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Abstract: In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric
non-metric connection. We prove that the induced connection on a submanifold is also
semi-symmetric non-metric connection. We consider the total geodesicness and minimality of
a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss,
Cadazzi, and Ricci equations for submanifolds with respect to the semi-symmetric non-metric
connection.
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1. Introduction

In 1924, Friedmann and Schouten [1] introduced the idea of semi-symmetric connection on
a differentiable manifold. A linear connection ∇̂ on a differentiable manifold M̃ is said to be a
semi-symmetric connection if the torsion T̂ of the connection ∇̂ satisfies

T̂(X̃, Ỹ) = π(Ỹ)X̃− π(X̃)Ỹ, (1)

where π is a 1-form.
In 1932, Hayden [2] introduced the notion of a semi-symmetric metric connection on a Riemannian

manifold (M̃, g). A semi-symmetric connection ∇̂ is said to be a semi-symmetric metric connection if

∇̂g = 0. (2)

Yano [3] studied some properties of a Riemannian manifold endowed with a semi-symmetric
metric connection. Submanifolds of a Riemannian manifold with a semi-symmetric metric connection
were studied by Nakao [4].

After a long gap, the study of a semi-symmetric connection ∇̂ satisfying

∇̂g 6= 0 (3)

was initiated by Prvanovic [5] with the name pseudo-metric semi-symmetric connection, and was just
followed by Smaranda and Andonie [6].

A semi-symmetric connection ∇̂ is said to be a semi-symmetric non-metric connection if it satisfies
the condition Equation (3).
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In 1992, Agashe and Chafle [7] introduced a semi-symmetric non-metric connection on a
Riemannian manifold (M̃, g) given by

ˇ̃∇X̃Ỹ = ∇̃X̃Ỹ + π(X̃)Ỹ,

where ∇̃ is the Levi-Civita connection of (M̃, g) and π is a 1-form. Agashe and Chafle [8] studied
submanifolds of a Riemannian manifold with this semi-symmetric non-metric connection. In 2000,
Sengupta, De, and Binh [9] gave another type of semi-symmetric non-metric connection. Özgür [10]
studied properties of submanifolds of a Riemannian manifold with this semi-symmetric non-metric
connection. Recently, De, Han, and Zhao [11] introduced a new type of semi-symmetric non-metric
connection which is given by

ˇ̃∇X̃Ỹ = ∇̃X̃Ỹ + aω(X̃)Ỹ + bω(Ỹ)X̃, (4)

where a and b are two non-zero real numbers and ω is a 1-form. They proved the existence of this new
type of linear connection and studied a Riemannian manifold admitting this type of semi-symmetric
non-metric connection in [11].

Motivated by [8] and [10], we have studied submanifolds of a Riemannian manifold endowed
with the semi-symmetric non-metric connection defined by Equation (4) in this paper. The paper
has been organized as follows: In Section 2, we give some properties of the semi-symmetric
non-metric connection; In Section 3, we consider a submanifold of a Riemannian manifold with
the semi-symmetric non-metric connection and show that the induced connection on the submanifold
is also a semi-symmetric non-metric connection. We also consider the total geodesicness and minimality
of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection; In section
4, we deduce the Gauss, Codazzi, and Ricci equations with respect to the semi-symmetric non-metric
connection. Using this Gauss equation, we give the relation between the sectional curvatures with
respect to the semi-symmetric non-metric connection of a Riemannian manifold and a submanifold,
which is analogous to Synger’s inequality [12]. Finally, we consider these fundamental equations of a
submanifold in a space form with constant curvature with the semi-symmetric non-metric connection.

2. Preliminaries

Let M̃ be an (n + d)-dimensional Riemannian manifold with a Riemannian metric g and ∇̃ be the
Levi-Civita connection of (M̃, g). De, Han, and Zhao [11] defined a special type of linear connection
on M̃ by

ˇ̃∇X̃Ỹ = ∇̃X̃Ỹ + aω(X̃)Ỹ + bω(Ỹ)X̃, (5)

where a and b are two non-zero real numbers and ω is a 1-form on M̃. Denote by Ũ = ω], i.e., the
vector field Ũ is defined by ω(X̃) = g(X̃, Ũ) for all X̃ ∈ X (M̃), X (M̃) is the set of all differentiable
vector fields on M̃.

By Equation (5), the torsion tensor ˇ̃T with respect to the connection ˇ̃∇ is given by

ˇ̃T(X̃, Ỹ) = (b− a)ω(Ỹ)X̃− (b− a)ω(X̃)Ỹ = π(Ỹ)X̃− π(X̃)Ỹ,

where π(X̃) = (b− a)ω(X̃) is a 1-form.
Therefore, the connection ˇ̃∇ is a semi-symmetric connection. Additionally,

( ˇ̃∇X̃ g)(Ỹ, Z̃) = −2aω(X̃)g(Ỹ, Z̃)− bω(Ỹ)g(X̃, Z̃)− bω(Z̃)g(X̃, Ỹ) 6= 0.

Hence, the semi-symmetric connection ˇ̃∇ defined by Equation (5) is a semi-symmetric
non-metric connection.
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Analogous to the definition of the curvature tensor R̃ of M̃ with respect to the Levi-Civita
connection ∇̃, we define the curvature tensor ˇ̃R of M̃ with respect to the semi-symmetric non-metric

connection ˇ̃∇ given by
ˇ̃R(X̃, Ỹ)Z̃ = ˇ̃∇X̃

ˇ̃∇Ỹ Z̃− ˇ̃∇Ỹ
ˇ̃∇X̃ Z̃− ˇ̃∇[X̃,Ỹ]Z̃, (6)

where X̃, Ỹ, Z̃ ∈ X (M̃).
Using Equations (5) and (6), we have

ˇ̃R(X̃, Ỹ)Z̃ = R̃(X̃, Ỹ)Z̃− a(∇̃Ỹω)(X̃)Z̃ + a(∇̃X̃ω)(Ỹ)Z̃− b(∇̃Ỹω)(Z̃)X̃

+ b(∇̃X̃ω)(Z̃)Ỹ + b2ω(Ỹ)ω(Z̃)X̃− b2ω(X̃)ω(Z̃)Ỹ.
(7)

The Riemannian Christoffel tensors of the connections ∇̃ and ˇ̃∇ are defined by

R̃(X̃, Ỹ, Z̃, W̃) = g(R̃(X̃, Ỹ)Z̃, W̃)

and
ˇ̃R(X̃, Ỹ, Z̃, W̃) = g( ˇ̃R(X̃, Ỹ)Z̃, W̃),

respectively.

3. Submanifolds of a Riemannian Manifold with the Semi-Symmetric Non-Metric Connection ˇ̃∇

Let M be an n-dimensional submanifold of an (n + d)-dimensional Riemannian manifold with
the semi-symmetric non-metric connection ˇ̃∇. We decompose the vector field Ũ on M uniquely into
their tangent and normal components U>, U⊥.

The Gauss formula for the submanifold M with respect to the Levi-Civita connection ∇̃ is given by

∇̃XY = ∇XY + h(X, Y), ∀X, Y ∈ X (M), (8)

where h is the second fundamental form of M in M̃.
For the second fundament form h, the covariant of h is defined by

(∇Xh)(Y, Z) = ∇⊥X h(Y, Z)− h(∇XY, Z)− h(Y,∇XZ), ∀X, Y, Z ∈ X (M). (9)

Then, ∇h is a normal bundle valued tensor of type (0, 3) and is called the third fundamental
form of M. ∇ is called the van der Waerden–Bortolotti connection of M; i.e., ∇ is the connection in
TM⊕ T⊥M built with ∇ and ∇⊥.

Let ∇̌ be the induced connection from the semi-symmetric non-metric connection ˇ̃∇. We define

ˇ̃∇XY = ∇̌XY + ȟ(X, Y), ∀X, Y ∈ X (M), (10)

where ȟ is a (1, 2)-tensor field in T⊥M, the normal part of M. The Equation (10) may be called the

Gauss formula for M with respect to the semi-symmetric non-metric connection ˇ̃∇.
Using Equations (5), (8), and (10), we have

∇̌XY + ȟ(X, Y) = ∇XY + h(X, Y) + aω(X)Y + bω(Y)X. (11)

Comparing the tangential and normal parts of Equation (11), we obtain

∇̌XY = ∇XY + aω(X)Y + bω(Y)X (12)



Symmetry 2017, 9, 112 4 of 10

and
ȟ(X, Y) = h(X, Y). (13)

From Equation (12), we have

Ť(X, Y) = ∇̌XY− ∇̌YX− [X, Y] = (b− a)ω(Y)X− (b− a)ω(X)Y (14)

where Ť is the torsion tensor of the connection ∇̌ on M. Moreover, using Equation (12), we have

(∇̌X g)(Y, Z) = ∇̌X(g(Y, Z))− g(∇̌XY, Z)− g(Y, ∇̌XZ)

= −2aω(X)g(Y, Z)− bω(Y)g(X, Z)− bω(Z)g(X, Y)

6= 0.

(15)

In view of Equations (12), (14), and (15), we can state the following theorem:

Theorem 1. The induced connection ∇̌ on a submanifold of a Riemannian manifold endowed with the
semi-symmetric non-metric connection ˇ̃∇ is also a semi-symmetric non-metric connection.

If ȟ(X, Y) = 0 for all X, Y ∈ X (M), then M is called totally geodesic with respect to the
semi-symmetric non-metric connection. Let {e1, · · · , en} be an orthonormal basis of the tangent space
of M. We define the mean curvature vector Ȟ of M with respect to the semi-symmetric non-metric
connection by

Ȟ =
1
n

n

∑
i=1

ȟ(ei, ei). (16)

From Equation (13) we know that
Ȟ = H, (17)

where H is the mean curvature vector of the submanifold M. If Ȟ = 0, then M is called minimal with
respect to the semi-symmetric non-metric connection.

From Equations (13) and (17), we have the following result:

Theorem 2. Let M be an n-dimensional submanifold of an (n + d)-dimensional Riemannian manifold M̌ with
the semi-symmetric non-metric connection ˇ̃∇. Then,
(1) M is totally geodesic with respect to the semi-symmetric non-metric connection if and only if M is totally
geodesic with respect to the Levi-Civita connection.
(2) M is minimal with respect to the semi-symmetric non-metric connection if and only if M is minimal with
respect to the Levi-Civita connection.

Let ξ be a normal vector field on M. From Equation (5), we have

ˇ̃∇Xξ = ∇̃Xξ + aω(X)ξ + bω(ξ)X. (18)

It is well known that the Weingarten formula for a submanifold of a Riemannian manifold is given by

∇̃Xξ = −Aξ X +∇⊥X ξ, (19)

where Aξ is the shape operator of M in the direction of ξ.
Using Equation (19), we can write Equation (18) as

ˇ̃∇Xξ = −Aξ X + bω(ξ)X +∇⊥X ξ + aω(X)ξ. (20)
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Now we define a (1, 1)-tensor field on M by

Ǎξ = (Aξ − bω(ξ))I. (21)

Then, Equation (20) turns into

ˇ̃∇Xξ = −Ǎξ X +∇⊥X ξ + aω(X)ξ. (22)

Equation (22) is called the Weingarten formula for M with respect to the semi-symmetric
non-metric connection.

Since Aξ is symmetric, it is easy to verify that

g(Ǎξ X, Y) = g(X, ǍξY)

and
g([Ǎξ , Ǎη ]X, Y) = g([Aξ , Aη ]X, Y), (23)

where [Ǎξ , Ǎη ] = Ǎξ Ǎη − Ǎη Ǎξ , [Aξ , Aη ] = Aξ Aη − Aη Aξ and ξ, η are normal vector fields on M.
From Equations (21) and (23), we can also obtain the following theorems:

Theorem 3. Principal directions of the unit normal vector ξ with respect to the Levi-Civita connection ∇̃
and the semi-symmetric non-metric connection ˇ̃∇, and the principle curvatures are equal if and only if ξ is
orthogonal to U⊥.

Theorem 4. Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric
connection ˇ̃∇. Then, the shape operators with respect to the semi-symmetric non-metric connection are
simultaneously diagonalizable if and only if the shape operators with respect to the Levi-Civita connection
are simultaneously diagonalizable.

4. Gauss, Codazzi, and Ricci Equations with Respect to the Semi-Symmetric Non-Metric Connection

We denote the curvature tensor of a submanifold M of a Riemannian manifold M̃ with respect to
the induced semi-symmetric non-metric connection ∇̌ and the induced Levi-Civita connection ∇ by

Ř(X, Y)Z = ∇̌X∇̌YZ− ∇̌Y∇̌XZ− ∇̌[X,Y]Z (24)

and
R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

respectively, where X, Y, Z ∈ X (M).

Theorem 5. Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection
∇̌. Then, for all X, Y, Z, W ∈ X (M), we have

ˇ̃R(X, Y, Z, W) = Ř(X, Y, Z, W)− g(ȟ(Y, Z), ȟ(X, W)) + g(ȟ(X, Z), ȟ(Y, W))

+ bω(ȟ(Y, Z))g(X, W)− bω(ȟ(X, Z))g(Y, W).
(25)

Here Equation (25) is called the Gauss equation for the submanifold M with respect to the semi-symmetric
non-metric connection.
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Proof. From Equations (10) and (20), we have

ˇ̃∇X
ˇ̃∇YZ = ∇̌X∇̌YZ + ȟ(X, ∇̌YZ)− Aȟ(Y,Z)X

+ bω(ȟ(Y, Z))X +∇⊥X ȟ(Y, Z) + aω(X)ȟ(Y, Z),
(26)

ˇ̃∇Y
ˇ̃∇XZ = ∇̌Y∇̌XZ + ȟ(Y, ∇̌XZ)− Aȟ(X,Z)Y

+ bω(ȟ(X, Z))Y +∇⊥Y ȟ(X, Z) + aω(Y)ȟ(X, Z),
(27)

and
ˇ̃∇[X,Y]Z = ∇̌[X,Y]Z + ȟ([X, Y], Z). (28)

Using Equations (24), (26)–(28), we obtain

ˇ̃R(X, Y)Z = Ř(X, Y)Z + ȟ(X, ∇̌YZ)− ȟ(Y, ∇̌XZ)− ȟ([X, Y], Z)

− Aȟ(Y,Z)X + Aȟ(X,Z)Y + bω(ȟ(Y, Z))X− bω(ȟ(X, Z))Y

+∇⊥X ȟ(Y, Z)−∇⊥Y ȟ(X, Z) + aω(X)ȟ(Y, Z)− aω(Y)ȟ(X, Z).

(29)

Since g(Aξ X, Y) = g(h(X, Y), ξ) and h = ȟ, from Equation (29) we find

ˇ̃R(X, Y, Z, W) = Ř(X, Y, Z, W)− g(Aȟ(Y,Z)X, W) + g(Aȟ(X,Z)Y, W)

+ bω(ȟ(Y, Z))g(X, W)− bω(ȟ(X, Z))g(Y, W)

= Ř(X, Y, Z, W)− g(ȟ(Y, Z), ȟ(X, W)) + g(ȟ(X, Z), ȟ(Y, W))

+ bω(ȟ(Y, Z))g(X, W)− bω(ȟ(X, Z))g(Y, W).

Recalling that if π ∈ Tp M is a 2-dimensional subspace of Tp M spanned by an orthonormal
base {X, Y}, we define the sectional curvature Ǩ(π) with respect to the semi-symmetric non-metric
connection as Ř(X, Y, Y, X). Let ˇ̃K(π) denote the corresponding sectional curvature in M̃. As an
application of the Gauss Equation (25), we can obtain the following Synger’s inequality with respect to
the semi-symmetric non-metric connection.

Corollary 1. Let M be a submanifold of a Riemannian manifold M̃ with the semi-symmetric non-metric
connection ˇ̃∇ and γ be a geodesic in M̃ which lies in M, and T be a unit tangent vector field of γ. π is a subspace
of the tangent space Tp M spanned by {X, T}. Then,

(1) ˇ̃K(π) ≥ Ǩ(π) along γ.
(2) if X is a unit tangent vector field on M which is parallel along γ and orthogonal to T, then the equality of (1)
holds if and only if X is parallel along γ in M̃.

Proof. (1) Let γ be a geodesic in M̃ which lies in M and T be a unit tangent vector field of γ. Then,
we have

h(T, T) = 0. (30)

Let π be a subspace of the tangent space Tp M spanned by an orthonormal base {X, T}. Applying
the Gauss Equation (25) and h = ȟ, we obtain

ˇ̃K(π) = ˇ̃R(X, T, T, X)

= Ř(X, T, T, X)− g(h(X, X), h(T, T)) + g(h(X, T), (X, T)) + bω(h(T, T))

= Ǩ(π) + g(h(X, T), (X, T))

≥ Ǩ(π).

(31)
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(2) If X be parallel along γ, we have ∇TX = 0. Thus, we have

∇̃TX = h(T, X).

Then, the equality of Equation (31) holds if and only if h(X, T) = 0; i.e., ∇̃TX = 0.

Theorem 6. Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection
∇̌. Then, for all X, Y, Z ∈ X (M), we have

( ˇ̃R(X, Y)Z)⊥ = ∇̌X ȟ(Y, Z)− ∇̌Y ȟ(X, Z)− (b− a)ω(X)ȟ(Y, Z) + (b− a)ω(Y)ȟ(X, Z), (32)

where ∇̌X ȟ(Y, Z) = ∇⊥X ȟ(Y, Z)− ȟ(∇̌XY, Z)− ȟ(Y, ∇̌XZ). Equation (32) is called the Codazzi equation
with respect to the semi-symmetric non-metric connection.

Proof. From Equation (29), the normal component of ˇ̃R(X, Y)Z is given by

( ˇ̃R(X, Y)Z)⊥ = ȟ(X, ∇̌YZ)− ȟ(Y, ∇̌XZ)− ȟ([X, Y], Z) +∇⊥X ȟ(Y, Z)

−∇⊥Y ȟ(X, Z) + aω(X)ȟ(Y, Z)− aω(Y)ȟ(X, Z)

= ∇⊥X ȟ(Y, Z)−∇⊥Y ȟ(X, Z)− ȟ(Y, ∇̌XZ) + ȟ(X, ∇̌YZ)

− ȟ(∇̌XY− ∇̌YX + (b− a)ω(X)Y− (b− a)ω(Y)X, Z)

+ aω(X)ȟ(Y, Z)− aω(Y)ȟ(X, Z)

= ∇̌X ȟ(Y, Z)− ∇̌Y ȟ(X, Z)

− (b− 2a)ω(X)ȟ(Y, Z) + (b− 2a)ω(Y)ȟ(X, Z),

where ∇̌X ȟ(Y, Z) = ∇⊥X ȟ(Y, Z)− ȟ(∇̌XY, Z)− ȟ(Y, ∇̌XZ).

Remark 1. ∇̌ is the connection in TM ⊕ T⊥M built with ∇̌ and ∇⊥. It may be called the van der
Waerden–Bortolotti connection with respect to the semi-symmetric non-metric connection.

Theorem 7. Let M be a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection
∇̌. Then, for all X, Y ∈ X (M) and normal vector fields ξ, µ on M, we have

ˇ̃R(X, Y, ξ, µ) = R⊥(X, Y, ξ, µ)− g([Aξ , Aµ]X, Y) + a[g(Y,∇XU>)− g(X,∇YU>)]g(ξ, µ). (33)

Equation (33) is called the Ricci equation for the submanifold M with respect to the semi-symmetric
non-metric connection.

Proof. From Equations (10) and (22), we get

ˇ̃∇X
ˇ̃∇Yξ = −∇̌X(ǍξY)− ȟ(X, ǍξY)− Ǎ∇⊥Y ξ X +∇⊥X∇⊥Y ξ

+ aω(X)∇⊥Y ξ + ag(∇̃XY, U>)ξ + ag(Y, ∇̃XU>)ξ

+ aω(Y)∇̃Xξ + a2ω(X)ω(Y)ξ + abω(Y)ω(ξ)X,

(34)

ˇ̃∇Y
ˇ̃∇Xξ = −∇̌Y(Ǎξ X)− ȟ(Y, Ǎξ X)− Ǎ∇⊥X ξY +∇⊥Y∇⊥X ξ

+ aω(Y)∇⊥X ξ + ag(∇̃YX, U>)ξ + ag(X, ∇̃YU>)ξ

+ aω(X)∇̃Yξ + a2ω(Y)ω(X)ξ + abω(X)ω(ξ)Y

(35)
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and
ˇ̃∇[X,Y]ξ = −Ǎξ [X, Y] +∇⊥[X,Y]ξ + ag([X, Y], U>)ξ. (36)

Using Equations (34)–(36), we have

ˇ̃R(X, Y, ξ, µ) = g( ˇ̃R(X, Y)ξ), µ)

= R⊥(X, Y, ξ, µ)− g(ȟ(X, ǍξY), µ) + g(ȟ(Y, Ǎξ X), µ)

+ a[g(Y, ∇̃XU>)− g(X, ∇̃YU>)]g(ξ, µ).

In view of Equations (10), (13), and (21), the above equation turns into

ˇ̃R(X, Y, ξ, µ) = R⊥(X, Y, ξ, µ)− g(h(X, AξY), µ) + g(h(Y, Aξ X), µ)

+ a[g(Y,∇XU>)− g(X,∇YU>)]g(ξ, µ)

= R⊥(X, Y, ξ, µ)− g((Aξ Aµ − Aµ Aξ)X, Y)

+ a[g(Y,∇XU>)− g(X,∇YU>)]g(ξ, µ)

= R⊥(X, Y, ξ, µ)− g([Aξ , Aµ]X, Y)

+ a[g(Y,∇XU>)− g(X,∇YU>)]g(ξ, µ)

It will be useful to examine the form of our fundamental equations with respect to
the semi-symmetric non-metric connection when the ambient space M̃ has constant curvature.
Now, assume that M̃ is an (n + d)-dimensional space form of constant curvature C with the

semi-symmetric non-metric connection ˇ̃∇. Let M be a submanifold of M̃. Then, from Equation (7)
we have

ˇ̃R(X, Y)Z = C[g(Y, Z)X− g(X, Z)Y]− a(∇̃Yω)(X)Z + a(∇̃Xω)(Y)Z

− b(∇̃Yω)(Z)X + b(∇̃Xω)(Z)Y + b2ω(Y)ω(Z)X− b2ω(X)ω(Z)Y,
(37)

where X, Y, Z ∈ X (M).
Hence from Equation (25) we know that the Gauss equation becomes

Ř(X, Y)Z = C[g(Y, Z)X− g(X, Z)Y]− a(∇̃Yω)(X)Z + a(∇̃Xω)(Y)Z

− b(∇̃Yω)(Z)X + b(∇̃Xω)(Z)Y + b2ω(Y)ω(Z)X− b2ω(X)ω(Z)Y

+ g(ȟ(Y, Z), ȟ(X, W))− g(ȟ(X, Z), ȟ(Y, W))

− bω(ȟ(Y, Z))g(X, W) + bω(ȟ(X, Z))g(Y, W).

From Equation (37) we know
( ˇ̃R(X, Y)Z)⊥ = 0

So from Equation (32) we know that the Codazzi equation becomes

∇̌X ȟ(Y, Z)− ∇̌Y ȟ(X, Z) = (b− 2a)ω(X)ȟ(Y, Z)− (b− 2a)ω(Y)ȟ(X, Z).
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Since M̃ is a space form of constant C, it follows that R̃(X, Y, ξ, µ) = 0. On the other hand,
from Equation (37) we have

ˇ̃R(X, Y, ξ, µ) = a[(∇̌Xω)Y− (∇̌Yω)X]g(ξ, µ)

= a[X(g(U>, Y))− g(∇XY, U>)−Y(g(U>, X))− g(∇YX, U>)]g(ξ, µ)

= a[g(∇XU>, Y)− g(∇YU>, X)g(ξ, µ).

(38)

Then, using Equations (33) and (38), we obtain that the Ricci equation becomes

R⊥(X, Y, ξ, µ) = g([Aξ , Aµ]X, Y) (39)

Using Equations (23) and (39), we can state the following result:

Corollary 2. Let M be a submanifold of a space form of constant curvature with the semi-symmetric non-metric
connection ˇ̃∇. Then, the normal connection ∇⊥ is flat if and only if all second fundamental tensors with respect
to the Levi-Civita connection and the semi-symmetric non-metric connection are simultaneously diagonalizable.

Example. Let T2 : S1(1)× S1(1) ∈ R4 be a torus embedded in R4 defined by

T2 = {(cos u, sin u, cos v, sin v) : u, v ∈ R}.

For p = (cos u, sin u, cos v, sin v), TP(T2) is spanned by

e1 = (− sin u, cos u, 0, 0),

e2 = (0, 0− sin v, cos v)

and T⊥P (T2) is spanned by
e3 = (cos u, sin u, 0, 0),

e4 = (0, 0, cos v, sin v).

Differentiating these, we get

∇̃e1 e1 = −e3, ∇̃e1 e2 = 0, ∇̃e1 e3 = e1, ∇̃e1 e4 = 0,

∇̃e2 e1 = 0, ∇̃e2 e2 = −e4, ∇̃e2 e3 = 0, ∇̃e2 e4 = e2.
(40)

Let ω be a 1-form on R4. A semi-symmetric non-metric connection ˇ̃∇ on R4 is given by

ˇ̃∇X̃Ỹ = ∇̃X̃Ỹ + aπ(X̃)Ỹ + bπ(Ỹ)X̃. (41)

From Equations (40) and (41), we have

ˇ̃∇e1 e1 = −e3 + (a + b)ω(e1)e1, ˇ̃∇e1 e2 = aω(e1)e2 + bω(e2)e1,
ˇ̃∇e2 e1 = aω(e2)e1 + bω(e1)e2, ˇ̃∇e2 e2 = −e4 + (a + b)ω(e2)e2.

(42)

Using Equation (42), we obtain

∇̌e1 e1 = (a + b)ω(e1)e1, ∇̌e1 e2 = aω(e1)e2 + bω(e2)e1,

∇̌e2 e1 = aω(e2)e1 + bω(e1)e2, ∇̌e2 e2 = (a + b)ω(e2)e2
(43)

and
ȟ(e1, e1) = −e3, ȟ(e1, e2) = ȟ(e2, e1) = 0, ȟ(e2, e2) = −e4. (44)
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From Equation (43), we have

Ť(e1, e2) = ∇̌e1 e2 − ∇̌e2 e1 − [e1, e2]

= (a− b)ω(e2)e1 − (a− b)ω(e1)e2.
(45)

and

(∇̌e1 g)(e1, e1) = −2(a + b)ω(e1), (∇̌e1 g)(e1, e2) = −bω(e2),

(∇̌e1 g)(e2, e2) = −2aω(e1), (∇̌e2 g)(e1, e1) = −2aω(e2),

(∇̌e2 g)(e1, e2) = −bω(e2), (∇̌e2 g)(e2, e2) = −2(a + b)ω(e2).

(46)

Equations (45) and (46) show that the induced connection ∇̌ is also a semi-symmetric
non-metric connection.

Using Equation (44), we know that the mean curvature vector of T2 with respect to the
semi-symmetric non-metric connection is

Ȟ =
1
2
[ȟ(e1, e1) + ȟ(e2, e2)] = −

1
2
(e3 + e4).
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