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Abstract: In this paper, new construction methods of entanglement-assisted quantum error correction
code (EAQECC) from circulant matrices are proposed. We first construct the matrices from two
vectors of constraint size, and determine the isotropic subgroup. Then, we also propose a method
for calculation of the entanglement subgroup based on standard forms of binary matrices to satisfy
the constraint conditions of EAQECC. With isotropic and entanglement subgroups, we determine
all the parameters and the minimum distance of the EAQECC. The proposed EAQECC with small
lengths are presented to explain the practicality of this construction of EAQECC. Comparison with
some earlier constructions of EAQECC shows that the proposed EAQECC is better.
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1. Introduction

The theory of quantum information is a result of the effort to generalize classical information
theory. However, an aspect that is commonly tacitly referred to the background, is the reversible
character of the quantum mechanical processes, underlying the computations [1]. An important
milestone in quantum computations occurred in 1994 when Shor published computationally efficient
quantum algorithms for factoring integers and for evaluating discrete logarithms [2]. With these
algorithms, the owner of a quantum computer could crack popular, highly utilized public key
cryptosystems. In addition, Grover [3] discovered a quantum algorithm for the important problem
of searching an unstructured database, which yields a substantial speed-up over classical search
algorithms. Hence, performance of these quantum algorithms promised a great deal. However, the
effects of noise and imperfectly applied quantum gates would quash their performance advantages [4].
To deal with the problems, the theory of quantum error correction codes was developed to protect
quantum states against noise. Discoveries of 9-qubit codes by Shor [5] and 7-qubit codes by Steane [6]
showed how data could be protected by containing more redundancy after encoding by quantum
systems; these were the first examples of quantum error correction code (QECC). The purpose of QECC
is to encode a k-qubit state into an n-qubit state, such that all 2k complex coefficients are perfectly
stored and used to correct errors.

Stabilizer codes, first introduced by Gottesman [7], have become an important class of QECC,
since these codes are useful for building quantum fault-tolerant circuits [8]. Stabilizer codes append
ancilla qubits to qubits to be protected, and the most important advantage of stabilizer codes is that
errors can be detected and removed from stabilizer operators, rather than from the quantum state
itself. In addition, the stabilizer formalism allows us to construct quantum stabilizer codes from
binary matrices over binary in the constraint referred to as the symplectic inner product (SIP) [7].
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With Calderbank-Shor-Steane (CSS)-based construction [9], the problem turned out to be utilizing
self-orthogonal classical codes. However, self-orthogonal codes with high error-correcting capacity
are restricted, and therefore, further investigation was required to generate good stabilizer codes.
Introduction of entanglement-assisted quantum error correction code (EAQECC) by Brun et al. [10] is
one answer to this problem. More precisely, it enables us to construct the quantum error-correction
codes not only from self-orthogonal classical codes, but also from arbitrary classical codes with the
help of copies of maximally entangled quantum states shared between encoder and decoder. To design
efficient EAQECC, however, it is desirable to use the fewest entangled states possible, because the cost
to prepare those states is relatively high. Hence, the construction of EAQECC with small amounts of
entangled states is a much more attractive issue [10,11]. Therefore, several constructions of EAQECC
have been proposed, such as construction from arbitrary matrices where the number of ebits is
determined by parameters of classical codes [12], from low-density parity-check (LDPC) codes [11],
from generalized quadrangles [13], from circulant permutation matrices [14], and from shortened
Hamming codes [15]. Almost all existing constructions consider classical codes to calculate the number
of ebits. To do so, the problem of transforming the classical form to basic form of EAQECC was
proposed in the Gram–Schmidt procedure. This aims to classify the classical form into isotropic
and entanglement subgroups, but the complexity of the Gram–Schmidt procedure also increases in
proportion to the length of the codes [16]. Furthermore, the encoding transforms the non-commuting
set of generators into its canonical form [17]. Then, quantum circuits composed of CNOT, H, and S
gates can be derived directly with complexity O(n2). The canonical form gives the relationship between
EAQECC and quantum stabilizer codes, even though we can use the property of the stabilizer code
that is useful for fault-tolerant computation [18].

The key result of this paper is to propose novel approaches to construction of EAQECC. First,
we propose a new method for the construction of the isotropic subgroup based on circulant matrices.
Then, the entanglement subgroup can be determined from a method of transforming the isotropic
group into standard form; hence, the parameters of codes are found, and for effective preparation
of the entangled state, the number of ebits should be as few as possible. To explain the practical
construction of the quantum codes, design of the proposed EAQECC with lengths up to 12 are shown.
In addition, the minimum distance is calculated and explained to show that the proposed construction
has good correctable capability, in comparison with recent EAQECC. The organization of this paper is
as follows. In Section 2, we review the theory of quantum mechanics, the role of quantum stabilizer
codes in quantum error correction, and the constraints on the construction of EAQECC. In Section 3,
we propose the construction of two new types of circulant matrices. Following that, we construct the
isotropic subgroup, and the calculation for entanglement subgroups is proposed. From the subgroup
of isotropic and entanglement, parameters and minimum distances of EAQECC have been determined.
Finally, conclusions are presented in Section 4.

2. Background

In this section, we give some preliminary explanations about quantum mechanics, quantum error
correction codes, and the entanglement-assisted quantum stabilizer codes used throughout the paper.

2.1. Introduction to Quantum Mechanics

The bit is the fundamental concept of classical computation and classical information. Quantum
computation and quantum information are built upon an analogous concept, the quantum bit, or qubit
for short [4]. Then, just as the classical bit has a state (either 0 or 1), the state in a quantum system is
instead a vector over the complex number C; the state denoted as |ψ〉 = α|0〉 + β|1〉 can be considered
to have both values of |0〉 and |1〉 at the same time, where the probability of value |0〉 and |1〉 are
|α|2 and |β|2 respectively. This concept, known as superposition, is the main property of quantum
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computation, since it allows gate operations to deal with several values in one step. Hence, the amount
of information that can be represented is infinite. A qubit can be represented in vector form:

|ψ〉 = α|0〉+ β|1〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α

β

]
.

According to the probability, the condition |α|2 + |β|2 = 1 must be satisfied. A quantum memory
register is a physical system composed of n qubits, that is, multiples of the tensor product of some
qubits. Generally, the n-qubit state is denoted as:

|ψ〉 = ∑
ik={0,1}

αi1i2...in |i1〉 ⊗ |i2〉 ⊗ ...⊗ |in〉 = ∑
i

αi|i〉,

where i = ∑n
k=1 2n−kik. Hence, a state vector of an n-qubit quantum system is considered a

superposition of the states that make up a base in a 2n dimensional complex Hilbert space, H⊗n.
A particularly fruitful way to understand a quantum system is to look at the behavior of

various operators acting on the states of the system. Quantum information processing requires
unitary transformations operating on states. For example, Pauli operators are one of the unitary
transformations. The single Pauli operators (matrices) I, X, Y, and Z are represented as

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −j
j 0

]
, Z =

[
1 0
0 −1

]

where j =
√
−1. The Pauli operation acts on the qubit as follows:

I|ψ〉 =
[

1 0
0 1

]
×
[

α

β

]
=

[
α

β

]
= α|0〉+ β|1〉, X|ψ〉 =

[
0 1
1 0

]
×
[

α

β

]
=

[
β

α

]
= β|0〉+ α|1〉,

Z|ψ〉 =
[

1 0
0 −1

]
×
[

α

β

]
=

[
α

−β

]
= α|0〉 − β|1〉, Y|ψ〉 =

[
0 −j
j 0

]
×
[

α

β

]
=

[
−jβ
jα

]
= j(−β|0〉+ α|1〉).

Thus, the Pauli operators X, Z, and Y are regarded as a bit flip, a phase flip, and a combination of
bit and phase flips, respectively. Multiplication of two Pauli operators satisfies the following equations.

X2 = Y2 = Z2 = I;
X× Y = jZ; Y× X = −jZ→ X× Y = −Y× X;
Y× Z = jX; Z× Y = −jX→ Y× Z = −Z× Y;
Z× X = jY; X× Z = −jY→ Z× X = −X× Z.

The single Pauli group P1 is a group formed by the Pauli operators, which is closed under
multiplication. Therefore, the Pauli group consists of all the Pauli matrices, together with the
multiplicative factors ±1, ±j. We have: P1 = ±{I, jI, X, jX, Y, jY, Z, jZ}. The n-fold tensor product
of single Pauli operators forms an n-qubit Pauli group Pn. The main property of Pn is that any two
elements, A, B ∈ Pn, either commute or anti-commute. For n-qubit Pauli operators A, B ∈ Pn, the
operator ◦ for commutativity is defined as

A ◦ B =
n

∏
i=1

Ai•Bi, where Ai•Bi =

{
+1, if Ai × Bi = Bi ×Ai
−1, if Ai × Bi = −Bi ×Ai

The two operators A and B are commutative if and only if A◦B = +1; otherwise, they are
anti-commutative. Commutativity is an important feature of the Pauli group, since this can be
used to detect errors within the stabilizer formalism described in the next section.
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2.2. Standard QECC: Stabilizers Code

Let H⊗n = {|ψ〉} be the quantum state space of n qubits. A stabilizer group, S, closed under
multiplication, is an Abelian subgroup of Pn, such that a non-trivial subspace, CS of H⊗n, is fixed
(or stabilized) by S. The stabilized CS defines a quantum code space such that

CS =
{
|ψ〉 ∈ H⊗n ∣∣g|ψ〉 = |ψ〉, ∀g ∈ S

}
.

If S is generated by g = {g1, g2, . . . , gm}, where g is m = n − k independent stabilizer operators,
the code space CS encodes k logical qubits into n physical qubits and can correct t = (dmin − 1)/2 errors.
This code CS is called [[n, k, dmin]] quantum stabilizer code. Note that quantum stabilizer code CS has
the following features:

1. −I /∈ S.
2. For any two stabilizers E, F ∈ S, E ◦ F = +1.

Then, it is enough to check the commutative property of the generators of CS: g = {g1, g2, . . . , gm};
every two elements must be commutative to each other. Considering a set of error operators, {} ⊂ Pn,
the collection of Pauli operators takes a state |ψ〉 to the corrupted state E|ψ〉. A given operator E either
commutes or anti-commutes with each stabilizer Si. Then, the corrupted state E|ψ〉 is diagnosed by
elements Si of the set S. The outcome of the diagnostic procedure is a vector, {+1, −1}, indicating
whether E can be detected or not. The indication for the error detection is expressed as follows:

Si × E|ψ〉 =
{

E× Si|ψ〉 = E|ψ〉,Error undetected.

−E× Si|ψ〉 = −E|ψ〉,Error detected.

The condition for quantum error correction is that E is a set of correctable error operators for CS if

Ei
†Ej /∈ N(S)\S, ∀Ei, Ej ∈ E,

where Ei
† is the conjugate transpose of Ei, and N(S) is the normalizer of S in Pn, such as

N(S) = {A ∈ Pn

∣∣∣ A†EA ∈ S, ∀E ∈ S}.

Note that N(S) is the collection of all operators in Pn that commute with S, and S ⊂ Pn. Then,
minimum distance dmin of stabilizer code is determined by

dmin = min{W(E)} s.t. E ∈ N(S)\S,

where the weight of an operator, W(*), is the number of positions not equal to Pauli operator I.
Quantum stabilizer codes can be expressed in the binary field, since any given Pauli operator on

n qubits can be composed into an X–containing operator and a Z–containing operator, as well as a
phase factor, {±1,±j}. This is achieved by mapping I, X, Y, Z as follows: I→ (0, 0) ; X→ (1, 0) and
Y→ (1, 1) ; Z→ (0, 1). Then, the (n − k) generators of an [[n, k]] stabilizer code can be expressed as a
concatenation of a pair of (n− k)× n binary matrices, HX, HZ. Then, the parity-check matrix H of the
quantum stabilizer code is defined as

H = [HX|HZ]. (1)

The commutative property of the stabilizers can be transformed into the orthogonality of rows
in the matrix forms with respect to the symplectic product. If the m-th row, rm, is expressed as
rm = [xm | zm], where zm and xm are binary strings for Z and X, respectively, then the symplectic
product of the m1 row and m2 row in the parity-check matrix H in (1) is expressed as

rm1 � rm2 = [xm1 |zm1 ]� [xm2 |zm2 ] = xm1 ∗ zm2 + xm2 ∗ zm1 modulo 2,
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where xk ∗ zl = ∑n
i=1 xki × zli. The symplectic product between two rows is zero if the total number

of positions with different values in X and Z is even. This condition is also needed to satisfy the
commutativity property. In other words, for a binary matrix, size (n − k) × 2n, H = [HX | HZ],
the symplectic product is satisfied for all rows if and only if

HX ×HZ
T + HZ ×HX

T = 0n−k modulo 2 (2)

where 0a is the a× a zero matrix. (2) is the SIP condition, which can be used to determine generators
of stabilizer codes.

2.3. Entanglement-Assisted Quantum Error Correction Code

An EAQECC is an extension of quantum stabilizer codes with parameter [[n, k, dmin; c]]. Like
classical coding theory, it also encodes k logical qubits into n physical qubits but with the help of c copies
of maximally entangled Bell states. It has been shown that EAQECCs have considerable advantages
over standard quantum stabilizer codes from pre-existing entanglement between transmitter and
receiver to improve the reliability of transmission. In addition, while quantum stabilizer codes based
on CSS can use dual-containing classical linear binary or quaternary code, non-self-orthogonal codes
can be transformed into an EAQECCs.

Let a size of a group be the number of elements in the group. If S is the non-Abelian in Pauli
group Pn of size m, then there exists a set of generators for S of the form {Z1, Z2, . . . , Zs+c, Xs+1, Xs+2,
. . . , Xs+c} (where s + c = m) with the following commutation properties:

[Zi, Zj] = 0 and [Xi, Xj] = 0 for all i, j;
[Xi, Zj] = 0 for all i 6= j;
{Xi, Zi} = 0 for all i,

(3)

where [A, B] and {A, B} are a commutator and a anti-commutator of generator A and B, respectively.
The [A, B] and {A, B} of generator A and B can be expressed as A × B − B × A and A × B + B × A,
respectively. Then, the non-Abelian group can be partitioned into:

1. a commuting subgroup, the isotropic group SI = {Zc+1, Zc+2, . . . , Zc+s}.
2. entanglement subgroup pairs SE = {Z1, Z2, . . . , Zc, X1, X2, . . . , Xc} with anti-commuting pairs;

the anti-commuting pairs (Zi, Xi) being shared between source and receiver.

The Gram–Schmidt procedure to drop the non-Abelian group into the partitions of operators
with the above properties (called the isotropic and entanglement subgroup) was introduced and
discussed [10]. From the isotropic and entanglement subgroup, EAQECC code CEA are defined as
[[n, k; c]] that encodes k = n − s − c qubits into n physical qubits with the help of s = n − k − c ancillas
qubits and c ebits shared between the sender and receiver, that can correct any error from the following
set of errors, N:

N =
{

Em

∣∣∣ ∀E1, E2 ⇒ E2
†E1 ∈ SI ∪ (Pn − N(S))

}
.

Code space CEA is a simultaneous eigenspace of the Abelian extension of S [16]. The Abelian
extension is Galois extension by using ancilla operators. From N, we can determine dmin, and it tells us
the detectable and correctable EAQECCs.

From the isotropic and entanglement subgroup, the operation of EAQECC can be considered.
For example, the following state shared between A (Alice) and B (Bob) is an entanglement state:

|Φ〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

The first half of the entanglement pair belongs to Alice and the second half to Bob. Then, the operating
principle is illustrated in Figure 1 [16]. The Sender A encodes the quantum information state |ψ〉with the
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help of local ancillary qubits |0〉 and her half of shared ebits, |Φ〉, and then shares the encoded qubits over
a noisy quantum channel. The Receiver B performs multi-qubit measurement on all qubits to diagnose the
channel error and perform recovery unitary operation R to reserve the action of the channel.
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The most important relationship between EAQECCs and classical codes is given in the following
theorem [10,12]:

Theorem 1. Let C be a binary classical code [n, k, d] with parity check matrix H. We can obtain a corresponding
[[n, 2k − n + c, d; c]] EAQECC, where c = rank

{
HHT} is the number of ebits needed.

As a consequence, there are lots of papers using this theorem for EAQECC construction. From
binary code C with parameter [n, k, d] and the generator matrix G = [Ik | Akx(n-k)], the EAQECC with
[[2n − k, k, d’; c]] can be made [12], where c = 2n − 2k and d’ ≥ d. Tomas [13] used the generalized
quadrangle GQ(s,1) for the construction of classical binary code and proved the number of ebits is

2. The circulant matrix Pm =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

, and Am
(i) (i = 0, 1, 2, . . . , m − 1) is an m× m

binary matrix where the (i + 1) row is 1 and other rows are 0, and defines classical binary codes [14].
Then, the number of ebits is proven to be 1 for some conditions. Qian and Zhang [15] used shortened
Hamming codes with parameter

[
m(m−1)

2 , (m−1)(m−2)
2 , 3

]
, and proved EAQECCs with parameter[[

m(m−1)
2 , (m−1)(m−4)

2 + 1, 3; 1
]]

exist if m is even.

3. Construction Method of the Proposed EAQECC

In this section, general properties of cyclic matrices and circulant matrices are introduced first.
Then, we discuss the construction of the isotropic subgroup from the proposed modified circulant
matrix, and then the calculation for an entanglement group is given. As a consequence, the parameters
for EAQECC are obtained.

3.1. Cyclic Matrices

Definition 1. (Cyclic Matrix) Let In be the n× n identity matrix. A cyclic matrix In(x) is a shifted identity
matrix with the rows of In circularly shifted to the right by x positions, where x ∈ {0, 1, ..., n− 1} is the offset.
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In general, it is known that In(0) = In and In(x± kn) = In(x) for any integer k. The multiplication
of In(1) and In(1) is In(2). Therefore, if In(1)c is denoted as c times the multiplication of In(1), then
In(1)c = In(c).

Example 1. For n = 4, the cyclic matrix and relations are given as follows:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, I4(1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

, and I4(1)
2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

×


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = I4(2).

Definition 2. (Left-cyclic Matrix) Let Jn be the n× n binary matrix made from the π-rotation of identity
matrix In. A cyclic matrix Jn(x) is a shifted Jn with the rows of Jn circularly shifted to the right by x positions,
where x ∈ {0, 1, ..., n− 1} is the offset.

In general, it is known that the transpose matrix of any Left-cyclic matrix is equal to itself.
Therefore, any Left-cyclic matrix is a symmetric matrix.

Example 2. For n = 4, the following Left-cyclic matrix and relations are given:

J4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

, J4(1) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

and J4(1)
T = J4(1) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

.

3.2. Circulant Matrices

Definition 3. (Circulant Matrix-CM) An n× n binary matrix Q1 is called a CM if it is expressed as

Q1 =


i0 i1 i2 · · · in−1

in−1 i0 i1 · · · in−2

in−2 in−1 i0 · · · in−3
...

...
...

. . .
...

i1 i2 i3 · · · i0

,

where the entries {i0, i1, ... , in−1} of matrix Q1 are the binary values.

Circulant matrix Q1 can be expressed by using a cyclic matrix as follows:

Q1 = i0 × In(0) + i1 × In(1) + i2 × In(2) + ... + in−1 × In(n− 1) =


u× In(0)
u× In(1)

...
u× In(n− 1)

,

where u = [i0 i1 . . . in−1]. Therefore, we can denote Q1 as the function of vector u and variable n.
Hereafter, we denote Q1 as P1(u, n).
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Definition 4. (Left-circulant Matrix—Left-CM) An n× n binary matrix Q2 is called a Left-CM if it is
expressed as

Q2 =


j0 j1 j2 · · · jn−1

j1 j2 j3 · · · j0
j2 j3 j4 · · · j1
...

...
...

. . .
...

jn−1 j0 j1 · · · jn−2

,

where the entries {j0, j1, . . . , jn−1} of matrix Q2 are the binary values.

Circulant matrix Q2 can be expressed by using a left-cyclic matrix, such as

Q2 = j0 × Jn(1) + j1 × Jn(2) + j2 × Jn(3) + ... + jn−2 × Jn(n− 1) + jn−1 × Jn(0) =


v× In(0)

v× In(n− 1)
...

v× In(1)

,

where v = [j0 j1 . . . jn-1]. Therefore, we can denote Q2 as the function of vector v and variable n.
Hereafter, we denote Q2 as P2(v, n).

3.3. Construction of Parity Check Matrices of EAQECC Based on Modified Circulant Matrices

From the combination of circulant matrices and the left-circulant matrices, the parity check matrix
that corresponds to isotropic subgroup have been formed in Theorem 2, then the anti-commuting
subgroup are determined as logical operators of the parity check matrix as Theorem 3. Finally, the
EAQECCs [[n, k, dmin; 1]] are found as the Corollary 1.

Theorem 2. For any two binary vectors u, v of size n, two circulant matrices are P1(u, n) and P2(v, n). Then,
the parity-check matrix H = [HX | HZ], where HX and HZ correspond to P1(u, n) and P2(v, n), respectively,
satisfies the SIP condition in (2).

Proof. From Definitions 3 and 4, P1(u, n) and P2(v, n) can be written as

P1(u, n) = In(iu1) + In(iu2) + ... + In(iuk )⇔ HX = In(iu1) + In(iu2) + ... + In(iuk ),

P2(v, n) = Jn(iv1) + Jn(iv2) + ... + Jn(ivh)⇔ HZ = Jn(iv1) + Jn(iv2) + ... + Jn(ivh),

where {u1, u2, . . . , uk} and {v1, v2, . . . , vk} are the positions of 1 at vectors u and v, respectively.
From the properties of circulant matrices, we get following equation for any 0 < m, l� n:

Jn(m) = Jn(0)× In(m),
In(l)× Jn(0) = Jn(0)× In(n− l),

In(l)
T = In(n− l).

In addition, any left-cyclic matrix is a symmetric matrix. So, the following equation is always true:

In(l)× Jn(m) = Jn(m)× In(l)
T ⇔ In(l)× Jn(m)T = Jn(m)× In(l)

T . (4)

From (4), we get:

(In(iu1) + In(iu2) + ... + In(iuk ))(Jn(iv1) + Jn(iv2) + ... + Jn(ivh))
T = (Jn(iv1) + Jn(iv2) + ... + Jn(ivh))(In(iu1) + In(iu2) + ... + In(iuk ))

T .

⇔ HX ×HZ
T = HZ ×HX

T ⇔ HX ×HZ
T + HZ ×HX

T = 0n modulo 2.
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Therefore, the matrix H = [HX | HZ] satisfies the SIP condition in (2), and Theorem 2 is proven.

Since the parity-check matrices constructed from Theorem 2 satisfy the SIP condition in (2), we
can choose the independent vectors from H to create corresponding isotropic subgroup SI. To have the
entanglement subgroup, the following theorem can be considered to satisfy the conditions.

Theorem 3. Given that parity-check matrix H of size (n − k) × 2n and its vectors are an independent
relationship, we can transform H into the standard form Hst in the following form:

Hst =

 r︷︸︸︷
I

n−k−r︷︸︸︷
A1

k︷︸︸︷
A2

r︷︸︸︷
B

n−k−r︷︸︸︷
C1

k︷︸︸︷
C2

0 0 0 D I E

 } r
} n− k− r

(5)

Then, the pairs of anti-commuting can be determined as{
XE =

ZE =

[ 0 ET I (ETC1 + C2
T) 0 0 ]

[ 0 0 0 A2
T 0 I ]

(6)

where the rank of matrix XE and ZE are k.

Proof.

(1) To transform the parity-check matrix to standard form, we use the Gauss-Jordan elimination,
swap the qubits, and add one row to another. The codewords and stabilizer are invariant to these
changes. So, step by step, the standard form can be obtained with (5).

(2) From the standard form, Hst, we calculate the encoded Pauli operators X and Z that satisfy the
following conditions: 

[Xi, Xj] = 0,
[Zi, Zj] = 0,

[Xi, Zj] = 0 for i 6= j,{
Xi, Zj

}
= 0 for i = j.

Consequently, encoded Pauli operators X and Z can be used as XE and ZE. Theorem 3 is proven. �

EAQECCs use pre-existing entanglement between transmitter and receiver to improve the
reliability of transmission. Hence, before transmission we must manufacture the entanglement state
between transmitter and receiver. It will be difficult to set up if the number of ebits becomes larger.
So, an EAQECC design to minimize the numbers of ebits is an important constraint. In following
Corollary, we will consider the result of the Theorem 2 when the number of ebits is 1.

Corollary 1. From the Theorem 3, firstly we choose one pair of anti-commuting from SE, it denotes as {X1, Z1}.
Then, we choose n − k − 1 generators {Z2, Z3, . . . , Zn-k} from parity check matrix that satisfy the commutation
property of isotropic sub-group SI. The minimum distance dmin is calculated from the generators of SE and SI.
The EAQECCs with parameter [[n, k, dmin;1]] is constructed.

Proof.
As the definition of EAQECC in Section 2.3, the non-Abelian group can be partitioned into:

1. a commuting subgroup, the isotropic group SI = {Zc+1, Zc+2, . . . , Zc+s}.
2. entanglement subgroup pairs SE = {Z1, Z2, . . . , Zc, X1, X2, . . . , Xc} with anti-commuting pairs;

the anti-commuting pairs (Zi, Xi) being shared between source and receiver.
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Then, from the isotropic and entanglement subgroup, EAQECC code CEA are defined as [[n, k; c]]
that encodes k = n − s − c qubits into n physical qubits with the help of s = n − k − c ancillas qubits
and c ebits shared between the sender and receiver. As the expectation to get the minimum distance,
one entanglement pair is chosen, hence c = 1, the operators are chosen above, the minimum distance is
determined by the minimum weights of operators in the error set N:

N =
{

Em

∣∣∣ ∀E1, E2 ⇒ E2
†E1 ∈ SI ∪ (Pn − N(S))

}
.

Finally, the parameter of EAQECC [[n, k, dmin;1]] are determined and the Corollary is proven. �

Following examples show the outputs of Corollary 1 where the minimum distance dmin ≥ 3, we
search vectors which make codes with various minimum distance. Then, among many candidates of
the vectors, to achieve largest minimum distance that has the error correctable ability the number of
error t =
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Example 3. For n = 7, let us consider the EAQECC when u = [1 1 0 0 1 0 1] and v = [1 0 0 1 0 1 1]. We have a
code with the minimum number of ebits and good minimum distance, as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:

H =



1 1 0 0 1 0 1 1 0 0 1 0 1 1
1 1 1 0 0 1 0 0 0 1 0 1 1 1
0 1 1 1 0 0 1 0 1 0 1 1 1 0
1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 1 0 1 1 1 0 0 1 1 1 0 0 1
0 0 1 0 1 1 1 1 1 1 0 0 1 0
1 0 0 1 0 1 1 1 1 0 0 1 0 1


(7)

The six generators are chosen from the first six rows of matrix H, which satisfy the independent
condition to generate all elements of an inotropic subgroup. By using Gaussian elimination and
interchanges of columns, matrix H in (7) takes the standard form:

Hst =



1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 1 1 1 0 0 1 0


(8)

And the corresponding entanglement subgroup pair is calculated as:

X1 =
[

0 0 0 1 1 0 1 0 0 0 0 0 0 0
]
,

Z1 =
[

0 0 0 0 0 0 0 1 0 1 0 0 0 1
]
.

(9)

Then, from vectors in (8) and (9) we have the generators for EAQECC as follows: SE = {X1, Z1}
and SI = {Z2, Z3, Z4, Z5, Z6} where

Z2 = [1 1 0 0 1 0 1 1 0 0 1 0 1 1],
Z3 = [1 1 1 0 0 1 0 0 0 1 0 1 1 1],
Z4 = [0 1 1 1 0 0 1 0 1 0 1 1 1 0],
Z5 = [1 0 1 1 1 0 0 1 0 1 1 1 0 0],
Z6 = [0 0 1 0 1 1 1 1 1 1 0 0 1 0].
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The generators S = <SI, SE > correspond to EAQECC [[7,1,3;1]] that encodes one information
qubit into seven physical qubits with the help of s = 6 ancilla qubits and only one pair entanglement
-assisted ebit, and they can correct one error.

Example 4. For n = 9, let us consider the EAQECC where u = [0 1 1 0 0 1 0 0 1] and v = [1 1 0 0 1 0 0 1 0]. We
have a code with the minimum number of ebits and good minimum distance, as in the following explanations.

From Theorem 2, we have the corresponding parity-check matrix:

H =



0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0
0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1
0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0
1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0
1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1


(10)

The eight generators are chosen from the first eight rows of matrix H, which satisfies the
independent condition to generate all elements of an inotropic subgroup. By using Gaussian
elimination and interchange of columns, matrix H in (10) takes the standard form:

Hst =



1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0
0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 1


(11)

And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1].

(12)

Then, from vectors in (11) and (12), we have the generators for EAQECC as follows: SE = {X1, Z1}
and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8}, where

Z2 = [0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0],
Z3 = [1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1],
Z4 = [0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1],
Z5 = [0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0],
Z6 = [0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1],
Z7 = [0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0],
Z8 = [1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0].

The generators S = < SI, SE > correspond to EAQECC [[9,1,3;1]] that encodes one information
qubit into nine physical qubits with the help of s = 7 ancilla qubits and one pair entanglement -assisted
ebit, and they can also correct one error.
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Example 5. For n = 10, let us consider the EAQECC when u = [0 1 1 1 0 1 1 0 1 0] and v = [1 1 1 0 1 1 0 1 0 0].
We have a code with the minimum number of ebits and good minimum distance as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:

H =



0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1
1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1
0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1
1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1
0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1
1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0
1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1


(13)

The nine rows of matrix H satisfy the independent condition to generate all elements of an
inotropic subgroup. By using Gaussian elimination and interchange of columns, matrix H in (13) takes
the standard form:

Hst =



1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1


(14)

And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1].

(15)

a/ Then, from vectors in (14) and (15) we have the generators for EAQECC as follows: SE = {X1,
Z1} and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9} where

Z2 = [0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0],
Z3 = [0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1],
Z4 = [1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1],
Z5 = [0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1],
Z6 = [1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0],
Z7 = [1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1],
Z8 = [0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1],
Z9 = [1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0].

The generators S = < SI, SE > correspond to EAQECC [[10,1,3;1]] that encodes one
information qubit into 10 physical qubits with the help of s = 8 ancilla qubits and only one pair
entanglement-assisted ebit, and they can correct one error.

b/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1].
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and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8} where

Z2 = [0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0],
Z3 = [0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1],
Z4 = [0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1],
Z5 = [1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0],
Z6 = [0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1],
Z7 = [1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0],
Z8 = [1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1].

The generator S = < SI, SE > correspond to EAQECC [[10,2,3;1]] that encodes two information
qubits into 10 physical qubits with the help of s = 7 ancilla qubits and only one pair
entanglement-assisted ebit, and they can correct one error.

Example 6. For n = 11, let us consider the EAQECC when u = [1 1 1 0 0 1 1 0 0 0 1], v = [1 1 0 0 1 1 0 0 0 1 1].
We have a code with the minimum number of ebits and good minimum distance as in the following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:

H =



1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1
1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0
1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1
1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1
0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0
0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0


(16)

The ten rows of matrix H satisfy the independent condition to generate all elements of an inotropic
subgroup. By using Gaussian elimination and interchange of columns, matrix H in (16) takes the
standard form:

Hst =



1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1


(17)

And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1].

(18)
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a/ Then, from vectors in (14) and (15), we have the generators for EAQECC as follows: SE = {X1,
Z1} and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1],
Z3 = [1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1],
Z4 = [0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0],
Z5 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0],
Z6 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1],
Z7 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1],
Z8 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0],
Z9 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0],
Z10 = [1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0].

The generators S = < SI, SE > correspond to EAQECC [[11,1,4;1]] that encodes one information
qubit into 11 physical qubits with the help of s = 9 ancilla qubits and only one entanglement-assisted
ebit, and the minimum distance is four.

b/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1].

and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1],
Z3 = [0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0],
Z4 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0],
Z5 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1],

Z6 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1],
Z7 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0],
Z8 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0],
Z9 = [1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0].

The generator S = < SI, SE > correspond to EAQECC [[11,2,3;1]] that encodes two information
qubits into 11 physical qubits with the help of s = 8 ancilla qubits and only one pair
entanglement-assisted ebit, and they can correct one error.

c/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1].

and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1],
Z3 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0],
Z4 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1],
Z5 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1],
Z6 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0],
Z7 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0],
Z8 = [1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0].
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The generator S = <SI, SE > correspond to EAQECC [[11,3,3;1]] that encodes three information
qubits into 11 physical qubits with the help of s = 7 ancilla qubits and only one pair
entanglement-assisted ebit, and they can correct one error.

d/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1].

and SI = { Z2, Z3, Z4, Z5, Z6, Z7} where

Z2 = [1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1],
Z3 = [0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0],
Z4 = [1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1],
Z5 = [1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1],
Z6 = [0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0],
Z7 = [0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0].

The generator S = <SI, SE > correspond to EAQECC [[11,4,3;1]] that encodes four information
qubits into 11 physical qubits with the help of s = 6 ancilla qubits and only one pair
entanglement-assisted ebit, and they can correct one error.

Example 7. For n = 12, let us consider the EAQECC where u = [1 1 1 0 0 1 0 1 0 1 0 1], v = [1 1 0 0 1
0 1 0 1 0 1 1]. We have a code with the minimum number of ebits and good minimum distance, as in the
following explanations.

Per Theorem 2, we have the corresponding parity-check matrix:

H =



1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1
1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1
0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0
1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1
0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0



(19)

The eleven rows of matrix H satisfy the independent condition to generate all elements of an
inotropic subgroup. By using Gaussian elimination and interchange of columns, matrix H in (19) takes
the standard form:

Hst =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1



(20)
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And the corresponding entanglement subgroup pair is calculated as:

X1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1].

(21)

a/ Then, from vectors in (14) and (15) we have the generators for EAQECC as follows: SE = {X1,
Z1} and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11} where

Z2 = [1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1],
Z3 = [1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1],
Z4 = [0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1],
Z5 = [1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0],
Z6 = [0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0],
Z7 = [1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1],
Z8 = [0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0],
Z9 = [1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1],
Z10 = [0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0],
Z11 = [0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1].

The generators S = <SI, SE > correspond to EAQECC [[12,1,4;1]] that encodes one information
qubit into 12 physical qubits with the help of s = 10 ancilla qubits and only one pair entanglement
-assisted ebit and the minimum distance is four.

b/ When we calculate with SE = {X1, Z1} where

X1 = [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0],
Z1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1].

and SI = {Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10} where

Z2 = [1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1],
Z3 = [0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1],
Z4 = [1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0],
Z5 = [0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0],
Z6 = [1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1],
Z7 = [0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0],
Z8 = [1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1],
Z9 = [0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0],
Z10 = [0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1].

The generator S = <SI, SE > correspond to EAQECC [[12,2,4;1]] that encodes two information
qubits into 12 physical qubits with the help of s = 9 ancilla qubits and only one pair
entanglement-assisted ebit, and they can correct one error.

The results of the proposed EAQECC with lengths up to 12 are listed in Table 1. The detailed
values of the operators are calculated in Examples 3–7.

In comparison with the results of referenced studies [12–15], the proposed EAQECC shows
outperform as a smaller number of ebits and larger minimum distance. As the construction of
EAQECC by generalized quadrangles in [13] and circulant matrix in [14], the two main things are
clearly to conclude the advances of proposed methods that are code lengths and the classification of
generators. Firstly, in [13,14], the code lengths are limited as the conditions to construct the parity
check matrix, in contrast the proposed method can find the corresponding EAQECCs for any length. In
addition, proposed codes are expressed as the standard form transformation to classify subgroups SI

and SE; hence, the operators of subgroups are clearly determined, instead of knowing the numbers and
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operators not being determined, as seen in elsewhere, hence the minimum distance of outputs are not
calculated in [13,14], furthermore the determined generators also open the effective way to implement
the quantum system in future works. For more details, the comparisons are listed in Table 2.

Table 1. Entanglement-assisted quantum error correction code (EAQECC) [[n, k, d; c]] from proposed
method with c = 1 and d ≥ 3.

n k d

7 1 3
8 1 3
9 1 3

10 1 3
10 2 3
11 1 4
11 2 3
11 3 3
11 4 3
12 1 4
12 2 4
12 3 3
12 4 3
12 5 3

Table 2. Comparison of this proposed paper to other research.

EAQECC Based on Number of Ebits To Classify Subgroups Minimum Distance

Arbitrary binary linear code [12] 2n – 2k Gram-Schmidt procedure ≥3
Generalized quadrangles [13] 2 Gram-Schmidt procedure Not mentioned

Circulant permutation [14] 1 Gram-Schmidt procedure Not mentioned
Shortened Hamming code [15] 1 Gram-Schmidt procedure 3

The proposed method 1 Standard form transformation of matrix 3, ≥4

4. Conclusions

In this paper, the construction of EAQECC-based on circulant matrices has been studied. Not using
the Gram-Schmidt procedure to classify the subgroups of EAQECC, we first propose the construction
and calculation for each subgroup. This work aims to reduce the complexity in the classification
and determination of ebits. Some EAQECCs with a minimum number of ebits, and the capability to
correct errors were showed clearly, with generators of each subgroup. This promises effective codes in
comparison with other results.
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