Path Embeddings with Prescribed Edge in the Balanced Hypercube Network

Dan Chen, Zhongzhou Lu, Zebang Shen, Gaofeng Zhang, Chong Chen and Qingguo Zhou *
School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China; chend13@lzu.edu.cn (D.C.); luzhzh15@lzu.edu.cn (Z.L.); shenzb12@lzu.edu.cn (Z.S.); zhanggaof@lzu.edu.cn (G.Z.); chench2013@lzu.edu.cn (C.C.)
* Correspondence: zhouqg@lzu.edu.cn
Academic Editor: Angel Garrido
Received: 21 February 2017; Accepted: 15 May 2017; Published: 26 May 2017

Abstract

The balanced hypercube network, which is a novel interconnection network for parallel computation and data processing, is a newly-invented variant of the hypercube. The particular feature of the balanced hypercube is that each processor has its own backup processor and they are connected to the same neighbors. A Hamiltonian bipartite graph with bipartition $V_{0} \cup V_{1}$ is Hamiltonian laceable if there exists a path between any two vertices $x \in V_{0}$ and $y \in V_{1}$. It is known that each edge is on a Hamiltonian cycle of the balanced hypercube. In this paper, we prove that, for an arbitrary edge e in the balanced hypercube, there exists a Hamiltonian path between any two vertices x and y in different partite sets passing through e with $e \neq x y$. This result improves some known results.

Keywords: interconnection network; balanced hypercube; Hamiltonian path; passing prescribed edge; data processing

1. Introduction

Interconnection networks play an essential role in the performance of parallel and distributed systems. In the event of practice, large multi-processor systems can also be adopted as tools to address complex management and big data problems. It is well-known that an interconnection network is generally modeled by an undirected graph, in which processors are represented by vertices and communication links between them are represented by edges. The hypercube network is recognized as one of the most popular interconnection networks, and it has gained great attention and recognition from researchers both in graph theory and computer science. Nevertheless, the hypercube also has some shortcomings. For example, its diameter is large. Therefore, many variants of the hypercube have been put forward [1-10] to improve performance of the hypercube in some aspects. Among these variants, the balanced hypercube has the following special properties: each vertex of the balanced has a backup (matching) vertex and they have the same neighborhood. Therefore, the backup vertex can undertake tasks that originally run on a faulty vertex. It has been proved that the diameter of an odd-dimensional balanced hypercube $B H_{n}$ is $2 n-1$ [10], which is smaller than that of the hypercube $Q_{2 n}$.

With regard to the special properties discussed above, the balanced hypercube has been investigated by many researchers. Huang and Wu [11] studied the problem of resource placement of the balanced hypercube. Xu et al. [12] showed that the balanced hypercube is edge-pancyclic and Hamiltonian laceable. It is found that the balanced hypercube is bipanconnected for all $n \geq 1$ by Yang [13]. Huang et al. [14] discussed area efficient layout problems of the balanced hypercube. Yang [15] determined super (edge) connectivity of the balanced hypercube. Lü et al. studied (conditional) matching preclusion, hyper-Hamiltonian laceability, matching extendability and extra connectivity of the balanced hypercube in [16-19], respectively. Some symmetric properties of the
balanced hypercube are presented in [20,21]. As stated above, the balanced hypercube possesses some desirable properties that the hypercube does not have, so it is interesting to explore other favorable properties that the balanced hypercube may have.

Since parallel applications such as image and signal processing are originally designed on array and ring architectures, it is important to have path and cycle embeddings in a network. Especially, Hamiltonian path and cycle embeddings and other properties of famous networks are extensively studied by many authors [12,13,22-26]. Xu et al. [12] proved that each edge of the balanced hypercube is on a cycle of even length from 4 to 4^{n}, that is, the balanced hypercube is edge-bipancyclic. They also showed that the balanced hypercube is Hamiltonian laceable for all integers $n \geq 1$. Recently, Lü et al. [17] further obtained that the balanced hypercube is hyper-Hamiltonian laceable for all integers $n \geq 1$.

The rest of this paper is organized as follows. Some necessary definitions are presented as preliminaries in Section 2. The main result of this paper is shown in Section 3. Finally, conclusions are given in Section 4.

2. Preliminaries

Let $G=(V, E)$ be a simple undirected graph, where V is a vertex-set of G and E is an edge-set of G. A path P from v_{0} to v_{n} is a sequence of vertices $v_{0} v_{1} \cdots v_{n}$ from v_{0} to v_{n} such that every pair of consecutive vertices are adjacent and all vertices are distinct except for v_{0} and v_{n}. We also denote the path $P=v_{0} v_{1} \cdots v_{n}$ by $\left\langle v_{0}, P, v_{n}\right\rangle$. The length of a path P is the number of edges in P, denoted by $l(P)$. A cycle is a path with at least three vertices such that the first vertex is the same as the last one. A graph is bipartite if its vertex-set can be partitioned into two subsets V_{0} and V_{1} such that each edge has its ends in different subsets. A graph is Hamiltonian if it possesses a spanning cycle. A graph is Hamiltonian connected if there exists a Hamiltonian path joining any two vertices of it. Obviously, any bipartite graph is not Hamiltonian connected. Simmons [27] proposed Hamiltonian laceability of bipatite graphs: a bipartite graph $G=\left(V_{0} \cup V_{1}, E\right)$ is Hamiltonian laceable if there exists a Hamiltonian path between any two vertices x and y in different partite sets of G. A graph G is hyper-Hamiltonian laceable if it is Hamiltonian laceable and, for any vertex $v \in V_{i}(i \in\{0,1\})$, there exists a Hamiltonian path in $G-v$ between any pair of vertices in V_{1-i}. For the graph definitions and notations not mentioned here, we refer the readers to $[28,29]$.

Wu and Huang [10] gave the following definition of $B H_{n}$ as follows.
Definition 1. An n-dimensional balanced hypercube, denoted by $B H_{n}$, consists of 4^{n} vertices labelled by $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a_{i} \in\{0,1,2,3\}$ for each $0 \leq i \leq n-1$. Any vertex $\left(a_{0}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n-1}\right)$ with $1 \leq i \leq n-1$ of $B H_{n}$ has the following $2 n$ neighbors:

1. $\left(\left(a_{0}+1\right) \bmod 4, a_{1}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n-1}\right)$,
$\left(\left(a_{0}-1\right) \bmod 4, a_{1}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n-1}\right)$, and
2. $\left(\left(a_{0}+1\right) \bmod 4, a_{1}, \ldots, a_{i-1},\left(a_{i}+(-1)^{a_{0}}\right) \bmod 4, a_{i+1}, \ldots, a_{n-1}\right)$,
$\left(\left(a_{0}-1\right) \bmod 4, a_{1}, \ldots, a_{i-1},\left(a_{i}+(-1)^{a_{0}}\right) \bmod 4, a_{i+1}, \ldots, a_{n-1}\right)$.

In $B H_{n}$, the first coordinate a_{0} of vertex $\left(a_{0}, \ldots, a_{i}, \ldots, a_{n-1}\right)$ is called the inner index and the other coordinates are known as the $a_{i}(1 \leq i \leq n-1) i$-dimensional index. Clearly, each vertex in $B H_{n}$ has two inner neighbors, and $2 n-2$ other neighbors. Note that all of the arithmetic operations on indices of vertices in BH_{n} are four-modulated.
BH_{1} and BH_{2} are illustrated in Figures 1 and 2, respectively.

Figure 1. $B H_{1}$.

Figure 2. BH_{2}.

In the following, we give some basic properties of $B H_{n}$.
Proposition 1. [10] The balanced hypercube is bipartite.
Proposition 2. [10,20] The balanced hypercube is vertex-transitive and edge-transitive.
Proposition 3. [10] The vertices $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $\left(\left(a_{0}+2\right) \bmod 4, a_{1}, \ldots, a_{n-1}\right)$ of $B H_{n}$ have the same neighborhood.

3. Main Results

Firstly, we characterize edges of the $B H_{n}$. Let u and v be two adjacent vertices in $B H_{n}$. If u and v differ in only the inner index, then $u v$ is said to be a 0 -dimensional edge, and u is a 0 -dimensional neighbor of v. If u and v differ in not only the inner index, but also some i-dimensional index $(i \neq 0)$ of the vertices, then $u v$ is called an i-dimensional edge, and u is an i-dimensional neighbor of v. For convenience, we denote the set of all i-dimensional edges by $\partial D_{i}(0 \leq i \leq n-1)$. Let $B H_{n-1}^{(i)}$ $(0 \leq i \leq 3)$ be the subgraph of $B H_{n}$ induced by the vertices of $B H_{n}$ with the $(n-1)$-dimensional
index i. That is, the $B H_{n-1}^{(i)}$'s can be obtained from $B H_{n}$ by deleting all ($n-1$)-dimensional edges. Therefore, $B H_{n-1}^{(i)} \cong B H_{n-1}$ for each $0 \leq i \leq 3$.

By Proposition 1, we know that $B H_{n}$ is bipartite. We can use V_{0} and V_{1} to denote the two partite sets of $B H_{n}$ such that V_{0} and V_{1} consist of vertices of $B H_{n}$ with an even inner index and an odd inner index, respectively. For convenience, the vertices of V_{0} and V_{1} are colored white and black, respectively. Throughout this paper, we use w_{i} and u_{i} (resp. b_{i} and v_{i}) to denote white (resp. black) vertices in $B H_{n-1}^{(i)}(i \in\{0,1,2,3\})$.

Lemma 1. [16] In $B H_{n}, \partial D_{i}(0 \leq i \leq n-1)$ can be divided into 4^{n-1} edge-disjoint 4 -cycles for $n \geq 1$.
Lemma 2. [12] The balanced hypercube $B H_{n}$ is Hamiltonian laceable and edge-bipancyclic for $n \geq 1$.
Lemma 3. [17] The balanced hypercube $B H_{n}$ is hyper-Hamiltonian laceable for $n \geq 1$.
Lemma 4. [30] Assume u and x are two different vertices in V_{0}, and v and y are two different vertices in V_{1}. Then, there exist two vertex-disjoint paths P and Q such that P joins x to y, Q joins u to v and $V(P) \cup V(Q)=V\left(B H_{n}\right)$, where $n \geq 1$.

Lemma 5. Let $n \geq 2$ be an integer. Suppose that u, v, x and y are four distinct vertices differ only the inner index in $B H_{n}$. In addition, $u, x \in V_{0}$ and $v, y \in V_{1}$. Then, there exists a Hamiltonian path from u to v in $B H_{n}-x-y$.

Proof. We proceed with the proof by the induction on n. First, we consider $n=2$. Clearly, u, v, x and y are in the same 4 -cycle of ∂D_{0}. A Hamiltonian path of $B H_{2}-x-y$ from u to v is shown in Figure 3. Thus, we suppose that the lemma holds for all integers $n-1$ with $n \geq 3$. Next, we consider $B H_{n}$. We split $B H_{n}$ into four $B H_{n-1}$ s by deleting $(n-1)$-dimensional edges. For convenience, we denote the four $B H_{n-1}$ s by B_{0}, B_{1}, B_{2} and B_{3} according to the last position of vertices in $B H_{n}$, respectively. Without loss of generality, we may assume that u, v, x and y are in B_{0}. By an induction hypothesis, there exists a Hamiltonian path P_{0} from u to v in $B_{0}-x-y$. Let $u_{0} v_{0} \in E\left(P_{1}\right)$, where u_{0} (resp. v_{0}) are neither end-vertex of P_{0}. We denote the segment of P_{0} from u to v_{0} by P_{00}, and the segment of P_{0} from u_{0} to v by P_{10}. By Definition $1, u_{0}$ (resp. v_{0}) has an $(n-1)$-dimensional neighbor v_{1} (resp. u_{3}) in B_{1} (resp. B_{3}). Moreover, there exist an edge $v_{3} u_{2}$ from B_{3} to B_{2}, and an edge $v_{2} u_{1}$ from B_{2} to B_{1}. Therefore, there exist a Hamiltonian path P_{3} from u_{3} to v_{3} in B_{3}, a Hamiltonian path P_{2} from u_{2} to v_{2} in B_{2}, and a Hamiltonian path P_{1} from u_{1} to v_{1} of B_{1}. Hence, $\left\langle u, P_{00}, v_{0}, u_{3}, P_{3}, v_{3}, u_{2}, P_{2}, v_{2}, u_{1}, P_{1}, v_{1}, u_{0}, P_{10}, v\right\rangle$ is a Hamiltonian path of $B H_{n}-x-y$ (see Figure 4).

Figure 3. A Hamiltonian path of $\mathrm{BH}_{2}-x-y$.

Figure 4. A Hamiltonian path of $B H_{n}-x-y$.

Next, we present the following lemma as a basis of our main theorem.
Lemma 6. Let e be an arbitrary edge in $B H_{2}$. In addition, let $x \in V_{1}$ and $y \in V_{0}$ be any two vertices in $B H_{2}$ with $e \neq x y$. Then, there exists a Hamiltonian path between x and y passing through e.

Proof. By Proposition 2, BH_{2} is vertex-transitive and edge-transitive, and we may suppose that $e=(0,0)(1,0)$. Obviously, if $e=x y$, then there exists no Hamiltonian path of $B H_{2}$ from x to y passing e. Thus, at most, one of x and y is the end-vertex of e. We consider the following two cases:

Case 1: Neither x nor y is incident to e. By the relative positions of x and y, and Proposition 3, we consider the following: (1) $x \in V\left(B_{0}\right), y \in V\left(B_{0}\right)$; (2) $x \in V\left(B_{0}\right), y \in V\left(B_{1}\right)$; (3) $x \in V\left(B_{0}\right)$, $y \in V\left(B_{2}\right) ;(4) x \in V\left(B_{0}\right), y \in V\left(B_{3}\right) ;(5) x \in V\left(B_{1}\right), y \in V\left(B_{1}\right) ;(6) x \in V\left(B_{1}\right), y \in V\left(B_{2}\right)$; (7) $x \in V\left(B_{1}\right), y \in V\left(B_{3}\right)$; (8) $x \in V\left(B_{2}\right), y \in V\left(B_{2}\right)$; (9) $x \in V\left(B_{2}\right), y \in V\left(B_{3}\right)$; (10) $x \in V\left(B_{3}\right)$, $y \in V\left(B_{3}\right)$. For simplicity, we list all Hamiltonian paths of the conditions above in Table 1.

Case 2: Either x or y is incident to e. Without loss of generality, suppose that x is incident to e, that is, $x=(1,0)$. By Proposition 3, we need only to consider four conditions of $y:(1) y \in V\left(B_{0}\right) ;(2) y \in V\left(B_{1}\right)$; (3) $y \in V\left(B_{2}\right)$; and (4) $y \in V\left(B_{3}\right)$. Again, we list Hamiltonian paths of the conditions of x and y in this case in Table 2.

Table 1. Hamiltonian paths passing through e with neither x nor y being incident to e.

	\boldsymbol{x}	\boldsymbol{y}	Hamiltonian Paths Passing through e with Neither x nor y Being Incident to e
(1)	$(3,0)$	$(2,0)$	$(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(0,1)(1,1)(0,0)(1,0)(2,0)$
(2)	$(3,0)$	$(0,1)$	$(3,0)(0,0)(1,0)(2,3)(3,3)(0,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(2,0)(1,1)(0,1)$
(3)	$(3,0)$	$(2,2)$	$(3,0)(0,3)(3,3)(2,3)(1,0)(0,0)(3,1)(2,0)(1,1)(0,1)(1,2)(2,1)(3,2)(0,2)(1,3)(2,2)$
(4)	$(3,0)$	$(0,3)$	$(3,0)(0,0)(1,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3)$
(5)	$(1,1)$	$(2,1)$	$(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)$
(6)	$(1,1)$	$(2,2)$	$(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,1)(1,2)(2,2)$
(7)	$(1,1)$	$(2,3)$	$(1,1)(0,0)(3,1)(0,1)(1,2)(2,1)(3,2)(2,2)(1,3)(0,2)(3,3)(0,3)(1,0)(2,0)(3,0)(2,3)$
(8)	$(1,2)$	$(2,2)$	$(1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)$
(9)	$(1,2)$	$(2,3)$	$(1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(1,3)(2,2)(3,2)(0,2)(3,3)(2,3)$
(10)	$(1,3)$	$(2,3)$	$(1,3)(0,3)(3,0)(0,0)(1,0)(2,0)(1,1)(2,1)(3,1)(0,1)(3,2)(2,2)(1,2)(0,2)(3,3)(2,3)$

Table 2. Hamiltonian paths passing through e with x or y being incident to e.

	\boldsymbol{x}	\boldsymbol{y}	Hamiltonian Paths Passing through \boldsymbol{e} with \boldsymbol{x} or \boldsymbol{y} Being Incident to \boldsymbol{e}
(1)	$(1,0)$	$(2,0)$	$(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(0,1)(3,1)(2,0)$
(2)	$(1,0)$	$(0,1)$	$(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(2,0)(3,1)(0,1)$
(3)	$(1,0)$	$(0,2)$	$(1,0)(0,0)(, 0)(0,3)(1,3)(2,3)(3,3)(2,2)(3,2)(2,1)(1,1)(2,0)(3,1)(0,1)(1,2)(0,2)$
(4)	$(1,0)$	$(0,3)$	$(1,0)(0,0)(3,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3)$

Now, we are ready to state the main theorem of this paper.
Theorem 1. Let $n \geq 2$ be an integer and e be an arbitrary edge in $B H_{n}$. In addition, let $x \in V_{1}$ and $y \in V_{0}$ be any two vertices in $B H_{n}$ with $e \neq x y$. Then, there exists a Hamiltonian path of $B H_{n}$ between x and y passing through e.

Proof. We prove this theorem by induction on n. By Lemma 6, we know that the theorem is true for $n=2$. Therefore, we suppose that the theorem holds for $n-1$ with $n \geq 3$. Next, we consider $B H_{n}$. Firstly, we divide $B H_{n}$ into $B H_{n-1}^{(i)}(0 \leq i \leq 3)$ by deleting all $(n-1)$-dimensional edges. For convenience, we denote $B H_{n-1}^{(i)}$ by B_{i} according to the last position of the vertices in $B H_{n}$ for each $i \in\{0,1,2,3\}$. Similarly, suppose that $e \in E\left(B_{0}\right)$. Let $x \in V_{1}$ and $y \in V_{0}$ be two distinct vertices in $B H_{n}$. By relative positions of x and y, we consider the following cases:

Case 1: $x \in V\left(B_{0}\right), y \in V\left(B_{0}\right)$. By an induction hypothesis, there exists a Hamiltonian path P_{0} from x to y of B_{0} passing through e. Thus, there is an edge $u_{0} v_{0}$ on P_{0} such that $u_{0} v_{0}$ is not adjacent to e and $u_{0} v_{0}$ divides P_{0} into two sections P_{00} and P_{10}, where P_{00} connects x to u_{0} and P_{10} connects v_{0} to y. Let v_{1} (resp. u_{3}) be an $(n-1)$-dimensional neighbor of u_{0} (resp. v_{0}). By Definition 1 , there exist an edge $u_{1} v_{2}$ from B_{1} to B_{2}, and an edge $u_{2} v_{3}$ from B_{2} to B_{3}. Thus, by Lemma 2, there exist a Hamiltonian path P_{1} from v_{1} to u_{1} in B_{1}, a Hamiltonian path P_{2} from v_{2} to u_{2} in B_{2}, and a Hamiltonian path P_{3} from v_{3} to u_{3} in B_{3}. Hence, $\left\langle x, P_{00}, u_{0}, v_{1}, P_{1}, u_{1}, v_{2}, P_{2}, u_{2}, v_{3}, P_{3}, u_{3}, v_{0}, P_{10}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 5).

Figure 5. Illustration for Case 1.
Case 2: $x \in V\left(B_{0}\right), y \in V\left(B_{1}\right)$. Let $u_{0} \in V\left(B_{0}\right)$ be a white vertex such that u_{0} is not incident to e. By an induction hypothesis, there exists a Hamiltonian path P_{0} of B_{0} from x to u_{0} passing through e. Supposing that v_{0} is a black vertex adjacent to u_{0} on P_{0}, we denote the segment of the path P_{0} from x to v_{0} by P_{00}. Let the two $(n-1)$-dimensional neighbors of u_{0} be b_{1} and v_{1}. By Lemma 2 , there exists a Hamiltonian path P_{1} of B_{1} from b_{1} to y. Let u_{1} be the neighbor of v_{1} in the section of P_{1} from b_{1} to v_{1}. Then $P_{1}-u_{1} v_{1}$ consists of two subpaths P_{01} and P_{11}, which connect u_{1} to b_{1} and v_{1} to y, respectively.

Let u_{3} (resp. v_{2}) be an $\left(n-1\right.$)-dimensional neighbor of v_{0} (resp. u_{1}). Furthermore, there exists an edge $v_{3} u_{2}$ from B_{3} to B_{2}. Then, there exist a Hamiltonian path P_{2} from u_{2} to v_{2} in B_{2}, and a Hamiltonian path P_{3} from u_{3} to v_{3} in B_{3}. Hence, $\left\langle x, P_{00}, v_{0}, u_{3}, P_{3}, v_{3}, u_{2}, P_{2}, v_{2}, u_{1}, P_{01}, b_{1}, u_{0}, v_{1}, P_{11}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 6).

Figure 6. Illustration for Case 2.

Case 3: $x \in V\left(B_{0}\right), y \in V\left(B_{2}\right)$. Let u_{0} be a white vertex in B_{0} not incident to e, and b_{1} and v_{1} be two $(n-1)$-dimensional neighbors of u_{0}. In addition, assume that w_{1} is an arbitrary white vertex in B_{1}. There exists a Hamiltonian path of B_{1} from b_{1} to w_{1}. Thus, there exists an edge $u_{1} v_{1} \in E\left(P_{1}\right)$ whose removal will lead to two disjoint subpaths P_{01} and P_{11}, where P_{01} connects u_{1} to b_{1} and P_{11} connects v_{1} to w_{1}. Let v_{2} (resp. b_{2}) be an $(n-1)$-dimensional neighbor of u_{1} (resp. w_{1}). There also exists a Hamiltonian path P_{2} of B_{2} from y to b_{2} via the edge $v_{2} u_{2}$. Deleting $v_{2} u_{2}$ results in two disjoint paths P_{02} and P_{12}, where P_{02} connects u_{2} to b_{2} and P_{12} connects v_{2} to y. By an induction hypothesis, there exists a Hamiltonian path P_{0} of B_{0} from x to u_{0} via the edge $v_{0} u_{0}$. For convenience, denote $P_{0}-u_{0}$ by P_{00}, that is, P_{00} connects x to v_{0}. Let u_{3} (resp. v_{3}) be an $(n-1)$-dimensional neighbor of v_{0} (resp. u_{2}). Again, there exists a Hamiltonian path P_{3} of B_{3} from u_{3} to v_{3}. Hence, $\left\langle x, P_{00}, v_{0}, u_{3}, P_{3}, v_{3}, u_{2}, P_{02}, b_{2}, w_{1}, P_{11}, v_{1}, u_{0}, b_{1}, P_{01}, u_{1}, v_{2}, P_{12}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 7).

Figure 7. Illustration for Case 3.

Case 4: $x \in V\left(B_{0}\right), y \in V\left(B_{3}\right)$. Let u_{0} (resp. v_{3}) be a white (resp. black) vertex in B_{0} (resp. B_{3}). There exist an edge $u_{0} v_{1}$ from B_{0} to B_{1}, an edge $u_{1} v_{2}$ from B_{1} to B_{2}, and an edge $u_{2} v_{3}$ from B_{2} to B_{3}.

By Lemma 2, there exist a Hamiltonian path P_{1} of B_{1} from v_{1} to u_{1}, a Hamiltonian path P_{2} of B_{2} from v_{2} to u_{2}, and a Hamiltonian path P_{3} of B_{3} from v_{3} to u_{3}. By an induction hypothesis, there exists a Hamiltonian path P_{0} of B_{0} from x to u_{0} passing through e. Hence, $\left\langle x, P_{0}, u_{0}, v_{1}, P_{1}, u_{1}, v_{2}, P_{2}, u_{2}, v_{3}, P_{3}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 8).

Figure 8. Illustration for Case 4.
Case 5: $x \in V\left(B_{1}\right), y \in V\left(B_{1}\right)$. Let $v_{1} \neq x$ be a black vertex in B_{1}. By Lemma 3, there exists a Hamiltonian path P_{1} of $B_{1}-y$ from x to v_{1}. Furthermore, there exist an edge $v_{1} u_{0}$ from B_{1} to B_{0}, an edge $v_{0} u_{3}$ from B_{0} to B_{3}, an edge $v_{3} u_{2}$ from B_{3} to B_{2}, and an edge $v_{2} y$ from B_{2} to B_{1}. Moreover, there exist a Hamiltonian path P_{0} of B_{0} from u_{0} to v_{0} passing through e, a Hamiltonian path P_{3} of B_{3} from u_{3} to v_{3}, and a Hamiltonian path P_{2} of B_{2} from u_{2} to v_{2}. Hence, $\left\langle x, P_{1}, v_{1}, u_{0}, P_{0}, v_{0}, u_{3}, P_{3}, v_{3}, u_{2}, P_{2}, v_{2}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 9).

Figure 9. Illustration for Case 5.
Case 6: $x \in V\left(B_{1}\right), y \in V\left(B_{2}\right)$. Let $v_{1} \neq x$ (resp. u_{1}) be a black (resp. white) vertex in B_{1}. By Lemma 3, there exists a Hamiltonian path P_{1} of $B_{1}-u_{1}$ from x to v_{1}. In addition, suppose that v_{2} and b_{2} are two $(n-1)$-dimensional neighbors of u_{1}. By Lemma 2, there exists a Hamiltonian P_{2} of B_{2} from v_{2} to y via the edge $u_{2} b_{2}$. Thus, P_{2} can be divided into three sections: $P_{02}, u_{2} v_{2}$ and P_{12}, where P_{02} connects u_{2} to v_{2} and P_{12} connects b_{2} to y. Furthermore, there exist an edge $v_{1} u_{0}$ from B_{1} to B_{0}, an edge $v_{0} u_{3}$ from B_{0} to B_{3}, and an edge $v_{3} u_{2}$ from B_{3} to B_{2}. Therefore, there exist a Hamiltonian path P_{0} of B_{0} from u_{0} to v_{0} passing through e, and a Hamiltonian path P_{3} of B_{3} from u_{3} to v_{3}. Hence, $\left\langle x, P_{1}, v_{1}, u_{0}, P_{0}, v_{0}, u_{3}, P_{3}, v_{3}, u_{2}, P_{02}, v_{2}, u_{1}, b_{2}, P_{12}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 10).

Figure 10. Illustration for Case 6.

Case 7: $x \in V\left(B_{1}\right), y \in V\left(B_{3}\right)$. Let v_{3} and b_{3} be two black vertices in B_{3}. Suppose that u_{2} and w_{2} are $(n-1)$-dimensional neighbors of v_{2} and b_{2}, respectively. By Lemma 3, there exists a Hamiltonian path P_{3} of $B_{3}-y$ from b_{3} to v_{3}. By Definition 1, there exist two edges $v_{2} u_{1}$ and $b_{2} w_{1}$ from B_{2} to B_{1}, an edge $v_{1} u_{0}$ from B_{1} to B_{0}, and an edge $v_{0} y$ from B_{0} to B_{3}, where $x \neq v_{1}$. By Lemma 4, there exist two vertex-disjoint paths P_{01} and P_{11} such that P_{01} joins v_{1} and u_{1}, P_{11} joins x and w_{1}, and $V\left(P_{01}\right) \cup V\left(P_{11}\right)=V\left(B_{1}\right)$. Similarly, there exist two vertex-disjoint paths P_{02} and P_{12} such that P_{02} joins v_{2} and u_{2}, P_{12} joins b_{2} and w_{2}, and $V\left(P_{02}\right) \cup V\left(P_{12}\right)=V\left(B_{2}\right)$. By an induction hypothesis, there exists a Hamiltonian path P_{0} of B_{0} from u_{0} to v_{0} passing through e. Hence, $\left\langle x, P_{11}, w_{1}, b_{2}, P_{12}, w_{2}, b_{3}, P_{3}, v_{3}, u_{2}, P_{02}, v_{2}, u_{1}, P_{01}, v_{1}, u_{0}, P_{0}, v_{0}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 11).

Figure 11. Illustration for Case 7.

Case 8: $x \in V\left(B_{2}\right), y \in V\left(B_{2}\right)$. Let $u_{2} \in V\left(B_{2}\right)$ be an arbitrary white vertex. By Lemma 3, there exists a Hamiltonian path P_{2} of $B_{2}-x$ from u_{2} to y. By Definition 1, there exist an edge $x u_{1}$ from B_{2} to B_{1}, an edge $v_{1} u_{0}$ from B_{1} to B_{0}, an edge $v_{0} u_{3}$ from B_{0} to B_{3}, and an edge $v_{3} u_{2}$ from B_{3} to B_{2}. Following Lemma 2, we can obtain a Hamiltonian path P_{1} of B_{1} from u_{1} to v_{1}, and a Hamiltonian path P_{3} of B_{3} from u_{3} to v_{3}. By an induction hypothesis, there exists a Hamiltonian path P_{0} of B_{0} from u_{0} to v_{0} passing through e. Therefore, $\left\langle x, u_{1}, P_{1}, v_{1}, u_{0}, P_{0}, v_{0}, u_{3}, P_{3}, v_{3}, u_{2}, P_{2}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 12).

Figure 12. Illustration for Case 8.

Case 9: $x \in V\left(B_{2}\right), y \in V\left(B_{3}\right)$. Let u_{2} and w_{2} be two distinct white vertices in B_{2}, and v_{3} and b_{3} be ($n-1$)-dimensional neighbors of u_{2} and w_{2}, respectively. By Lemma 3, there exists a Hamiltonian path P_{2} of $B_{2}-x$ from u_{2} to w_{2}. By Lemma 2, there exists a Hamiltonian path P_{3} of B_{3} from v_{3} to y via the edge $u_{3} b_{3}$. By deleting $u_{3} b_{3}$, we can obtain two disjoint subpaths: P_{03} and P_{13}, where P_{03} connects u_{3} to v_{3} and P_{13} connects b_{3} to y. Furthermore, there exist an edge $x u_{1}$ from B_{2} to B_{1}, an edge $v_{1} u_{0}$ from B_{1} to B_{0}, and an edge $v_{0} u_{3}$ from B_{0} to B_{3}. By Lemma 2 , there exists a Hamiltonian path P_{1} of B_{1} from u_{1} to v_{1}. By an induction hypothesis, there exists a Hamiltonian path P_{0} of B_{0} from u_{0} to v_{0} passing through e. Hence, $\left\langle x, u_{1}, P_{1}, v_{1}, u_{0}, P_{0}, v_{0}, u_{3}, P_{03}, v_{3}, u_{2}, P_{2}, w_{2}, v_{3}, P_{13}, y\right\rangle$ is a Hamiltonian path of $B H_{n}$ from x to y passing through e (see Figure 13).

Figure 13. Illustration for Case 9.
Case 10: $x \in V\left(B_{3}\right), y \in V\left(B_{3}\right)$. The proof is analogous to that of Case 5, and we omit it.

4. Conclusions

In this paper, we study a type of path embedding of the balanced hypercube, and show that, for an arbitrary edge $e \neq x y$, there exists a Hamiltonian path between any two vertices x and y in different partite sets passing through e. This result also implies that each edge is on a Hamiltonian cycle of the balanced hypercube, which is part of the results of edge bipancyclicity of the balanced hypercube.

Acknowledgments: This work was supported by National Natural Science Foundation of China under Grant Nos. 61402210 and 60973137, Program for New Century Excellent Talents in University under Grant No. NCET-12-0250,

Major Project of High Resolution Earth Observation System with Grant No. 30-Y20A34-9010-15/17, "Strategic Priority Research Program" of the Chinese Academy of Sciences with Grant No. XDA03030100, Gansu Sci.\&Tech. Program under Grant Nos. 1104GKCA049, 1204GKCA061 and 1304GKCA018, The Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2016-140, Gansu Telecom Cuiying Research Fund under Grant No. lzudxcy-2013-4, Google Research Awards and Google Faculty Award, China.
Author Contributions: Dan Chen and Chong Chen initiated the research idea and developed the models with contributions from Gaofeng Zhang. Zhongzhou Lu and Zebang Shen offered help while constructing the model. The manuscript was written by Dan Chen and Chong Chen with Rui Zhou and Qingguo Zhou providing review and comments. All the authors were engaged in the final manuscript preparation and agreed to the publication of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abraham, S.; Padmanabhan, K. The twisted cube topology for multiprocessors: A study in network asymmetry. J. Parall. Distrib. Comput. 1991, 13, 104-110, doi:10.1016/0743-7315(91)90113-N.
2. Choudum, S.A.; Sunitha, V. Augmented cubes. Networks 2002, 40, 71-84.
3. Cull, P.; Larson, S.M. The Möbius cubes. IEEE Trans. Comput. 1995, 44, 647-659.
4. Dally, W.J. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. Comput. 1990, 39, 775-785.
5. Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parall. Distr. Syst. 1992, 3, 513-524.
6. El-amawy, A.; Latifi, S. Properties and performance of folded hypercubes. IEEE Trans. Parall. Distrib. Syst. 1991, 2, 31-42.
7. Li, T.K.; Tan, J.J.M.; Hsu, L.H.; Sung, T.Y. The shuffle-cubes and their generalization. Inform. Process. Lett. 2001, 77, 35-41.
8. Preparata, F.P.; Vuillemin, J. The cube-connected cycles: A versatile network for parallel computation. Comput. Arch. Syst. 1981, 24, 300-309.
9. Xiang, Y.; Stewart, I.A. Augmented k-ary n-cubes. Inform. Sci. 2011, 181, 239-256.
10. Wu, J.; Huang, K. The balanced hypercube: A cube-based system for fault-tolerant applications. IEEE Trans. Comput. 1997, 46, 484-490.
11. Huang, K.; Wu, J. Fault-tolerant resource placement in balanced hypercubes. Inform. Sci. 1997, 99, 159-172.
12. $\mathrm{Xu}, \mathrm{M} . ; \mathrm{Hu}, \mathrm{H} . ; \mathrm{Xu}, \mathrm{J}$. Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes. Appl. Math. Comput. 2007, 189, 1393-1401.
13. Yang, M. Bipanconnectivity of balanced hypercubes. Comput. Math. Appl. 2010, 60, 1859-1867.
14. Huang, K.; Wu, J. Area efficient layout of balanced hypercubes. Int. J. High Speed Electr. Syst. 1995, 6, 631-645.
15. Yang, M. Super connectivity of balanced hypercubes. Appl. Math. Comput. 2012, 219, 970-975.
16. Lü, H.; Li, X.; Zhang, H. Matching preclusion for balanced hypercubes. Theor. Comput. Sci. 2012, 465, 10-20, doi:10.1016/j.tcs.2012.09.020.
17. Lü, H.; Zhang, H. Hyper-Hamiltonian laceability of balanced hypercubes. J. Supercomput. 2014, 68, 302-314, doi:10.1007/s11227-013-1040-6.
18. Lü, H.; Gao, X.; Yang, X. Matching extendability of balanced hypercubes. Ars Combinatoria 2016, 129, 261-274.
19. Lü, H. On extra connectivity and extra edge-connectivity of balanced hypercubes. Int. J. Comput. Math. 2017, 94, 813-820.
20. Zhou, J.-X.; Wu, Z.-L.; Yang, S.-C.; Yuan, K.-W. Symmetric property and reliability of balanced hypercube. IEEE Trans. Comput. 2015, 64, 876-881.
21. Zhou, J.-X.; Kwak, J.; Feng, Y.-Q.; Wu, Z.-L. Automorphism group of the balanced hypercube. Ars Math. Contemp. 2017, 12, 145-154.
22. Jha, P.K.; Prasad, R. Hamiltonian decomposition of the rectangular twisted torus. IEEE Trans. Comput. 2012, 23, 1504-1507
23. Chang, N.-W.; Tsai, C.-Y.; Hsieh, S.-Y. On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes. IEEE Trans. Comput. 2014, 63, 1594-1600.
24. Hsieh, S.-Y.; Yu, P.-Y. Fault-free mutually independent Hamiltonian cycles in hypercubes with faulty edges. J. Combin. Optim. 2007, 13, 153-162.
25. Park, C.; Chwa, K. Hamiltonian properties on the class of hypercube-like networks. Inform. Process. Lett. 2004, 91, 11-17.
26. Wang, S.; Li, J.; Wang, R. Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cube. Inform. Sci. 2011, 181, 3054-3065
27. Simmons, G. Almost all n-dimensional rectangular lattices are Hamilton-Laceable. Congr. Numer. 1978, 21, 103-108.
28. West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2001.
29. Xu, J.M. Topological Structure and Analysis of Interconnection Networks; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001.
30. Cheng, D.; Hao, R.-X.; Feng, Y.-Q. Two node-disjoint paths in balanced hypercubes. Appl. Math. Comput. 2014, 242, 127-142.

(C) 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
