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Abstract: The balanced hypercube network, which is a novel interconnection network for parallel
computation and data processing, is a newly-invented variant of the hypercube. The particular feature
of the balanced hypercube is that each processor has its own backup processor and they are connected
to the same neighbors. A Hamiltonian bipartite graph with bipartition V0 ∪V1 is Hamiltonian laceable
if there exists a path between any two vertices x ∈ V0 and y ∈ V1. It is known that each edge is on
a Hamiltonian cycle of the balanced hypercube. In this paper, we prove that, for an arbitrary edge
e in the balanced hypercube, there exists a Hamiltonian path between any two vertices x and y in
different partite sets passing through e with e 6= xy. This result improves some known results.

Keywords: interconnection network; balanced hypercube; Hamiltonian path; passing prescribed
edge; data processing

1. Introduction

Interconnection networks play an essential role in the performance of parallel and distributed
systems. In the event of practice, large multi-processor systems can also be adopted as tools to address
complex management and big data problems. It is well-known that an interconnection network is
generally modeled by an undirected graph, in which processors are represented by vertices and
communication links between them are represented by edges. The hypercube network is recognized
as one of the most popular interconnection networks, and it has gained great attention and recognition
from researchers both in graph theory and computer science. Nevertheless, the hypercube also has
some shortcomings. For example, its diameter is large. Therefore, many variants of the hypercube
have been put forward [1–10] to improve performance of the hypercube in some aspects. Among these
variants, the balanced hypercube has the following special properties: each vertex of the balanced
has a backup (matching) vertex and they have the same neighborhood. Therefore, the backup vertex
can undertake tasks that originally run on a faulty vertex. It has been proved that the diameter
of an odd-dimensional balanced hypercube BHn is 2n − 1 [10], which is smaller than that of the
hypercube Q2n.

With regard to the special properties discussed above, the balanced hypercube has been
investigated by many researchers. Huang and Wu [11] studied the problem of resource placement
of the balanced hypercube. Xu et al. [12] showed that the balanced hypercube is edge-pancyclic and
Hamiltonian laceable. It is found that the balanced hypercube is bipanconnected for all n ≥ 1 by
Yang [13]. Huang et al. [14] discussed area efficient layout problems of the balanced hypercube.
Yang [15] determined super (edge) connectivity of the balanced hypercube. Lü et al. studied
(conditional) matching preclusion, hyper-Hamiltonian laceability, matching extendability and extra
connectivity of the balanced hypercube in [16–19], respectively. Some symmetric properties of the
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balanced hypercube are presented in [20,21]. As stated above, the balanced hypercube possesses some
desirable properties that the hypercube does not have, so it is interesting to explore other favorable
properties that the balanced hypercube may have.

Since parallel applications such as image and signal processing are originally designed on
array and ring architectures, it is important to have path and cycle embeddings in a network.
Especially, Hamiltonian path and cycle embeddings and other properties of famous networks are
extensively studied by many authors [12,13,22–26]. Xu et al. [12] proved that each edge of the
balanced hypercube is on a cycle of even length from 4 to 4n, that is, the balanced hypercube is
edge-bipancyclic. They also showed that the balanced hypercube is Hamiltonian laceable for all integers
n ≥ 1. Recently, Lü et al. [17] further obtained that the balanced hypercube is hyper-Hamiltonian
laceable for all integers n ≥ 1.

The rest of this paper is organized as follows. Some necessary definitions are presented as
preliminaries in Section 2. The main result of this paper is shown in Section 3. Finally, conclusions are
given in Section 4.

2. Preliminaries

Let G = (V, E) be a simple undirected graph, where V is a vertex-set of G and E is an edge-set
of G. A path P from v0 to vn is a sequence of vertices v0v1 · · · vn from v0 to vn such that every pair of
consecutive vertices are adjacent and all vertices are distinct except for v0 and vn. We also denote the
path P = v0v1 · · · vn by 〈v0, P, vn〉. The length of a path P is the number of edges in P, denoted by l(P).
A cycle is a path with at least three vertices such that the first vertex is the same as the last one. A graph
is bipartite if its vertex-set can be partitioned into two subsets V0 and V1 such that each edge has its ends
in different subsets. A graph is Hamiltonian if it possesses a spanning cycle. A graph is Hamiltonian
connected if there exists a Hamiltonian path joining any two vertices of it. Obviously, any bipartite
graph is not Hamiltonian connected. Simmons [27] proposed Hamiltonian laceability of bipatite
graphs: a bipartite graph G = (V0 ∪ V1, E) is Hamiltonian laceable if there exists a Hamiltonian path
between any two vertices x and y in different partite sets of G. A graph G is hyper-Hamiltonian laceable
if it is Hamiltonian laceable and, for any vertex v ∈ Vi(i ∈ {0, 1}), there exists a Hamiltonian path in
G− v between any pair of vertices in V1−i. For the graph definitions and notations not mentioned
here, we refer the readers to [28,29].

Wu and Huang [10] gave the following definition of BHn as follows.

Definition 1. An n-dimensional balanced hypercube, denoted by BHn, consists of 4n vertices labelled by
(a0, a1, . . . , an−1), where ai ∈ {0, 1, 2, 3} for each 0 ≤ i ≤ n− 1. Any vertex (a0, . . . , ai−1, ai, ai+1, . . . , an−1)

with 1 ≤ i ≤ n− 1 of BHn has the following 2n neighbors:

1. ((a0 + 1) mod 4, a1, . . . , ai−1, ai, ai+1, . . . , an−1),
((a0 − 1) mod 4, a1, . . . , ai−1, ai, ai+1, . . . , an−1), and

2. ((a0 + 1) mod 4, a1, . . . , ai−1, (ai + (−1)a0) mod 4, ai+1, . . . , an−1),
((a0 − 1) mod 4, a1, . . . , ai−1, (ai + (−1)a0) mod 4, ai+1, . . . , an−1).
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In BHn, the first coordinate a0 of vertex (a0, . . . , ai, . . . , an−1) is called the inner index and the other
coordinates are known as the ai (1 ≤ i ≤ n− 1) i-dimensional index. Clearly, each vertex in BHn has
two inner neighbors, and 2n− 2 other neighbors. Note that all of the arithmetic operations on indices
of vertices in BHn are four-modulated.

BH1 and BH2 are illustrated in Figures 1 and 2, respectively.
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Figure 1. BH1.
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Figure 2. BH2.

In the following, we give some basic properties of BHn.

Proposition 1. [10] The balanced hypercube is bipartite.

Proposition 2. [10,20] The balanced hypercube is vertex-transitive and edge-transitive.

Proposition 3. [10] The vertices (a0, a1, . . . , an−1) and ((a0 + 2) mod 4, a1, . . . , an−1) of BHn have the
same neighborhood.

3. Main Results

Firstly, we characterize edges of the BHn. Let u and v be two adjacent vertices in BHn. If u and
v differ in only the inner index, then uv is said to be a 0-dimensional edge, and u is a 0-dimensional
neighbor of v. If u and v differ in not only the inner index, but also some i-dimensional index (i 6= 0)
of the vertices, then uv is called an i-dimensional edge, and u is an i-dimensional neighbor of v. For
convenience, we denote the set of all i-dimensional edges by ∂Di (0 ≤ i ≤ n − 1). Let BH(i)

n−1
(0 ≤ i ≤ 3) be the subgraph of BHn induced by the vertices of BHn with the (n− 1)-dimensional
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index i. That is, the BH(i)
n−1’s can be obtained from BHn by deleting all (n− 1)-dimensional edges.

Therefore, BH(i)
n−1
∼= BHn−1 for each 0 ≤ i ≤ 3.

By Proposition 1, we know that BHn is bipartite. We can use V0 and V1 to denote the two partite
sets of BHn such that V0 and V1 consist of vertices of BHn with an even inner index and an odd inner
index, respectively. For convenience, the vertices of V0 and V1 are colored white and black, respectively.
Throughout this paper, we use wi and ui (resp. bi and vi) to denote white (resp. black) vertices in
BH(i)

n−1 (i ∈ {0, 1, 2, 3}).

Lemma 1. [16] In BHn, ∂Di(0 ≤ i ≤ n− 1) can be divided into 4n−1 edge-disjoint 4-cycles for n ≥ 1.

Lemma 2. [12] The balanced hypercube BHn is Hamiltonian laceable and edge-bipancyclic for n ≥ 1.

Lemma 3. [17] The balanced hypercube BHn is hyper-Hamiltonian laceable for n ≥ 1.

Lemma 4. [30] Assume u and x are two different vertices in V0, and v and y are two different vertices
in V1. Then, there exist two vertex-disjoint paths P and Q such that P joins x to y, Q joins u to v and
V(P) ∪V(Q) = V(BHn), where n ≥ 1.

Lemma 5. Let n ≥ 2 be an integer. Suppose that u, v, x and y are four distinct vertices differ only the inner
index in BHn. In addition, u, x ∈ V0 and v, y ∈ V1. Then, there exists a Hamiltonian path from u to v in
BHn − x− y.

Proof. We proceed with the proof by the induction on n. First, we consider n = 2. Clearly, u, v, x and
y are in the same 4-cycle of ∂D0. A Hamiltonian path of BH2 − x− y from u to v is shown in Figure 3.
Thus, we suppose that the lemma holds for all integers n− 1 with n ≥ 3. Next, we consider BHn.
We split BHn into four BHn−1s by deleting (n− 1)-dimensional edges. For convenience, we denote the
four BHn−1s by B0, B1, B2 and B3 according to the last position of vertices in BHn, respectively. Without
loss of generality, we may assume that u, v, x and y are in B0. By an induction hypothesis, there exists
a Hamiltonian path P0 from u to v in B0 − x − y. Let u0v0 ∈ E(P1), where u0 (resp. v0) are neither
end-vertex of P0. We denote the segment of P0 from u to v0 by P00, and the segment of P0 from u0 to v
by P10. By Definition 1, u0 (resp. v0) has an (n− 1)-dimensional neighbor v1 (resp. u3) in B1 (resp. B3).
Moreover, there exist an edge v3u2 from B3 to B2, and an edge v2u1 from B2 to B1. Therefore, there exist
a Hamiltonian path P3 from u3 to v3 in B3, a Hamiltonian path P2 from u2 to v2 in B2, and a Hamiltonian
path P1 from u1 to v1 of B1. Hence, 〈u, P00, v0, u3, P3, v3, u2, P2, v2, u1, P1, v1, u0, P10, v〉 is a Hamiltonian
path of BHn − x− y (see Figure 4).

y

u v
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Figure 3. A Hamiltonian path of BH2 − x− y.
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Figure 4. A Hamiltonian path of BHn − x− y.

Next, we present the following lemma as a basis of our main theorem.

Lemma 6. Let e be an arbitrary edge in BH2. In addition, let x ∈ V1 and y ∈ V0 be any two vertices in BH2

with e 6= xy. Then, there exists a Hamiltonian path between x and y passing through e.

Proof. By Proposition 2, BH2 is vertex-transitive and edge-transitive, and we may suppose that
e = (0, 0)(1, 0). Obviously, if e = xy, then there exists no Hamiltonian path of BH2 from x to y passing
e. Thus, at most, one of x and y is the end-vertex of e. We consider the following two cases:

Case 1: Neither x nor y is incident to e. By the relative positions of x and y, and Proposition 3,
we consider the following: (1) x ∈ V(B0), y ∈ V(B0); (2) x ∈ V(B0), y ∈ V(B1); (3) x ∈ V(B0),
y ∈ V(B2); (4) x ∈ V(B0), y ∈ V(B3); (5) x ∈ V(B1), y ∈ V(B1); (6) x ∈ V(B1), y ∈ V(B2);
(7) x ∈ V(B1), y ∈ V(B3); (8) x ∈ V(B2), y ∈ V(B2); (9) x ∈ V(B2), y ∈ V(B3); (10) x ∈ V(B3),
y ∈ V(B3). For simplicity, we list all Hamiltonian paths of the conditions above in Table 1.

Case 2: Either x or y is incident to e. Without loss of generality, suppose that x is incident to e, that is,
x = (1, 0). By Proposition 3, we need only to consider four conditions of y: (1) y ∈ V(B0); (2) y ∈ V(B1);
(3) y ∈ V(B2); and (4) y ∈ V(B3). Again, we list Hamiltonian paths of the conditions of x and y in this
case in Table 2.

Table 1. Hamiltonian paths passing through e with neither x nor y being incident to e.

x y Hamiltonian Paths Passing through e with Neither x nor y Being Incident to e

(1) (3,0) (2,0) (3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(0,1)(1,1)(0,0)(1,0)(2,0)
(2) (3,0) (0,1) (3,0)(0,0)(1,0)(2,3)(3,3)(0,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(2,0)(1,1)(0,1)
(3) (3,0) (2,2) (3,0)(0,3)(3,3)(2,3)(1,0)(0,0)(3,1)(2,0)(1,1)(0,1)(1,2)(2,1)(3,2)(0,2)(1,3)(2,2)
(4) (3,0) (0,3) (3,0)(0,0)(1,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3)
(5) (1,1) (2,1) (1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)
(6) (1,1) (2,2) (1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,1)(1,2)(2,2)
(7) (1,1) (2,3) (1,1)(0,0)(3,1)(0,1)(1,2)(2,1)(3,2)(2,2)(1,3)(0,2)(3,3)(0,3)(1,0)(2,0)(3,0)(2,3)
(8) (1,2) (2,2) (1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)
(9) (1,2) (2,3) (1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(1,3)(2,2)(3,2)(0,2)(3,3)(2,3)
(10) (1,3) (2,3) (1,3)(0,3)(3,0)(0,0)(1,0)(2,0)(1,1)(2,1)(3,1)(0,1)(3,2)(2,2)(1,2)(0,2)(3,3)(2,3)
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Table 2. Hamiltonian paths passing through e with x or y being incident to e.

x y Hamiltonian Paths Passing through e with x or y Being Incident to e

(1) (1,0) (2,0) (1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(0,1)(3,1)(2,0)
(2) (1,0) (0,1) (1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(2,0)(3,1)(0,1)
(3) (1,0) (0,2) (1,0)(0,0)(3,0)(0,3)(1,3)(2,3)(3,3)(2,2)(3,2)(2,1)(1,1)(2,0)(3,1)(0,1)(1,2)(0,2)
(4) (1,0) (0,3) (1,0)(0,0)(3,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3)

Now, we are ready to state the main theorem of this paper.

Theorem 1. Let n ≥ 2 be an integer and e be an arbitrary edge in BHn. In addition, let x ∈ V1 and y ∈ V0 be
any two vertices in BHn with e 6= xy. Then, there exists a Hamiltonian path of BHn between x and y passing
through e.

Proof. We prove this theorem by induction on n. By Lemma 6, we know that the theorem is true
for n = 2. Therefore, we suppose that the theorem holds for n− 1 with n ≥ 3. Next, we consider
BHn. Firstly, we divide BHn into BH(i)

n−1 (0 ≤ i ≤ 3) by deleting all (n − 1)-dimensional edges.

For convenience, we denote BH(i)
n−1 by Bi according to the last position of the vertices in BHn for each

i ∈ {0, 1, 2, 3}. Similarly, suppose that e ∈ E(B0). Let x ∈ V1 and y ∈ V0 be two distinct vertices in BHn.
By relative positions of x and y, we consider the following cases:

Case 1: x ∈ V(B0), y ∈ V(B0). By an induction hypothesis, there exists a Hamiltonian path P0 from
x to y of B0 passing through e. Thus, there is an edge u0v0 on P0 such that u0v0 is not adjacent to e
and u0v0 divides P0 into two sections P00 and P10, where P00 connects x to u0 and P10 connects v0 to y.
Let v1 (resp. u3) be an (n− 1)-dimensional neighbor of u0 (resp. v0). By Definition 1, there exist an
edge u1v2 from B1 to B2, and an edge u2v3 from B2 to B3. Thus, by Lemma 2, there exist a Hamiltonian
path P1 from v1 to u1 in B1, a Hamiltonian path P2 from v2 to u2 in B2, and a Hamiltonian path P3 from
v3 to u3 in B3. Hence, 〈x, P00, u0, v1, P1, u1, v2, P2, u2, v3, P3, u3, v0, P10, y〉 is a Hamiltonian path of BHn

from x to y passing through e (see Figure 5).
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Figure 5. Illustration for Case 1.

Case 2: x ∈ V(B0), y ∈ V(B1). Let u0 ∈ V(B0) be a white vertex such that u0 is not incident to e.
By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from x to u0 passing through e.
Supposing that v0 is a black vertex adjacent to u0 on P0, we denote the segment of the path P0 from x
to v0 by P00. Let the two (n− 1)-dimensional neighbors of u0 be b1 and v1. By Lemma 2, there exists
a Hamiltonian path P1 of B1 from b1 to y. Let u1 be the neighbor of v1 in the section of P1 from b1 to v1.
Then P1 − u1v1 consists of two subpaths P01 and P11, which connect u1 to b1 and v1 to y, respectively.
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Let u3 (resp. v2) be an (n− 1)-dimensional neighbor of v0 (resp. u1). Furthermore, there exists an edge
v3u2 from B3 to B2. Then, there exist a Hamiltonian path P2 from u2 to v2 in B2, and a Hamiltonian path
P3 from u3 to v3 in B3. Hence, 〈x, P00, v0, u3, P3, v3, u2, P2, v2, u1, P01, b1, u0, v1, P11, y〉 is a Hamiltonian
path of BHn from x to y passing through e (see Figure 6).
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Figure 6. Illustration for Case 2.

Case 3: x ∈ V(B0), y ∈ V(B2). Let u0 be a white vertex in B0 not incident to e, and b1 and
v1 be two (n − 1)-dimensional neighbors of u0. In addition, assume that w1 is an arbitrary white
vertex in B1. There exists a Hamiltonian path of B1 from b1 to w1. Thus, there exists an edge
u1v1 ∈ E(P1) whose removal will lead to two disjoint subpaths P01 and P11, where P01 connects
u1 to b1 and P11 connects v1 to w1. Let v2 (resp. b2) be an (n − 1)-dimensional neighbor of u1

(resp. w1). There also exists a Hamiltonian path P2 of B2 from y to b2 via the edge v2u2. Deleting v2u2

results in two disjoint paths P02 and P12, where P02 connects u2 to b2 and P12 connects v2 to y.
By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from x to u0 via the edge
v0u0. For convenience, denote P0 − u0 by P00, that is, P00 connects x to v0. Let u3 (resp. v3) be an
(n− 1)-dimensional neighbor of v0 (resp. u2). Again, there exists a Hamiltonian path P3 of B3 from u3

to v3. Hence, 〈x, P00, v0, u3, P3, v3, u2, P02, b2, w1, P11, v1, u0, b1, P01, u1, v2, P12, y〉 is a Hamiltonian path of
BHn from x to y passing through e (see Figure 7).
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Figure 7. Illustration for Case 3.

Case 4: x ∈ V(B0), y ∈ V(B3). Let u0 (resp. v3) be a white (resp. black) vertex in B0 (resp. B3).
There exist an edge u0v1 from B0 to B1, an edge u1v2 from B1 to B2, and an edge u2v3 from B2 to B3.
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By Lemma 2, there exist a Hamiltonian path P1 of B1 from v1 to u1, a Hamiltonian path P2 of B2 from
v2 to u2, and a Hamiltonian path P3 of B3 from v3 to u3. By an induction hypothesis, there exists a
Hamiltonian path P0 of B0 from x to u0 passing through e. Hence, 〈x, P0, u0, v1, P1, u1, v2, P2, u2, v3, P3, y〉
is a Hamiltonian path of BHn from x to y passing through e (see Figure 8).
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Figure 8. Illustration for Case 4.

Case 5: x ∈ V(B1), y ∈ V(B1). Let v1 6= x be a black vertex in B1. By Lemma 3, there exists a Hamiltonian
path P1 of B1− y from x to v1. Furthermore, there exist an edge v1u0 from B1 to B0, an edge v0u3 from B0

to B3, an edge v3u2 from B3 to B2, and an edge v2y from B2 to B1. Moreover, there exist a Hamiltonian path
P0 of B0 from u0 to v0 passing through e, a Hamiltonian path P3 of B3 from u3 to v3, and a Hamiltonian
path P2 of B2 from u2 to v2. Hence, 〈x, P1, v1, u0, P0, v0, u3, P3, v3, u2, P2, v2, y〉 is a Hamiltonian path of
BHn from x to y passing through e (see Figure 9).
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Figure 9. Illustration for Case 5.

Case 6: x ∈ V(B1), y ∈ V(B2). Let v1 6= x (resp. u1) be a black (resp. white) vertex in B1. By Lemma 3,
there exists a Hamiltonian path P1 of B1 − u1 from x to v1. In addition, suppose that v2 and b2 are two
(n− 1)-dimensional neighbors of u1. By Lemma 2, there exists a Hamiltonian P2 of B2 from v2 to y via the
edge u2b2. Thus, P2 can be divided into three sections: P02, u2v2 and P12, where P02 connects u2 to v2 and
P12 connects b2 to y. Furthermore, there exist an edge v1u0 from B1 to B0, an edge v0u3 from B0 to B3, and an
edge v3u2 from B3 to B2. Therefore, there exist a Hamiltonian path P0 of B0 from u0 to v0 passing through e,
and a Hamiltonian path P3 of B3 from u3 to v3. Hence, 〈x, P1, v1, u0, P0, v0, u3, P3, v3, u2, P02, v2, u1, b2, P12, y〉
is a Hamiltonian path of BHn from x to y passing through e (see Figure 10).
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Case 7: x ∈ V(B1), y ∈ V(B3). Let v3 and b3 be two black vertices in B3. Suppose that u2 and w2 are
(n− 1)-dimensional neighbors of v2 and b2, respectively. By Lemma 3, there exists a Hamiltonian path P3

of B3 − y from b3 to v3. By Definition 1, there exist two edges v2u1 and b2w1 from B2 to B1, an edge v1u0

from B1 to B0, and an edge v0y from B0 to B3, where x 6= v1. By Lemma 4, there exist two vertex-disjoint
paths P01 and P11 such that P01 joins v1 and u1, P11 joins x and w1, and V(P01) ∪ V(P11) = V(B1).
Similarly, there exist two vertex-disjoint paths P02 and P12 such that P02 joins v2 and u2, P12 joins b2 and
w2, and V(P02)∪V(P12) = V(B2). By an induction hypothesis, there exists a Hamiltonian path P0 of B0

from u0 to v0 passing through e. Hence, 〈x, P11, w1, b2, P12, w2, b3, P3, v3, u2, P02, v2, u1, P01, v1, u0, P0, v0, y〉
is a Hamiltonian path of BHn from x to y passing through e (see Figure 11).
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Figure 11. Illustration for Case 7.

Case 8: x ∈ V(B2), y ∈ V(B2). Let u2 ∈ V(B2) be an arbitrary white vertex. By Lemma 3, there exists
a Hamiltonian path P2 of B2 − x from u2 to y. By Definition 1, there exist an edge xu1 from B2 to B1,
an edge v1u0 from B1 to B0, an edge v0u3 from B0 to B3, and an edge v3u2 from B3 to B2. Following
Lemma 2, we can obtain a Hamiltonian path P1 of B1 from u1 to v1, and a Hamiltonian path P3 of
B3 from u3 to v3. By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from u0 to v0

passing through e. Therefore, 〈x, u1, P1, v1, u0, P0, v0, u3, P3, v3, u2, P2, y〉 is a Hamiltonian path of BHn

from x to y passing through e (see Figure 12).
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Case 9: x ∈ V(B2), y ∈ V(B3). Let u2 and w2 be two distinct white vertices in B2, and v3 and b3 be
(n− 1)-dimensional neighbors of u2 and w2, respectively. By Lemma 3, there exists a Hamiltonian path
P2 of B2 − x from u2 to w2. By Lemma 2, there exists a Hamiltonian path P3 of B3 from v3 to y via the
edge u3b3. By deleting u3b3, we can obtain two disjoint subpaths: P03 and P13, where P03 connects u3 to
v3 and P13 connects b3 to y. Furthermore, there exist an edge xu1 from B2 to B1, an edge v1u0 from B1

to B0, and an edge v0u3 from B0 to B3. By Lemma 2, there exists a Hamiltonian path P1 of B1 from u1 to
v1. By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from u0 to v0 passing through
e. Hence, 〈x, u1, P1, v1, u0, P0, v0, u3, P03, v3, u2, P2, w2, b3, P13, y〉 is a Hamiltonian path of BHn from x to
y passing through e (see Figure 13).
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Figure 13. Illustration for Case 9.

Case 10: x ∈ V(B3), y ∈ V(B3). The proof is analogous to that of Case 5, and we omit it.

4. Conclusions

In this paper, we study a type of path embedding of the balanced hypercube, and show that, for an
arbitrary edge e 6= xy, there exists a Hamiltonian path between any two vertices x and y in different
partite sets passing through e. This result also implies that each edge is on a Hamiltonian cycle of the
balanced hypercube, which is part of the results of edge bipancyclicity of the balanced hypercube.
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