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Abstract:



In this paper, we extend the rough set model on two different universes in intuitionistic fuzzy approximation spaces to a single-valued neutrosophic environment. Firstly, based on the [image: there is no content]-cut relation [image: there is no content], we propose a rough set model in generalized single-valued neutrosophic approximation spaces. Then, some properties of the new rough set model are discussed. Furthermore, we obtain two extended models of the new rough set model—the degree rough set model and the variable precision rough set model—and study some of their properties. Finally, we explore an example to illustrate the validity of the new rough set model.
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1. Introduction


Smarandache [1,2] introduced the concept of the neutrosophic set (NS), which consists of three membership functions (truth membership function, indeterminacy membership function and falsity membership function), where each function value is a real standard or nonstandard subset of the nonstandard unit interval [image: there is no content]. The neutrosophic set generalizes the concepts of the classical set, fuzzy set [3], interval-valued fuzzy set [4], intuitionistic fuzzy set [5] and interval-valued intuitionistic fuzzy set [6]. The neutrosophic set model is an important tool for dealing with real scientific and engineering applications because it can handle not only incomplete information, but also the inconsistent information and indeterminate information that exist commonly in real situations.



For easily applying NSs in the real world, Smarandache [1] and Wang et al. [7] proposed single-valued neutrosophic sets (SVNSs) by simplifying NSs. SVNSs can also be seen as an extension of intuitionistic fuzzy sets [5], in which three membership functions are unrelated and their function values belong to the unit closed interval. SVNSs has been a hot research issue. Ye [8,9] proposed decision making based on correlation coefficients and weighted correlation coefficients of SVNSs and illustrated the application of the proposed methods. Baušys et al. [10] applied SVNSs to multi-criteria decision making and proposed a new extension of the crisp complex proportional assessment (COPRAS) method named COPRAS-SVNS. Zavadskas et al. [11] applied SVNSs to the weighted aggregated sum product assessment (WASPAS) method, named WASPAS-SVNS, and used the new method to solve sustainable assessment of alternative sites for the construction of a waste incineration plant. Zavadskas et al. [12] also applied WASPAS-SVNS to the selection of a lead-zinc flotation circuit design. Zavadskas et al. [13] proposed a single-valued neutrosophic multi-attribute market value assessment method and applied this method to the sustainable market valuation of Croydon University Hospital. Li et al. [14] applied the Heronian mean to the neutrosophic set, proposed some Heronian mean operators and illustrated their application in multiple attribute group decision making. Baušys and Juodagalvienė [15] demonstrated garage location selection for a residential house. In [16], Ye proposed similarity measures between interval neutrosophic sets and applied them to multi-criteria decision making problems under the interval neutrosophic environment. Ye [17] proposed three vector similarity measures of simplified neutrosophic sets and applied them to a multi-criteria decision making problem with simplified neutrosophic information. Majumdar and Samanta [18] studied the distance, similarity and entropy of SVNSs from a theoretical aspect. Peng et al. [19] developed a new outranking approach for multi-criteria decision making problems in the context of a simplified neutrosophic environment. Liu and Wang [20] introduced an interval neutrosophic prioritized ordered weighted aggregation operator w.r.t. interval neutrosophic numbers and discussed its application in multiple attribute decision making. To deal with difficulties in steam turbine fault diagnosis, Zhang et al. [21] investigated a single-valued neutrosophic multi-granulation rough set over two universes. Şahin [22] proposed two kinds of interval neutrosophic cross-entropies based on the extension of fuzzy cross-entropy and single-valued neutrosophic cross-entropy and developed two multi-criteria decision making methods using the interval neutrosophic cross-entropy. Ye [23] proposed similarity measures between SVNSs based on the tangent function and a multi-period medical diagnosis method based on the similarity measure and the weighted aggregation of multi-period information to solve multi-period medical diagnosis problems with single-valued neutrosophic information. Yang et al. [24] proposed SVNRs and studied some kinds of kernels and closures of SVNRs. Ye [25] presented a simplified neutrosophic harmonic averaging projection measure and its multiple attribute decision making method with simplified neutrosophic information. Stanujkic et al. [26] proposed a new extension of the multi-objective optimization (MULTIMOORA) method adapted for usage with a neutrosophic set.



Rough set theory, initiated by Pawlak [27,28], is a mathematical tool for the study of intelligent systems characterized by insufficient and incomplete information. The theory has been successfully applied to many fields, such as machine learning, knowledge acquisition, decision analysis, etc. To extend the application domain of rough set theory, more and more researchers have made some efforts toward the study of rough set models based on two different universes [29,30,31,32,33,34,35,36,37,38,39].



In recent years, many researchers have paid attention to combining neutrosophic sets with rough sets. Salama and Broumi [40] investigated the roughness of neutrosophic sets. Broumi and Smarandache put forward rough neutrosophic sets [41,42], as well as interval neutrosophic rough sets [43]. Yang et al. [44] proposed single-valued neutrosophic rough sets, which comprise a hybrid model of single-valued neutrosophic sets and rough sets. Along this line, this paper attempts to do some work regarding the fusion of single-valued neutrosophic sets and rough sets again. Concretely, we will extend the rough set model in [29] to a single-valued neutrosophic environment. Furthermore, we will apply the new model to a multi-attribute decision making problem.



The rest of this paper is organized as follows. In Section 2, we recall some basic notions related to Pawlak rough sets, SVNSs and single-valued neutrosophic rough sets. In Section 3, we propose a rough set model in generalized single-valued neutrosophic approximation spaces. Section 4 gives two extended models and studies some related properties. Section 5 explores an example to illustrate the new rough set model’s application in multi-attribute decision making. The last section summarizes the conclusions.




2. Preliminaries


In this section, we recall some basic notions of Pawlak rough sets, SVNSs and single-valued neutrosophic rough sets.



2.1. Pawlak Rough Sets


Definition 1.

([27,28]) Let U be a nonempty finite universe and R be an equivalence relation in U. [image: there is no content] is called a Pawlak approximation space. [image: there is no content], the lower and upper approximations of X, denoted by [image: there is no content] and [image: there is no content], are defined as follows, respectively:


[image: there is no content]








where [image: there is no content]. [image: there is no content] and [image: there is no content] are called the lower and upper approximation operators, respectively. The pair [image: there is no content] is called a Pawlak rough set.





Furthermore, the positive region, boundary region and negative region of the subset X are defined by


pos(X)=R̲(X),neg(X)=U−R¯(X),bn(X)=R¯(X)−R̲(X).












2.2. Single-Valued Neutrosophic Sets and Single-Valued Neutrosophic Rough Sets


Definition 2.

([7]) Let U be a space of points (objects), with a generic element in U denoted by x. A SVNS [image: there is no content] in U is characterized by three membership functions, a truth membership function [image: there is no content], an indeterminacy membership function [image: there is no content] and a falsity membership function [image: there is no content], where [image: there is no content], [image: there is no content].





The SVNS [image: there is no content] can be denoted by [image: there is no content][image: there is no content] or [image: there is no content][image: there is no content]. [image: there is no content], [image: there is no content][image: there is no content], and [image: there is no content] is called a single-valued neutrosophic number.



Definition 3.

([44]) An SVNS [image: there is no content] in [image: there is no content] is called a single-valued neutrosophic relation (SVNR) in U, denoted by [image: there is no content][image: there is no content], where [image: there is no content], [image: there is no content] and [image: there is no content] denote the truth membership function, indeterminacy membership function and falsity membership function of [image: there is no content], respectively.





Definition 4.

([45]) Let [image: there is no content] be two SVNRs in U. If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then we say [image: there is no content] is contained in [image: there is no content], denoted by [image: there is no content]. In other words, we say [image: there is no content] contains [image: there is no content], denoted by [image: there is no content].





Definition 5.

([24]) Let [image: there is no content] be an SVNR in U. If [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content] is called a reflexive SVNR. If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content] is called a symmetric SVNR. If [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content] is called a serial SVNR. If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content] is called a transitive SVNR, where [image: there is no content] and [image: there is no content] denote maximum and minimum, respectively.





Definition 6.

([24]) Let [image: there is no content] be an SVNR in U; the tuple [image: there is no content] is called a single-valued neutrosophic approximation space. [image: there is no content] SVNS[image: there is no content], the lower and upper approximations of [image: there is no content] w.r.t. [image: there is no content], denoted by [image: there is no content] and [image: there is no content], are two SVNSs whose membership functions are defined as: [image: there is no content],



[image: there is no content],



[image: there is no content],



[image: there is no content];



[image: there is no content],



[image: there is no content],



[image: there is no content].





The pair [image: there is no content] is called the single-valued neutrosophic rough set of [image: there is no content] w.r.t. [image: there is no content]. [image: there is no content] and [image: there is no content] are referred to as the single-valued neutrosophic lower and upper approximation operators, respectively.





3. Rough Set Model in Generalized Single-Valued Neutrosophic Approximation Spaces


Guo et al. [29] studied the rough set model on two different universes in intuitionistic fuzzy approximation space. In this section, we will extend the rough set model in [29] to a single-valued neutrosophic environment.



Yang et al. [24] proposed the notions of single-valued neutrosophic relations from U to V and generalized single-valued neutrosophic approximation spaces as follows.



Definition 7.

([24]) Let U and V be two nonempty finite universes. The relation [image: there is no content] in [image: there is no content] is called a single-valued neutrosophic relation from U to V, denoted by [image: there is no content], where [image: there is no content], [image: there is no content] and [image: there is no content] denote the truth membership function, indeterminacy membership function and falsity membership function of [image: there is no content], respectively.





The triple [image: there is no content] is called a generalized single-valued neutrosophic approximation space on two different universes.



Remark 1.

 If [image: there is no content], then we call [image: there is no content] a single-valued neutrosophic relation in U.





Definition 8.

 Let [image: there is no content] be an SVNR from U to V. If [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content] is called a symmetric SVNR. If [image: there is no content], [image: there is no content] and [image: there is no content], then [image: there is no content] is called a serial SVNR.





The union, intersection and containmentof two SVNRs from U to V are defined as follows, respectively.



Definition 9.

 Let [image: there is no content] be two SVNRs from U to V.

	(1) 

	
The union [image: there is no content] of R and S is defined by [image: there is no content] max[image: there is no content] min[image: there is no content] min[image: there is no content].




	(2) 

	
The intersection [image: there is no content] of R and S is defined by [image: there is no content] min[image: there is no content] max[image: there is no content] max[image: there is no content].




	(3) 

	
If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then we say R is contained in S, denoted by [image: there is no content].











Next, we give the notion of [image: there is no content]-cut relation [image: there is no content] of a single-valued neutrosophic relation [image: there is no content] from U to V.



Definition 10.

 Let U, V be two nonempty finite universes and [image: there is no content] be a single-valued neutrosophic relation from U to V. For any [image: there is no content], we define the [image: there is no content]-cut relation [image: there is no content] of [image: there is no content] as follows:


[image: there is no content]













According to Definition 10, if [image: there is no content], it indicates that the truth membership degree of the relationships of x and y w.r.t. SVNR [image: there is no content] is not less than [image: there is no content], and the indeterminacy membership degree and falsity membership degree of the relationships of x and y w.r.t. SVNR [image: there is no content] are not more than [image: there is no content] and [image: there is no content], respectively.



Definition 11.

 Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. [image: there is no content] is the [image: there is no content]-cut relation defined in Definition 8. For any [image: there is no content], we define


[image: there is no content]













The following Definition 12 gives a rough set model on two universes based on the [image: there is no content]-cut relation [image: there is no content] induced by a single-valued neutrosophic relation [image: there is no content] from U to V.



Definition 12.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. Suppose [image: there is no content] is the [image: there is no content]-cut relation given in Definition 10 from U to V. For any set [image: there is no content], the lower approximation and upper approximation of Y on two universes w.r.t. [image: there is no content] and [image: there is no content] are defined by


[image: there is no content]








The pair [image: there is no content] is called the rough set of Y w.r.t. [image: there is no content] and [image: there is no content]. If [image: there is no content], then Y is called the definable set w.r.t. [image: there is no content] and [image: there is no content]. If [image: there is no content], then Y is called the undefinable set w.r.t. [image: there is no content] and [image: there is no content].





Next, we define the positive region posR˜{(α,β,γ)}(Y), negative region negR˜{(α,β,γ)}(Y) and boundary region bnR˜{(α,β,γ)}(Y) of Y, respectively:


[image: there is no content]











Remark 2.

 If [image: there is no content] is a series single-valued neutrosophic relation from U to V, i.e., [image: there is no content] and [image: there is no content], then there exists [image: there is no content] such that [image: there is no content] and [image: there is no content] for all [image: there is no content] since V is finite. Therefore, for any [image: there is no content], we have [image: there is no content]. Therefore, we have


R˜{(α,β,γ)}̲(Y)={x∈U|R˜{(α,β,γ)}(x)⊆Y and R˜{(α,β,γ)}(x)≠∅},={x∈U|R˜{(α,β,γ)}(x)⊆Y},R˜{(α,β,γ)}̲(Y)={x∈U|R˜{(α,β,γ)}(x)∩Y≠∅ or R˜{(α,β,γ)}(x)≠∅},={x∈U|R˜{(α,β,γ)}(x)∩Y≠∅}.













In the following, we discuss some properties of the lower approximation and the upper approximation given in Definition 12.



Theorem 1.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. Suppose [image: there is no content] is the [image: there is no content]-cut relation given in Definition 10 from U to V. For any [image: there is no content], the following properties hold:

	(1) 

	
[image: there is no content]




	(2) 

	
[image: there is no content], [image: there is no content];




	(3) 

	
[image: there is no content], [image: there is no content];




	(4) 

	
[image: there is no content], [image: there is no content];




	(5) 

	
If [image: there is no content], then [image: there is no content] and [image: there is no content];




	(6) 

	
[image: there is no content], [image: there is no content].











Proof. 

We only prove (3) and (6).



(3) [image: there is no content]



[image: there is no content] and [image: there is no content]



[image: there is no content] and [image: there is no content] and [image: there is no content]



[image: there is no content] and [image: there is no content] and [image: there is no content]



[image: there is no content];



 [image: there is no content]



[image: there is no content] or [image: there is no content]



[image: there is no content] or [image: there is no content]



[image: there is no content] or [image: there is no content] or [image: there is no content]



[image: there is no content].



(6) [image: there is no content]



[image: there is no content] or [image: there is no content]



[image: there is no content] and [image: there is no content]



[image: there is no content] and [image: there is no content]



[image: there is no content];



 [image: there is no content]



[image: there is no content] and [image: there is no content]



[image: there is no content] and [image: there is no content]



[image: there is no content] or [image: there is no content]



[image: there is no content]. ☐





Remark 3.

 In general,

	(1) 

	
[image: there is no content], [image: there is no content];




	(2) 

	
[image: there is no content] and [image: there is no content],






as shown in the following example.





Example 1.

Let [image: there is no content], [image: there is no content]. [image: there is no content] and [image: there is no content]. The single-valued neutrosophic relation [image: there is no content] from U to V is given in Table 1.


Table 1. The single-valued neutrosophic relation [image: there is no content] from U to V.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
(0.7,0,1,0.2)

	
(0.8,0.3,0.2)

	
(0.7,0.2,0.1)

	
(1,0,0)




	
[image: there is no content]

	
(1,0.3,0.1)

	
(0,0,1)

	
(0.7,0.3,0.2)

	
(0,0,1)




	
[image: there is no content]

	
(0.2,0.1,0.8)

	
(0.1,0.2,0.7)

	
(0.8,0.2,0.1)

	
(0,0.3,1)












	(1) 

	
Take [image: there is no content], [image: there is no content] and [image: there is no content]; we have [image: there is no content], [image: there is no content], [image: there is no content].



By Definition 12, we have [image: there is no content] and [image: there is no content].




	(2) 

	
Take [image: there is no content], [image: there is no content] and [image: there is no content]; we have [image: there is no content], [image: there is no content], [image: there is no content].



By Definition 12, we have


llR˜{(α,β,γ)}̲(Y1)=∅,R˜{(α,β,γ)}̲(Y2)={x3},R˜{(α,β,γ)}̲(Y1∪Y2)={x2,x3}.R˜{(α,β,γ)}¯(Y1)={x1,x2},R˜{(α,β,γ)}¯(Y2)={x1,x2,x3},R˜{(α,β,γ)}¯(Y1∩Y2)=∅.











Obviously, [image: there is no content] and [image: there is no content].











Theorem 2.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. [image: there is no content] and [image: there is no content] are two relations defined in Definition 10. If [image: there is no content] is a series, [image: there is no content], [image: there is no content] and [image: there is no content], then



[image: there is no content][image: there is no content];



[image: there is no content][image: there is no content].





Proof. 

[image: there is no content] Since [image: there is no content], [image: there is no content] and [image: there is no content], for any [image: there is no content], we have


[image: there is no content]











By Definition 12, for any [image: there is no content], we have [image: there is no content]. Thus [image: there is no content], which implies that [image: there is no content] Hence, [image: there is no content].



[image: there is no content] By (1), for any [image: there is no content], we have [image: there is no content].



So


[image: there is no content]











By Definition 12, for any [image: there is no content], we have [image: there is no content]. Thus, [image: there is no content], which implies that [image: there is no content]. Hence, [image: there is no content]. ☐





Theorem 3.

Let [image: there is no content] be two series single-valued neutrosophic relations from U to V. If [image: there is no content], then [image: there is no content], we have:

	(1) 

	
[image: there is no content];




	(2) 

	
[image: there is no content].











Proof. 

(1) Since [image: there is no content], we have


[image: there is no content]











By Definition 12, for any [image: there is no content], we have [image: there is no content]. Thus, [image: there is no content], which implies that [image: there is no content] Hence, [image: there is no content].



[image: there is no content] By [image: there is no content], for any [image: there is no content], we have [image: there is no content]. Thus, [image: there is no content] for any [image: there is no content]. By Definition 12, for any [image: there is no content], we have [image: there is no content]. Thus, [image: there is no content], which implies that [image: there is no content]. Hence, [image: there is no content]. ☐





Lemma 1.

Let [image: there is no content] be two single-valued neutrosophic relations from U to V. For any [image: there is no content] and [image: there is no content], we have:

	(1)

	
[image: there is no content];




	(2)

	
[image: there is no content].











Proof. 


	(1)

	
For any [image: there is no content], we have:



[image: there is no content]




	(2)

	
For any [image: there is no content], we have:



(R˜∩˜S˜){(α,β,γ)}(x)={y∈V|min(TR˜(x,y),TS˜(x,y))≥α,max(IR˜(x,y),IS˜(x,y))≤β, max(FR˜(x,y),FS˜(x,y))≤γ}={y∈V|TR˜(x,y)≥α,IR˜(x,y)≤β,FR˜(x,y)≤γ}∩{y∈V|TS˜(x,y)≥α,IS˜(x,y)≤β,FS˜(x,y)≤γ}=R˜{(α,β,γ)}(x)∩S˜{(α,β,γ)}(x)



☐











Theorem 4.

Let [image: there is no content] be two series single-valued neutrosophic relations from U to V. For any [image: there is no content] and [image: there is no content], we have:

	(1) 

	
[image: there is no content];




	(2) 

	
[image: there is no content].











Proof. 


	(1)

	
By Lemma 1 (1), we have



(R˜∪˜S˜){(α,β,γ)}̲(Y)={x∈U|(R˜∪˜S˜){(α,β,γ)}(x)⊆Y}⊆{x∈U|R˜{(α,β,γ)}(x)∪S˜{(α,β,γ)}(x)⊆Y}={x∈U|R˜{(α,β,γ)}(x)⊆Y}∩{x∈U|S˜{(α,β,γ)}(x)⊆Y}=R˜{(α,β,γ)}̲(Y)∩S˜{(α,β,γ)}̲(Y).



So



[image: there is no content].




	(2)

	
By Lemma 1 (1), we have



(R˜∪˜S˜){(α,β,γ)}¯(Y)={x∈U|(R˜∪˜S˜){(α,β,γ)}(x)∩Y≠∅}⊇{x∈U|(R˜{(α,β,γ)}(x)∪S˜{(α,β,γ)}(x))∩Y≠∅}={x∈U|R˜{(α,β,γ)}(x)∩Y≠∅}∪{x∈U|S˜{(α,β,γ)}(x)∩Y≠∅}=R˜{(α,β,γ)}¯(Y)∪S˜{(α,β,γ)}¯(Y).









☐





Theorem 5.

Let [image: there is no content] be two series single-valued neutrosophic relations from U to V. For any [image: there is no content] and [image: there is no content], we have:

	(1) 

	
[image: there is no content];




	(2) 

	
[image: there is no content].











Proof. 


	(1)

	
By Lemma 1 (2), we have



(R˜∩˜S˜){(α,β,γ)}̲(Y)={x∈U|(R˜∩˜S˜){(α,β,γ)}(x)⊆Y}={x∈U|(R˜{(α,β,γ)}(x)∩S˜{(α,β,γ)}(x))⊆Y}⊇{x∈U|(R˜{(α,β,γ)}(x)⊆Y}∪{x∈U|(S˜{(α,β,γ)}(x)⊆Y}=R˜{(α,β,γ)}̲(Y)∪S˜{(α,β,γ)}̲(Y).



Therefore,



[image: there is no content]




	(2)

	
By Lemma 1 (2), we have



(R˜∩˜S˜){(α,β,γ)}¯(Y)={x∈U|(R˜∩˜S˜){(α,β,γ)}(x)∩Y≠∅}={x∈U|(R˜{(α,β,γ)}∩S˜{(α,β,γ)})(x)∩Y≠∅}⊆{x∈U|R˜{(α,β,γ)}(x)∩Y≠∅}∩{x∈U|S˜{(α,β,γ)}(x)∩Y≠∅}=R˜{(α,β,γ)}¯(Y)∩S˜{(α,β,γ)}¯(Y).









☐





Next, we define the inverse lower approximation and upper approximation on two universes w.r.t. [image: there is no content] and [image: there is no content] as follows:

Definition 13.

 Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. For any [image: there is no content][image: there is no content], the inverse lower approximation and upper approximation of X on two universes w.r.t. [image: there is no content] and [image: there is no content] are defined as:


[image: there is no content]















The pair [image: there is no content] is called the inverse rough set of X w.r.t. [image: there is no content] and [image: there is no content].



Theorem 6.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. [image: there is no content] is the [image: there is no content]-cut relation given in Definition 10 from U to V, where [image: there is no content]. For any [image: there is no content], we have:

	(1) 

	
[image: there is no content]




	(2) 

	
[image: there is no content], [image: there is no content];




	(3) 

	
[image: there is no content], [image: there is no content];




	(4) 

	
[image: there is no content], [image: there is no content];




	(5) 

	
If [image: there is no content], then [image: there is no content] and [image: there is no content];




	(6) 

	
[image: there is no content], [image: there is no content].











Proof. 

The proof is similar to that of Theorem 1.  ☐





Definition 14.

 Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. [image: there is no content] is a [image: there is no content]-cut relation defined in Definition 10. For any [image: there is no content], the approximate precision [image: there is no content] of Y w.r.t. [image: there is no content] is defined as follows:


[image: there is no content]








where [image: there is no content] represents the cardinality of the set Y.





Let [image: there is no content], and [image: there is no content] is called the rough degree of with regard to [image: there is no content]. It is obviously that [image: there is no content] and [image: there is no content].



The following Theorem 7 discusses the properties of approximation precision and rough degree.



Theorem 7.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. [image: there is no content] is a [image: there is no content]-cut relation defined in Definition 10. For any [image: there is no content], then the rough degree and the approximate precision of the set [image: there is no content] and [image: there is no content] satisfy the following properties:

	(1) 

	
μR˜{(α,β,γ)}(Y1∪Y2)|R˜{(α,β,γ)}¯(Y1)∪R˜{(α,β,γ)}¯(Y2)|≤μR˜{(α,β,γ)}(Y1)|R˜{(α,β,γ)}¯(Y1)|+μR˜{(α,β,γ)}(Y2)|R˜{(α,β,γ)}¯(Y2)|−μR˜{(α,β,γ)}(Y1∩Y2)|R˜{(α,β,γ)}¯(Y1)∩R˜{(α,β,γ)}¯(Y2)|;




	(2) 

	
ρR˜{(α,β,γ)}(Y1∪Y2)|R˜{(α,β,γ)}¯(Y1)∪R˜{(α,β,γ)}¯(Y2)|≥ρR˜{(α,β,γ)}(Y1)|R˜{(α,β,γ)}¯(Y1)|+ρR˜{(α,β,γ)}(Y2)|R˜{(α,β,γ)}¯(Y2)|−ρR˜{(α,β,γ)}(A∩Y2)|R˜{(α,β,γ)}¯(Y1)∩R˜{(α,β,γ)}¯(Y2)|.











Proof. 

According to the definition of the rough degree, we have


μR˜{(α,β,γ)}(Y1∪Y2)=1−|R˜{(α,β,γ)}̲(Y1∪Y2)||R˜{(α,β,γ)}¯(Y1∪Y2)|=1−|R˜{(α,β,γ)}̲(Y1∪Y2)||R˜{(α,β,γ)}¯(Y1)∪R˜{(α,β,γ)}¯(Y2)|≤1−|R˜{(α,β,γ)}¯(Y1)∪R˜{(α,β,γ)}̲(Y1)||R˜{(α,β,γ)}̲(Y1)∪R˜{(α,β,γ)}¯(Y2)|.








Then, we have


μR˜{(α,β,γ)}(Y1∪Y2)|R˜{(α,β,γ)}¯(Y1)∪R˜{(α,β,γ)}¯(Y2)|≤|R˜{(α,β,γ)}¯(Y1)∪R˜{(α,β,γ)}¯(Y2)|−|R˜{(α,β,γ)}̲(Y1)∪R˜{(α,β,γ)}̲(Y2)|.








Similarly, we have


μR˜{(α,β,γ)}(Y1∩Y2)=1−|R˜{(α,β,γ)}̲(Y1∩Y2)||R˜{(α,β,γ)}¯(Y1∩Y2)|=1−|R˜{(α,β,γ)}̲(Y1)∩R˜{(α,β,γ)}̲(Y2)||R˜{(α,β,γ)}¯(Y1∩Y2)|=1−|R˜{(α,β,γ)}̲(Y1)∩R˜{(α,β,γ)}̲(Y2)|R˜{(α,β,γ)}̲(Y1)∩R˜{(α,β,γ)}̲(Y2)|.








Hence,



[image: there is no content]



Furthermore, we know [image: there is no content] holds for any sets A and B. Then,


[image: there is no content]








Furthermore, by


μR˜{(α,β,γ)}(Y1)=1−|R˜{(α,β,γ)}̲(Y1)||R˜{(α,β,γ)}¯(Y1)|andμR˜{(α,β,γ)}(Y2)=1−|R˜{(α,β,γ)}̲(Y2)||R˜{(α,β,γ)}¯(Y2)|,wehave|R˜{(α,β,γ)}¯(Y1)|−|R˜{(α,β,γ)}̲(Y1)|=μR˜{(α,β,γ)}(Y1)|R˜{(α,β,γ)}¯(Y1)|and|R˜{(α,β,γ)}¯(Y2)|−|R˜{(α,β,γ)}̲(Y2)|=μR˜{(α,β,γ)}(Y2)|R˜{(α,β,γ)}¯(Y2)|.








Therefore,


[image: there is no content]








 ☐






4. Two Extended Models


In this section, we give two extended rough set models of the model in Section 3, i.e., the degree rough set model and the variable precision rough set model.



4.1. The Degree Rough Set Model on Two Different Universes



Definition 15.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space and [image: there is no content] be a [image: there is no content]-cut relation defined in Definition 10. For any [image: there is no content], we define the degree lower and upper approximations of Y w.r.t. the degree k, [image: there is no content] and [image: there is no content] as follows:



R˜{(α,β,γ)}̲k(Y)={x∈U||R˜{(α,β,γ)}(x)−Y|≤k and R˜{(α,β,γ)}(x)≠∅}={x∈U||R˜{(α,β,γ)}(x)|−|R˜{(α,β,γ)}(x)∩Y|≤k and R˜{(α,β,γ)}(x)≠∅};R˜{(α,β,γ)}¯k(Y)={x∈U||R˜{(α,β,γ)}(x)∩Y|>k or R˜{(α,β,γ)}(x)=∅}.




where k is a finite nonnegative integer and [image: there is no content] denotes the cardinality of the set Y.



The pair [image: there is no content] is called the degree rough set of Y w.r.t. the degree k, [image: there is no content] and [image: there is no content].



We also define the positive region posR˜{(α,β,γ)}k(Y), negative region negR˜{(α,β,γ)}k(Y) and boundary region bnR˜{(α,β,γ)}k(Y) of Y as follows:



posR˜{(α,β,γ)}k(Y)=R˜{(α,β,γ)}̲k(Y),



negR˜{(α,β,γ)}k(Y)=U−R˜{(α,β,γ)}¯k(Y),



bnR˜{(α,β,γ)}k(Y)=R˜{(α,β,γ)}¯k(Y)−R˜{(α,β,γ)}̲k(Y).



Remark 4.

In Definition 15, if [image: there is no content], then


R˜{(α,β,γ)}̲0(Y)={x∈U||R˜{(α,β,γ)}(x)−Y|≤0 and R˜{(α,β,γ)}(x)≠∅}={x∈U||R˜{(α,β,γ)}(x)−Y|=0 and R˜{(α,β,γ)}(x)≠∅}={x∈U|R˜{(α,β,γ)}(x)⊆Y and R˜{(α,β,γ)}(x)≠∅}=R˜{(α,β,γ)}̲(Y);R˜{(α,β,γ)}¯0(Y)={x∈U||R˜{(α,β,γ)}(x)∩Y|>0 and R˜{(α,β,γ)}(x)=∅}={x∈U|R˜{(α,β,γ)}(x)∩Y≠∅ or R˜{(α,β,γ)}(x)=∅}=R˜{(α,β,γ)}¯(Y),








which implies that the lower and upper approximation operators in Definition 12 are special cases of the degree lower and upper approximation operators in Definition 15, respectively.





In following Theorem 8, we discuss some properties of the degree lower and upper approximation operators.



Theorem 8.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space, and [image: there is no content] is the [image: there is no content]-cut relation defined in Definition 10. For any [image: there is no content] we have:

	(1) 

	
[image: there is no content], [image: there is no content];




	(2) 

	
[image: there is no content], [image: there is no content];




	(3) 

	
[image: there is no content], [image: there is no content];




	(4) 

	
[image: there is no content], [image: there is no content];




	(5) 

	
If [image: there is no content], then [image: there is no content] and [image: there is no content];




	(6) 

	
If [image: there is no content], then [image: there is no content] and [image: there is no content], where k is a finite positive integer.











Proof. 

We only prove [image: there is no content] and [image: there is no content].



(4) Notice that [image: there is no content] and [image: there is no content] for any set [image: there is no content]; we have



∼R˜{(α,β,γ)}¯k(∼Y)=∼{x∈U||R˜{(α,β,γ)}(x)∩(∼Y)|>k or R˜{(α,β,γ)}(x)=∅}=∼{x∈U||R˜{(α,β,γ)}(x)−Y|>k or R˜{(α,β,γ)}(x)=∅}={x∈U||R˜{(α,β,γ)}(x)∩(∼Y)|≤k and R˜{(α,β,γ)}(x)≠∅}=R˜{(α,β,γ)}̲k(Y),∼R˜{(α,β,γ)}̲k(∼Y)=∼{x∈U||R˜{(α,β,γ)}(x)−(∼Y)|≤k and R˜{(α,β,γ)}(x)≠∅}=∼{x∈U||R˜{(α,β,γ)}(x)∩(Y)|≤k and R˜{(α,β,γ)}(x)≠∅}={x∈U||R˜{(α,β,γ)}(x)∩(Y)|>k or R˜{(α,β,γ)}(x)=∅}=R˜{(α,β,γ)}¯k(Y).



(6) Since [image: there is no content], for any [image: there is no content] and [image: there is no content], we have



R˜{(α,β,γ)}̲l(Y)={x∈U||R˜{(α,β,γ)}(x)−Y|≤l and R˜{(α,β,γ)}(x)≠∅}⊆{x∈U||R˜{(α,β,γ)}(x)−Y|≤k and R˜{(α,β,γ)}(x)≠∅}=R˜{(α,β,γ)}̲k(Y).



For any [image: there is no content], we have [image: there is no content] and [image: there is no content], then we have [image: there is no content] and [image: there is no content], so [image: there is no content]. Hence, [image: there is no content].  ☐





Remark 5.

In general, [image: there is no content] does not hold, where k is a finite positive integer. The reason is that if [image: there is no content], then [image: there is no content] and [image: there is no content] Besides, [image: there is no content][image: there is no content][image: there is no content] also does not hold in general, where k is a finite positive integer. The reason is that if [image: there is no content], then [image: there is no content] or [image: there is no content].






4.2. The Variable Precision Rough Set Model on Two Different Universes


Definition 16.

Let [image: there is no content] be a generalized single valued neutrosophic approximation space. For any [image: there is no content], we define the variable precision lower and upper approximation of Y w.r.t. the control parameter ν, [image: there is no content] and [image: there is no content] as follows, respectively:



[image: there is no content],



[image: there is no content],



where [image: there is no content], [image: there is no content] denotes the cardinality of the set Y.





The pair [image: there is no content] is called the variable precision single-valued neutrosophic rough set of A with regard to the control parameter [image: there is no content], [image: there is no content] and [image: there is no content].



We also define the positive region posVR˜{(α,β,γ)}ν(Y), negative region negVR˜{(α,β,γ)}ν(Y) and boundary region bnVR˜{(α,β,γ)}ν(Y) of Y about [image: there is no content] as follows:



posVR˜{(α,β,γ)}ν(Y)=VR˜{(α,β,γ)}̲ν(Y),



negVR˜{(α,β,γ)}ν(Y)=U−VR˜{(α,β,γ)}¯ν(Y),



bnVR˜{(α,β,γ)}ν(Y)=VR˜{(α,β,γ)}¯ν(Y)−VR˜{(α,β,γ)}̲ν(Y).



The following Theorems 9 and 10 can be easily obtained by Definition 16.



Theorem 9.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. For any [image: there is no content], [image: there is no content], [image: there is no content], then:

	(1) 

	
[image: there is no content];




	(2) 

	
[image: there is no content].











Proof. 

The proof is straightforward from Definition 16.  ☐





Remark 6.

In Theorem 9, if [image: there is no content], then:

	(1) 

	
[image: there is no content];




	(2) 

	
[image: there is no content].











Theorem 10.

Let [image: there is no content] be a generalized single-valued neutrosophic approximation space. For any [image: there is no content], [image: there is no content]. Then:

	(1) 

	
[image: there is no content];




	(2) 

	
[image: there is no content].











Proof. 

The proof is straightforward from Definition 16.  ☐







5. An Application in Multi-Attribute Decision Making


In this section, we illustrate the application of the rough set model in generalized single-valued neutrosophic spaces proposed in Section 3.



We present the medical decision procedure based on the proposed rough set model in a single-valued neutrosophic environment as follows.



Assume that the universe [image: there is no content] denotes a set of patients and the universe [image: there is no content] denotes a set of symptoms. Let [image: there is no content] be an SVNR from U to V. For any [image: there is no content], [image: there is no content] represent the truth membership degree, indeterminacy membership degree and falsity membership degree of patient [image: there is no content] with symptoms [image: there is no content], respectively. Given a patient [image: there is no content], the doctor can present the relationship degree decreased by a single-valued neutrosophic number, i.e., [image: there is no content] between the patient [image: there is no content] and the symptom [image: there is no content]. The [image: there is no content] is given in advance by another doctor and represents the doctors’ lowest requirements on the membership degree. For any [image: there is no content], Y denotes a certain disease and has the basic symptoms [image: there is no content]. For a patient [image: there is no content], if [image: there is no content], then we can be sure that the patient [image: there is no content] is suffering from the disease Y and must receive treatment immediately; if [image: there is no content] we cannot be sure whether the patient [image: there is no content] is suffering from the disease Y or not. Therefore, the doctor needs to carry out a second choice to decide whether the patient [image: there is no content] is suffering from the disease Y or not; if [image: there is no content], then we can be sure that the patient [image: there is no content] is not suffering from the disease Y and does not need to receive treatment.



Next, we give an example to illustrate the method above.



Example 2.

Let [image: there is no content] be five patients, [image: there is no content] be seven symptoms, where [image: there is no content][image: there is no content] stand for “tired”, “a stuffed-up nose”, “headache”, “chill”,“stomach pain”, “dry cough” and “chest-pain”. [image: there is no content] is the medical knowledge statistic data of the relationship of the patient [image: there is no content][image: there is no content] and the symptom [image: there is no content][image: there is no content], and [image: there is no content] is an SVNR from U to V (given in Table 2). For any [image: there is no content], [image: there is no content] represent the truth membership degree, indeterminacy membership degree and falsity membership degree of patient [image: there is no content] with symptoms [image: there is no content], respectively. For example, [image: there is no content] indicates that the truth membership, indeterminacy membership and falsity membership of patient [image: there is no content] with symptoms [image: there is no content] is [image: there is no content], respectively.


Table 2. The single-valued neutrosophic relation [image: there is no content] of the symptoms and patients.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
(0.6,0,1,0.4)

	
(1,0,0)

	
(0.6,0.2,0.2)

	
(0.8,0.3,0.2)

	
(0,0,1)

	
(0.9,0.1,0.2)

	
(0.1,0.1,0.9)




	
[image: there is no content]

	
(1,0.2,0)

	
(0,0,1)

	
(0.8,0.1,0.1)

	
(0.1,0.1,1.7)

	
(0,0,1)

	
(0.8,0.2,0.1)

	
(0.2,0.1,0.6)




	
[image: there is no content]

	
(0.8,0.1,0.5)

	
(0,0.3,1)

	
(0.2,0.2,0.8)

	
(0.2,0.1,0.8)

	
(0.7,0.1,0.2)

	
(0.1,0.2,0.8)

	
(1,0,0)




	
[image: there is no content]

	
(1,0.3,0.1)

	
(0,0,1)

	
(0.3,0.1,0.7)

	
(0,0,1)

	
(0,0,1)

	
(0.7,0.3,0.2)

	
(0,0,1)




	
[image: there is no content]

	
(0.1,0.2,0.7)

	
(0,0,1)

	
(0,0.2,0.9)

	
(0.2,0.1,0.7)

	
(1,0,0)

	
(0,0,1)

	
(0.7,0.3,0.2)











Let [image: there is no content] denote a certain disease showing four basic symptoms in the clinic.



Case 1. Take [image: there is no content]; by Definition 10, we can get the cut relation [image: there is no content] (given in Table 3).


Table 3. The cut relation [image: there is no content].







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
1

	
1

	
1

	
1

	
0

	
1

	
0




	
[image: there is no content]

	
1

	
0

	
1

	
0

	
0

	
1

	
0




	
[image: there is no content]

	
1

	
0

	
0

	
0

	
1

	
0

	
1




	
[image: there is no content]

	
1

	
0

	
0

	
0

	
0

	
1

	
0




	
[image: there is no content]

	
0

	
0

	
0

	
0

	
1

	
0

	
1











According to Definition 11, we can get



[image: there is no content]



Then, by Definition 12, we can calculate the lower approximation, the upper approximation, the boundary region and the negative region of Y as follows, respectively.



[image: there is no content]



By Definition 14, we also can calculate the approximate precision of the set Y ([image: there is no content]) as follows:



[image: there is no content].



Thus, we can obtain the following conclusions:

	(1) 

	
Patients [image: there is no content] and [image: there is no content] are suffering from the disease Y and must receive treatment immediately.




	(2) 

	
We cannot determine whether patients [image: there is no content] and [image: there is no content] are suffering from the disease Y or not.




	(3) 

	
The patient [image: there is no content] is not suffering from the disease Y and does not need to receive treatment.









Case 2. Take [image: there is no content]. We can obtain the cut relation [image: there is no content] (given in Table 4).


Table 4. The cut relation [image: there is no content].







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
0

	
1

	
1

	
0

	
0

	
1

	
0




	
[image: there is no content]

	
1

	
0

	
1

	
0

	
0

	
1

	
0




	
[image: there is no content]

	
0

	
0

	
0

	
0

	
1

	
0

	
1




	
[image: there is no content]

	
1

	
0

	
0

	
0

	
0

	
1

	
0




	
[image: there is no content]

	
0

	
0

	
0

	
0

	
1

	
0

	
1











According to Definition 11, we can get



[image: there is no content].



Then, by Definition 12, we can calculate the lower approximation, the upper approximation, the boundary region and the negative region of Y as follows, respectively.



[image: there is no content]



By Definition 14, we also can calculate the approximate precision of the set Y ([image: there is no content]) as follows:[image: there is no content].



Thus, we can obtain the following conclusions:

	(1) 

	
Patients [image: there is no content] and [image: there is no content] are suffering from the disease Y and must receive treatment immediately.




	(2) 

	
We cannot determine whether patient [image: there is no content] is suffering from the disease Y or not.




	(3) 

	
Patients [image: there is no content] and [image: there is no content] are not suffering from the disease Y and do not need to receive treatment.









Based on the above analysis, the proposed model and method could help decision makers make a scientific and precise decision as they face the similar cases in practice. Besides, the model presented in this paper also permits controlling the risk of misdiagnosis in practice.





To explore the effectiveness of the method proposed in this paper, we compare it with the method proposed in [29]. The method given in [29] only deals with the decision making problems with intuitionistic fuzzy information, but not the decision making problems with the single-valued neutrosophic information; while the model proposed in the present paper can handle the decision making problems not only with intuitionistic fuzzy information (since intuitionistic fuzzy sets can be regarded as a special case of SVNSs), but also with single-valued neutrosophic information. Thus, the proposed method is more general, and its application domain is wider than that of the method in [29].



The proposed model is based on the level cut relation of single-valued neutrosophic relations. There are two advantages. One advantage is that the level parameter in the model can control the risk of the misdiagnosis. Another advantage is that the model can approximate the crisp concept by converting a single-valued neutrosophic fuzzy relation into a crisp binary relation.



The rough set method does not depend on any other extra knowledge besides the given dataset. Rough set theory can be applied as a component of hybrid solutions in machine learning and data mining. They have been found to be particularly useful for rule induction and feature selection. Decision makers can control the size of the loss of information by changing the level parameter.




6. Conclusions


In the present paper, based on the [image: there is no content]-cut relation [image: there is no content][image: there is no content], we propose a new rough set model in generalized single-valued neutrosophic approximation spaces and obtain two extended models of the model. Some properties are studied. Finally, we use an example to illustrate the proposed rough set model’s application in a multi-attribute decision making problem.
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