codeword, which starts
at y(9, 24) and ends at y(10, 24). The gray rectangle in Figure 5a denotes the 11th codeword, and the
codewords are also shown in Figure 5b. The codeword is composed of 15 symbols, which corresponds
to 60 bits. A blue rectangle in Figure 5b denotes a symbol of codewords. From Figure 5b, one symbol of
the codeword is an error, and it is known that RS(15,11) can correct up to two error symbols. Therefore,
the error pattern at y(9, 26) can be recovered from the RS codes. Similarly, the other errors can be
recovered by the help of RS codes.

(a) (b)

(c) (d)

Figure 4. Error patterns of Zhang’s system [4], Hong’s system [5], and the proposed scheme in the
Lena image for s=8. (a) fZ in (11) and (12); (b) fH in (13) and (14); (c) fK in (15) and (16); (d) fK in (15)
and (16) + RS(15,11) code.
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(a) (b)

Figure 5. Example of error recovery by using RS codes in the Lena image. (a) Error pattern in Figure 4c;
(b) Analysis of the codeword for the error pattern.

In Figure 6, the BER performances of the referenced systems and proposed system without RS
codes are shown according to the size of s when the Lena, Peppers and Jet image in Figure 3 are
considered. The ‘Ref. Zhang [4]’ and ‘Ref. Hong [5]’ in these figures denote BERs for Zhang’s scheme
in [4] and Hong’s scheme in [5], respectively. The ‘Pro. Fluc.’ in these figures stands for BERs for the
proposed fluctuation functions in (15) and (16). In Figure 6, as block size s increases, the BERs of two
referenced system sand the proposed system without RS codes become better. BER performances of
two referenced systems and the proposed system without RS codes in Figure 6a,b are better than BER
performances in Figure 6c, since the Jet is a weakly correlated image. In Figure 6a,b, BER performances
of the proposed fluctuation function are always better than the referenced systems. It is shown that
the proposed fluctuation functions are effective for the RDH system without the help of RS codes.
In Figure 6c, the BER of the proposed system without RS codes is the same or better than the BER of
Zhang’s system. For a small length of s, the BERs of three systems turn around since the reliability
of the fluctuation function in the weakly correlated image is small. For some value of s, the BER of
Zhang’s system is better than the BER of the proposed system without RS codes, since the embedding
process is different, and the fluctuation functions in Zhang’s system are based on the difference of
neighboring pixels.

6 10 14 18 22 26 30 34 38
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R
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Ref. Zhang [4]
Ref. Hong [5]
Pro. Fluc.

(a)

Figure 6. Cont.
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Figure 6. BER performances of referenced and proposed fluctuation functions for the three images.
(a) Lena; (b) Peppers; (c) Jet.

To investigate the performances of the proposed systems with RS codes, four RS codes are used,
which are an RS(15, 11), an RS(15, 7), an RS(31, 23) and an RS(31, 15) code in this simulation. The code
rates of the four RS codes are 0.73, 0.47, 0.74 and 0.48, respectively, and they correspond to around
1/2 and 3/4. The lengths of the codes are 15 and 31. These RS codes can be used for estimating the
performance change according to the length and rate of RS codes.

In Figure 7, BER performances of the referenced systems and the proposed systems are shown
according to the size of s when the Lena, Peppers, and Jet images in Figure 3 are considered.
The ‘Ref. Zhang [4]’ and ‘Ref. Hong [5]’ in these figures also denote BERs for Zhang’s scheme
in [4] and Hong’s scheme in [5], respectively. The notations ‘Pro. RS(15, 11),’ ‘Pro. RS(15, 7),’ ‘Pro.
RS(31, 23),’ and ‘Pro. RS(31, 15)’ represent the proposed systems with RS(15, 11), RS(15, 7), RS(31, 23)
and RS(31, 15) codes, respectively. For most values of s, the BER performances of the proposed systems
with four RS codes are better than those of the referenced systems [4,5]. In Figure 7c, it is shown that
the BER performance of RS(15, 11) fluctuates as s increases, since the RS codes can correct up to two
error symbols. For s = 14, 18 and 20, there are less than three error symbols in every codeword of
RS(15, 11) codes, and the BER is zero. In Figure 7a,b, the BER of the proposed system is 0 for s = 8,
though the BER of the referenced systems [4,5] is non-zero. In Figure 7c, BERs of the proposed systems
with RS(15,7) and RS(31,15) codes are better than the two referenced systems. If s is larger than or
equal to 10, BERs of the two proposed systems are zero over the weakly correlated image. For high rate
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RS codes, such as RS(15,11) and RS(31, 23), BER performances in Figure 7c turn around as s increases,
since the image is weakly correlated, and the error capability of the codes is small.
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Figure 7. BER performances of the proposed reversible data-hiding (RDH) systems with Reed–Solomon
(RS) codes for the three images. (a) Lena; (b) Peppers; (c) Jet.

Since the proposed systems consider RS codes with code rates of 0.75 and 0.5, the transmission
efficiencies of the proposed systems are less than those of the referenced systems. Therefore, for fixed
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BER, the effective length of the embedded message must be considered for proper transmission.
For fair comparison, the number of messages for BER = 0 is considered, where BER = 0 means that
embedded messages are extracted without error. The main results of the proposed systems and the
referenced systems [4,5] are listed in Tables 1–3 for BER = 0 when the Lena, Peppers, and Jet images
are considered, respectively. The ‘Ref. Zhang [4],’ ‘Ref. Hong [5],’ and ‘Pro. RS(15, 11), Pro. RS(15, 7),
Pro. RS(31, 23), Pro. RS(31, 15),’ in Tables 1 to 3 correspond to the referenced systems [4,5] and the
proposed system with RS(15, 11), RS(15, 7), RS(31, 23) and RS(31, 15) codes, respectively. The ‘Rate’
in these tables denotes the code rates of the considered systems; since the referenced systems have
no RS codes, their code rates are one. The ‘Min. s’ in these tables stands for the minimum size of s
that guarantees BER = 0. The ‘No. messages’ in these tables denotes the number of actual embedded
messages corresponding to minimum s. The ‘Gain’ in these tables denotes the ratio of message length
of the proposed systems to the message length of the referenced system and is written as a percentage.
The ‘G1’ and ‘G2’ are gains when the referenced systems are those in [4,5], respectively.

Table 1. Minimum size of s for BER = 0 when the Lena image is used. G, gain.

Rate Min. s No. Messages Gain (%)

Ref. Zhang [4] 1 16 1024 G1 G2Ref. Hong [5] 1 14 1296
Pro. RS(15, 11) 0.73 8 3004 293.3 231.8
Pro. RS(15, 7) 0.47 6 3372 329.3 260.2

Pro. RS(31, 23) 0.74 6 5360 523.5 413.6
Pro. RS(31, 15) 0.48 6 3496 341.4 269.8

Table 2. Minimum size of s for BER = 0 when the Peppers image is used.

Rate Min. s No. Messages Gain (%)

Ref. Zhang [4] 1 12 1764 G1 G2Ref. Hong [5] 1 12 1764
Pro. RS(15, 11) 0.73 8 3004 170.3 170.3
Pro. RS(15, 7) 0.47 8 1911 108.4 108.4

Pro. RS(31, 23) 0.74 8 3039 172.3 172.3
Pro. RS(31, 15) 0.48 6 3496 198.2 198.2

Table 3. Minimum size of s for BER = 0 when the Jet image is used.

Rate Min. s No. Messages Gain (%)

Ref. Zhang [4] 1 28 324 G1 G2Ref. Hong [5] 1 22 529
Pro. RS(15, 11) 0.73 14 950 293.3 179.7
Pro. RS(15, 7) 0.47 8 1911 590.0 361.3

Pro. RS(31, 23) 0.74 12 1309 403.9 247.4
Pro. RS(31, 15) 0.48 10 1259 388.4 237.9

As can be seen in Tables 1 to 3, the minimum s of the proposed systems is always smaller than
that of the referenced systems. The number of embedded messages in the proposed systems is also
larger than that in the referenced systems. In Table 1, when the Lena image is considered, the proposed
systems with an RS(15, 11) code and an RS(31, 23) show about three times more efficient transmission
than the referenced system [4]. In Table 3, the proposed systems with an RS(15, 7) code and an
RS(31, 15) are more than two times more efficient than the referenced systems [4,5].
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To verify the performance of image recovery, PSNR performances for the three images in Figure 3
according to the embedding rate are shown in Figure 8. The ‘Embedding rate’ in Figure 8 represents the
ratio of the number of embedded messages to the number of pixels in an embedded image. The ‘Inf.’
in Figure 8 denotes infinite PSNR. Infinite PSNR cannot be illustrated in these figures; however,
for convenience, it is located at 103.4 dB, the MSE of which corresponds to 1

512×512 (≈3.815× 10−6).
Since the pixels in the images are represented with eight bits, MAX in (24) is 255. The ‘Ref. Zhang [7],
Dec.’ and ‘Ref. Zhang [7], Rec.’ in Figure 8 denote PSNRs in directly decrypted image and recovered
image of Zhang’s scheme in [7], respectively. M and S, which represent the number of LSBs of
pixels and the number of hidden data per a group in [7], are considered as two and one, respectively.
The PSNRs in directly decrypted images and in recovered images represent those before image recovery
and after image recovery in [7], respectively, and PSNR performances in directly decrypted images
were shown in [7].
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Figure 8. PSNR performances of the proposed RDH systems with RS codes for the three images.
(a) Lena; (b) Peppers; (c) Jet.

In Figure 8, most embedding rates of the proposed systems are higher than those of the referenced
systems, which satisfy the infinite PSNR. In Figure 8a, the proposed scheme with RS(31, 23) codes has
an embedding range up to 0.02, which guarantees an infinite PSNR, while the referenced systems have
an embedding range up to 0.007. Similarly, in Figure 8b, the proposed scheme with RS(31, 15) codes
has an embedding range up to 0.014 for infinite PSNR.

5. Conclusions

In this paper, improved data-hiding systems based on modified fluctuation functions and RS
codes are proposed for efficient data recovery. The proposed fluctuation functions show enhanced
estimation performance than referenced functions. The error-correcting capability of RS codes can be
used to improve the weak correlation of adjacent pixels in data-hiding systems. The BER and PSNR
performances in the experimental results show that the proposed systems are more effective than
the referenced systems. For fair comparison, the number of messages of the proposed systems and
referenced systems is calculated for zero BER, and embedding rates are also discussed for infinite
PSNR. It is verified that the proposed data-hiding systems show more efficient data transmission and
image recovery than the referenced fundamental RDH systems. Our approaches started from the
fundamental RDH systems, but the proposed fluctuation functions or coding scheme can be applied to
recent RDH systems with modification for performance enhancement.
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