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Abstract:



In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection on a submanifold is also semi-symmetric non-metric connection. We consider the total geodesicness and minimality of a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss, Cadazzi, and Ricci equations for submanifolds with respect to the semi-symmetric non-metric connection.
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1. Introduction


In 1924, Friedmann and Schouten [1] introduced the idea of semi-symmetric connection on a differentiable manifold. A linear connection [image: there is no content] on a differentiable manifold [image: there is no content] is said to be a semi-symmetric connection if the torsion [image: there is no content] of the connection [image: there is no content] satisfies


[image: there is no content]



(1)




where [image: there is no content] is a 1-form.



In 1932, Hayden [2] introduced the notion of a semi-symmetric metric connection on a Riemannian manifold [image: there is no content]. A semi-symmetric connection [image: there is no content] is said to be a semi-symmetric metric connection if


[image: there is no content]



(2)







Yano [3] studied some properties of a Riemannian manifold endowed with a semi-symmetric metric connection. Submanifolds of a Riemannian manifold with a semi-symmetric metric connection were studied by Nakao [4].



After a long gap, the study of a semi-symmetric connection [image: there is no content] satisfying


[image: there is no content]



(3)




was initiated by Prvanovic [5] with the name pseudo-metric semi-symmetric connection, and was just followed by Smaranda and Andonie [6].



A semi-symmetric connection [image: there is no content] is said to be a semi-symmetric non-metric connection if it satisfies the condition Equation (3).



In 1992, Agashe and Chafle [7] introduced a semi-symmetric non-metric connection on a Riemannian manifold [image: there is no content] given by


[image: there is no content]








where [image: there is no content] is the Levi-Civita connection of [image: there is no content] and [image: there is no content] is a 1-form. Agashe and Chafle [8] studied submanifolds of a Riemannian manifold with this semi-symmetric non-metric connection. In 2000, Sengupta, De, and Binh [9] gave another type of semi-symmetric non-metric connection. Özgür [10] studied properties of submanifolds of a Riemannian manifold with this semi-symmetric non-metric connection. Recently, De, Han, and Zhao [11] introduced a new type of semi-symmetric non-metric connection which is given by


[image: there is no content]



(4)




where a and b are two non-zero real numbers and [image: there is no content] is a 1-form. They proved the existence of this new type of linear connection and studied a Riemannian manifold admitting this type of semi-symmetric non-metric connection in [11].



Motivated by [8] and [10], we have studied submanifolds of a Riemannian manifold endowed with the semi-symmetric non-metric connection defined by Equation (4) in this paper. The paper has been organized as follows: In Section 2, we give some properties of the semi-symmetric non-metric connection; In Section 3, we consider a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection and show that the induced connection on the submanifold is also a semi-symmetric non-metric connection. We also consider the total geodesicness and minimality of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection; In Section 4, we deduce the Gauss, Codazzi, and Ricci equations with respect to the semi-symmetric non-metric connection. Using this Gauss equation, we give the relation between the sectional curvatures with respect to the semi-symmetric non-metric connection of a Riemannian manifold and a submanifold, which is analogous to Synger’s inequality [12]. Finally, we consider these fundamental equations of a submanifold in a space form with constant curvature with the semi-symmetric non-metric connection.




2. Preliminaries


Let [image: there is no content] be an [image: there is no content]-dimensional Riemannian manifold with a Riemannian metric g and [image: there is no content] be the Levi-Civita connection of [image: there is no content]. De, Han, and Zhao [11] defined a special type of linear connection on [image: there is no content] by


[image: there is no content]



(5)




where a and b are two non-zero real numbers and [image: there is no content] is a 1-form on [image: there is no content]. Denote by [image: there is no content], i.e., the vector field [image: there is no content] is defined by [image: there is no content] for all [image: there is no content], [image: there is no content] is the set of all differentiable vector fields on [image: there is no content].



By Equation (5), the torsion tensor [image: there is no content] with respect to the connection [image: there is no content] is given by


[image: there is no content]








where [image: there is no content] is a 1-form.



Therefore, the connection [image: there is no content] is a semi-symmetric connection. Additionally,


[image: there is no content]











Hence, the semi-symmetric connection [image: there is no content] defined by Equation (5) is a semi-symmetric non-metric connection.



Analogous to the definition of the curvature tensor [image: there is no content] of [image: there is no content] with respect to the Levi-Civita connection [image: there is no content], we define the curvature tensor [image: there is no content] of [image: there is no content] with respect to the semi-symmetric non-metric connection [image: there is no content] given by


[image: there is no content]



(6)




where [image: there is no content].



Using Equations (5) and (6), we have


R˜ˇ(X˜,Y˜)Z˜=R˜(X˜,Y˜)Z˜−a(∇˜Y˜ω)(X˜)Z˜+a(∇˜X˜ω)(Y˜)Z˜−b(∇˜Y˜ω)(Z˜)X˜+b(∇˜X˜ω)(Z˜)Y˜+b2ω(Y˜)ω(Z˜)X˜−b2ω(X˜)ω(Z˜)Y˜.



(7)







The Riemannian Christoffel tensors of the connections [image: there is no content] and [image: there is no content] are defined by


[image: there is no content]








and


[image: there is no content]








respectively.




3. Submanifolds of a Riemannian Manifold with the Semi-Symmetric Non-Metric Connection [image: there is no content]


Let M be an n-dimensional submanifold of an [image: there is no content]-dimensional Riemannian manifold with the semi-symmetric non-metric connection [image: there is no content]. We decompose the vector field [image: there is no content] on M uniquely into their tangent and normal components [image: there is no content], [image: there is no content].



The Gauss formula for the submanifold M with respect to the Levi-Civita connection [image: there is no content] is given by


∇˜XY=∇XY+h(X,Y),∀X,Y∈X(M),



(8)




where h is the second fundamental form of M in [image: there is no content].



For the second fundament form h, the covariant of h is defined by


(∇¯Xh)(Y,Z)=∇X⊥h(Y,Z)−h(∇XY,Z)−h(Y,∇XZ),∀X,Y,Z∈X(M).



(9)







Then, [image: there is no content] is a normal bundle valued tensor of type [image: there is no content] and is called the third fundamental form of M. [image: there is no content] is called the van der Waerden–Bortolotti connection of M; i.e., [image: there is no content] is the connection in [image: there is no content] built with [image: there is no content] and [image: there is no content].



Let [image: there is no content] be the induced connection from the semi-symmetric non-metric connection [image: there is no content]. We define


∇˜ˇXY=∇ˇXY+hˇ(X,Y),∀X,Y∈X(M),



(10)




where [image: there is no content] is a [image: there is no content]-tensor field in [image: there is no content], the normal part of M. The Equation (10) may be called the Gauss formula for M with respect to the semi-symmetric non-metric connection [image: there is no content].



Using Equations (5), (8), and (10), we have


[image: there is no content]



(11)




Comparing the tangential and normal parts of Equation (11), we obtain


[image: there is no content]



(12)




and


[image: there is no content]



(13)







From Equation (12), we have


[image: there is no content]



(14)




where [image: there is no content] is the torsion tensor of the connection [image: there is no content] on M. Moreover, using Equation (12), we have


(∇ˇXg)(Y,Z)=∇ˇX(g(Y,Z))−g(∇ˇXY,Z)−g(Y,∇ˇXZ)=−2aω(X)g(Y,Z)−bω(Y)g(X,Z)−bω(Z)g(X,Y)≠0.



(15)







In view of Equations (12), (14), and (15), we can state the following theorem:



Theorem 1.

The induced connection [image: there is no content] on a submanifold of a Riemannian manifold endowed with the semi-symmetric non-metric connection [image: there is no content] is also a semi-symmetric non-metric connection.





If [image: there is no content] for all [image: there is no content], then M is called totally geodesic with respect to the semi-symmetric non-metric connection. Let [image: there is no content] be an orthonormal basis of the tangent space of M. We define the mean curvature vector [image: there is no content] of M with respect to the semi-symmetric non-metric connection by


[image: there is no content]



(16)







From Equation (13) we know that


[image: there is no content]



(17)




where H is the mean curvature vector of the submanifold M. If [image: there is no content], then M is called minimal with respect to the semi-symmetric non-metric connection.



From Equations (13) and (17), we have the following result:



Theorem 2.

Let M be an n-dimensional submanifold of an [image: there is no content]-dimensional Riemannian manifold [image: there is no content] with the semi-symmetric non-metric connection [image: there is no content]. Then,

	(1) 

	
M is totally geodesic with respect to the semi-symmetric non-metric connection if and only if M is totally geodesic with respect to the Levi-Civita connection.




	(2) 

	
M is minimal with respect to the semi-symmetric non-metric connection if and only if M is minimal with respect to the Levi-Civita connection.











Let [image: there is no content] be a normal vector field on M. From Equation (5), we have


[image: there is no content]



(18)




It is well known that the Weingarten formula for a submanifold of a Riemannian manifold is given by


[image: there is no content]



(19)




where [image: there is no content] is the shape operator of M in the direction of [image: there is no content].



Using Equation (19), we can write Equation (18) as


[image: there is no content]



(20)







Now we define a [image: there is no content]-tensor field on M by


[image: there is no content]



(21)







Then, Equation (20) turns into


[image: there is no content]



(22)







Equation (22) is called the Weingarten formula for M with respect to the semi-symmetric non-metric connection.



Since [image: there is no content] is symmetric, it is easy to verify that


[image: there is no content]








and


[image: there is no content]



(23)




where [image: there is no content], [image: there is no content] and [image: there is no content] are normal vector fields on M.



From Equations (21) and (23), we can also obtain the following theorems:



Theorem 3.

Principal directions of the unit normal vector ξ with respect to the Levi-Civita connection [image: there is no content] and the semi-symmetric non-metric connection [image: there is no content], and the principle curvatures are equal if and only if ξ is orthogonal to [image: there is no content].





Theorem 4.

Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection [image: there is no content]. Then, the shape operators with respect to the semi-symmetric non-metric connection are simultaneously diagonalizable if and only if the shape operators with respect to the Levi-Civita connection are simultaneously diagonalizable.






4. Gauss, Codazzi, and Ricci Equations with Respect to the Semi-Symmetric Non-Metric Connection


We denote the curvature tensor of a submanifold M of a Riemannian manifold [image: there is no content] with respect to the induced semi-symmetric non-metric connection [image: there is no content] and the induced Levi-Civita connection ∇ by


[image: there is no content]



(24)




and


[image: there is no content]








respectively, where [image: there is no content].



Theorem 5.

Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection [image: there is no content]. Then, for all [image: there is no content], we have


R˜ˇ(X,Y,Z,W)=Rˇ(X,Y,Z,W)−g(hˇ(Y,Z),hˇ(X,W))+g(hˇ(X,Z),hˇ(Y,W))+bω(hˇ(Y,Z))g(X,W)−bω(hˇ(X,Z))g(Y,W).



(25)




Here Equation (25) is called the Gauss equation for the submanifold M with respect to the semi-symmetric non-metric connection.





Proof. 

From Equations (10) and (20), we have


∇˜ˇX∇˜ˇYZ=∇ˇX∇ˇYZ+hˇ(X,∇ˇYZ)−Ahˇ(Y,Z)X+bω(hˇ(Y,Z))X+∇X⊥hˇ(Y,Z)+aω(X)hˇ(Y,Z),



(26)






∇˜ˇY∇˜ˇXZ=∇ˇY∇ˇXZ+hˇ(Y,∇ˇXZ)−Ahˇ(X,Z)Y+bω(hˇ(X,Z))Y+∇Y⊥hˇ(X,Z)+aω(Y)hˇ(X,Z),



(27)




and


[image: there is no content]



(28)







Using Equations (24), (26)–(28), we obtain


R˜ˇ(X,Y)Z=Rˇ(X,Y)Z+hˇ(X,∇ˇYZ)−hˇ(Y,∇ˇXZ)−hˇ([X,Y],Z)−Ahˇ(Y,Z)X+Ahˇ(X,Z)Y+bω(hˇ(Y,Z))X−bω(hˇ(X,Z))Y+∇X⊥hˇ(Y,Z)−∇Y⊥hˇ(X,Z)+aω(X)hˇ(Y,Z)−aω(Y)hˇ(X,Z).



(29)







Since [image: there is no content] and [image: there is no content], from Equation (29) we find


R˜ˇ(X,Y,Z,W)=Rˇ(X,Y,Z,W)−g(Ahˇ(Y,Z)X,W)+g(Ahˇ(X,Z)Y,W)+bω(hˇ(Y,Z))g(X,W)−bω(hˇ(X,Z))g(Y,W)=Rˇ(X,Y,Z,W)−g(hˇ(Y,Z),hˇ(X,W))+g(hˇ(X,Z),hˇ(Y,W))+bω(hˇ(Y,Z))g(X,W)−bω(hˇ(X,Z))g(Y,W).








☐





Recalling that if [image: there is no content] is a 2-dimensional subspace of [image: there is no content] spanned by an orthonormal base [image: there is no content], we define the sectional curvature [image: there is no content] with respect to the semi-symmetric non-metric connection as [image: there is no content]. Let [image: there is no content] denote the corresponding sectional curvature in [image: there is no content]. As an application of the Gauss Equation (25), we can obtain the following Synger’s inequality with respect to the semi-symmetric non-metric connection.



Corollary 1.

Let M be a submanifold of a Riemannian manifold [image: there is no content] with the semi-symmetric non-metric connection [image: there is no content] and γ be a geodesic in [image: there is no content] which lies in M, and T be a unit tangent vector field of γ. π is a subspace of the tangent space [image: there is no content] spanned by [image: there is no content]. Then,

	(1) 

	
[image: there is no content] along γ.




	(2) 

	
if X is a unit tangent vector field on M which is parallel along γ and orthogonal to T, then the equality of (1) holds if and only if X is parallel along γ in [image: there is no content].











Proof. 

(1) Let [image: there is no content] be a geodesic in [image: there is no content] which lies in M and T be a unit tangent vector field of [image: there is no content]. Then, we have


[image: there is no content]



(30)







Let [image: there is no content] be a subspace of the tangent space [image: there is no content] spanned by an orthonormal base [image: there is no content]. Applying the Gauss Equation (25) and [image: there is no content], we obtain


K˜ˇ(π)=R˜ˇ(X,T,T,X)=Rˇ(X,T,T,X)−g(h(X,X),h(T,T))+g(h(X,T),(X,T))+bω(h(T,T))=Kˇ(π)+g(h(X,T),(X,T))≥Kˇ(π).



(31)







(2) If X be parallel along [image: there is no content], we have [image: there is no content] Thus, we have


[image: there is no content]











Then, the equality of Equation (31) holds if and only if [image: there is no content]; i.e., [image: there is no content]. ☐





Theorem 6.

Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection [image: there is no content]. Then, for all [image: there is no content], we have


[image: there is no content]



(32)




where [image: there is no content]. Equation (32) is called the Codazzi equation with respect to the semi-symmetric non-metric connection.





Proof. 

From Equation (29), the normal component of [image: there is no content] is given by


(R˜ˇ(X,Y)Z)⊥=hˇ(X,∇ˇYZ)−hˇ(Y,∇ˇXZ)−hˇ([X,Y],Z)+∇X⊥hˇ(Y,Z)−∇Y⊥hˇ(X,Z)+aω(X)hˇ(Y,Z)−aω(Y)hˇ(X,Z)=∇X⊥hˇ(Y,Z)−∇Y⊥hˇ(X,Z)−hˇ(Y,∇ˇXZ)+hˇ(X,∇ˇYZ)−hˇ(∇ˇXY−∇ˇYX+(b−a)ω(X)Y−(b−a)ω(Y)X,Z)+aω(X)hˇ(Y,Z)−aω(Y)hˇ(X,Z)=∇¯ˇXhˇ(Y,Z)−∇¯ˇYhˇ(X,Z)−(b−2a)ω(X)hˇ(Y,Z)+(b−2a)ω(Y)hˇ(X,Z),








where [image: there is no content]. ☐





Remark 1.

[image: there is no content] is the connection in [image: there is no content] built with [image: there is no content] and [image: there is no content]. It may be called the van der Waerden–Bortolotti connection with respect to the semi-symmetric non-metric connection.





Theorem 7.

Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection [image: there is no content]. Then, for all [image: there is no content] and normal vector fields [image: there is no content] on M, we have


[image: there is no content]



(33)







Equation (33) is called the Ricci equation for the submanifold M with respect to the semi-symmetric non-metric connection.





Proof. 

From Equations (10) and (22), we get


∇˜ˇX∇˜ˇYξ=−∇ˇX(AˇξY)−hˇ(X,AˇξY)−Aˇ∇Y⊥ξX+∇X⊥∇Y⊥ξ+aω(X)∇Y⊥ξ+ag(∇˜XY,U⊤)ξ+ag(Y,∇˜XU⊤)ξ+aω(Y)∇˜Xξ+a2ω(X)ω(Y)ξ+abω(Y)ω(ξ)X,



(34)






∇˜ˇY∇˜ˇXξ=−∇ˇY(AˇξX)−hˇ(Y,AˇξX)−Aˇ∇X⊥ξY+∇Y⊥∇X⊥ξ+aω(Y)∇X⊥ξ+ag(∇˜YX,U⊤)ξ+ag(X,∇˜YU⊤)ξ+aω(X)∇˜Yξ+a2ω(Y)ω(X)ξ+abω(X)ω(ξ)Y



(35)




and


[image: there is no content]



(36)







Using Equations (34)–(36), we have


R˜ˇ(X,Y,ξ,μ)=g(R˜ˇ(X,Y)ξ),μ)=R⊥(X,Y,ξ,μ)−g(hˇ(X,AˇξY),μ)+g(hˇ(Y,AˇξX),μ)+a[g(Y,∇˜XU⊤)−g(X,∇˜YU⊤)]g(ξ,μ).








In view of Equations (10), (13), and (21), the above equation turns into


R˜ˇ(X,Y,ξ,μ)=R⊥(X,Y,ξ,μ)−g(h(X,AξY),μ)+g(h(Y,AξX),μ)+a[g(Y,∇XU⊤)−g(X,∇YU⊤)]g(ξ,μ)=R⊥(X,Y,ξ,μ)−g((AξAμ−AμAξ)X,Y)+a[g(Y,∇XU⊤)−g(X,∇YU⊤)]g(ξ,μ)=R⊥(X,Y,ξ,μ)−g([Aξ,Aμ]X,Y)+a[g(Y,∇XU⊤)−g(X,∇YU⊤)]g(ξ,μ)








☐





It will be useful to examine the form of our fundamental equations with respect to the semi-symmetric non-metric connection when the ambient space [image: there is no content] has constant curvature. Now, assume that [image: there is no content] is an [image: there is no content]-dimensional space form of constant curvature C with the semi-symmetric non-metric connection [image: there is no content]. Let M be a submanifold of [image: there is no content]. Then, from Equation (7) we have


R˜ˇ(X,Y)Z=C[g(Y,Z)X−g(X,Z)Y]−a(∇˜Yω)(X)Z+a(∇˜Xω)(Y)Z−b(∇˜Yω)(Z)X+b(∇˜Xω)(Z)Y+b2ω(Y)ω(Z)X−b2ω(X)ω(Z)Y,



(37)




where [image: there is no content].



Hence from Equation (25) we know that the Gauss equation becomes


Rˇ(X,Y)Z=C[g(Y,Z)X−g(X,Z)Y]−a(∇˜Yω)(X)Z+a(∇˜Xω)(Y)Z−b(∇˜Yω)(Z)X+b(∇˜Xω)(Z)Y+b2ω(Y)ω(Z)X−b2ω(X)ω(Z)Y+g(hˇ(Y,Z),hˇ(X,W))−g(hˇ(X,Z),hˇ(Y,W))−bω(hˇ(Y,Z))g(X,W)+bω(hˇ(X,Z))g(Y,W).











From Equation (37) we know


[image: there is no content]











So from Equation (32) we know that the Codazzi equation becomes


[image: there is no content]











Since [image: there is no content] is a space form of constant C, it follows that [image: there is no content]. On the other hand, from Equation (37) we have


R˜ˇ(X,Y,ξ,μ)=a[(∇ˇXω)Y−(∇ˇYω)X]g(ξ,μ)=a[X(g(U⊤,Y))−g(∇XY,U⊤)−Y(g(U⊤,X))−g(∇YX,U⊤)]g(ξ,μ)=a[g(∇XU⊤,Y)−g(∇YU⊤,X)g(ξ,μ).



(38)







Then, using Equations (33) and (38), we obtain that the Ricci equation becomes


[image: there is no content]



(39)







Using Equations (23) and (39), we can state the following result:



Corollary 2.

Let M be a submanifold of a space form of constant curvature with the semi-symmetric non-metric connection [image: there is no content]. Then, the normal connection [image: there is no content] is flat if and only if all second fundamental tensors with respect to the Levi-Civita connection and the semi-symmetric non-metric connection are simultaneously diagonalizable.





Example. Let [image: there is no content] be a torus embedded in [image: there is no content] defined by


[image: there is no content]











For [image: there is no content], [image: there is no content] is spanned by


[image: there is no content]










[image: there is no content]








and [image: there is no content] is spanned by


[image: there is no content]










[image: there is no content]











Differentiating these, we get


∇˜e1e1=−e3,∇˜e1e2=0,∇˜e1e3=e1,∇˜e1e4=0,∇˜e2e1=0,∇˜e2e2=−e4,∇˜e2e3=0,∇˜e2e4=e2.



(40)







Let [image: there is no content] be a 1-form on [image: there is no content]. A semi-symmetric non-metric connection [image: there is no content] on [image: there is no content] is given by


[image: there is no content]



(41)







From Equations (40) and (41), we have


∇˜ˇe1e1=−e3+(a+b)ω(e1)e1,∇˜ˇe1e2=aω(e1)e2+bω(e2)e1,∇˜ˇe2e1=aω(e2)e1+bω(e1)e2,∇˜ˇe2e2=−e4+(a+b)ω(e2)e2.



(42)







Using Equation (42), we obtain


∇ˇe1e1=(a+b)ω(e1)e1,∇ˇe1e2=aω(e1)e2+bω(e2)e1,∇ˇe2e1=aω(e2)e1+bω(e1)e2,∇ˇe2e2=(a+b)ω(e2)e2



(43)




and


hˇ(e1,e1)=−e3,hˇ(e1,e2)=hˇ(e2,e1)=0,hˇ(e2,e2)=−e4.



(44)







From Equation (43), we have


[image: there is no content]



(45)




and


(∇ˇe1g)(e1,e1)=−2(a+b)ω(e1),(∇ˇe1g)(e1,e2)=−bω(e2),(∇ˇe1g)(e2,e2)=−2aω(e1),(∇ˇe2g)(e1,e1)=−2aω(e2),(∇ˇe2g)(e1,e2)=−bω(e2),(∇ˇe2g)(e2,e2)=−2(a+b)ω(e2).



(46)







Equations (45) and (46) show that the induced connection [image: there is no content] is also a semi-symmetric non-metric connection.



Using Equation (44), we know that the mean curvature vector of [image: there is no content] with respect to the semi-symmetric non-metric connection is




[image: there is no content]
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