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Abstract: In nature, the mechanical properties of geological bodies are very complex, and their
various mechanical parameters are vague, incomplete, imprecise, and indeterminate. However,
we cannot express them by the crisp values in classical probability and statistics. In geotechnical
engineering, we need to try our best to approximate exact values in indeterminate environments
because determining the joint roughness coefficient (JRC) effectively is a key parameter in the shear
strength between rock joint surfaces. In this original study, we first propose neutrosophic interval
probability (NIP) and define the confidence degree based on the cosine measure between NIP and
the ideal NIP. Then, we propose a new neutrosophic interval statistical number (NISN) by combining
the neutrosophic number with the confidence degree to express indeterminate statistical information.
Finally, we apply NISNs to express JRC under indeterminate (imprecise, incomplete, and uncertain,
etc.) environments. By an actual case, the results demonstrate that NISNs are suitable and effective
for JRC expressions and have the objective advantage.

Keywords: neutrosophic interval probability; neutrosophic interval statistical number; confidence
degree; joint roughness coefficient; neutrosophic number

1. Introduction

In real word, a lot of available data may be imprecise, incomplete, and uncertain for numerous
reasons, such as the incompleteness of our observations, measurements, and estimations, or due to
the existing disturbances and uncertainties in the statistical processes. As an extension of classical
statistics, Smarandache [1–3] first presented neutrosophic statistics, which deals with set values instead
of crisp values. In classical statistics, all data are determinate; while in neutrosophic statistics, the data
may be ambiguous, vague, imprecise, incomplete, and even indeterminate. This is the distinction
between neutrosophic statistics and classical statistics. In many cases, when indeterminacy is zero,
neutrosophic statistics coincide with classical statistics.

In neutrosophic statistics, Smarandache [1–3] first proposed concepts of neutrosophic probability,
which are described as the truth-probability, indeterminacy-probability, and falsity-probability. It is
important how to get indeterminacy in the whole set of n trials. He defined an indeterminacy threshold
V, which is the number of trials whose outcome is indeterminate for V ∈ {0, 1, 2, . . . , n}.

The cases with a threshold < V will belong to the indeterminate part, while cases with
a threshold ≥ V will belong to the determinate part. Thus, let PT be the chance that a particular
trial results in a success, PI be the chance that a particular trial results in an indeterminacy (i.e., neither
a success nor a failure), and PF be the chance that a particular trial results in a failure.
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However, this partially indeterminate and partially determinate set of n trials depends on the
problem that one needs to solve and on the expert’s point of view.

In classical statistics, all data are determined; while neutrosophic statistics refers to a set of data
wherein a part of data is determinate/indeterminate/false in some degree.

In neutrosophic statistics, Smarandache [1–3] also proposed the concept of a neutrosophic number
(NN) z = s + uI, which consists of its determinate part s and its indeterminate part uI for s, u ∈ R (all real
numbers) and I ∈ [inf I, sup I] (indeterminacy). It is obvious that it can describe determinate and/or
indeterminate information. For example, assume a NN is z = 5 + 2I for I ∈ [0, 0.6]. Thus, its determinate
part is 5, its indeterminate part is 2I, and then the NN is z = [5, 6.2] for I ∈ [0, 0.6] to express the
possible range of z. In actual applications, one can also adjust the range of indeterminacy I to satisfy
some specified requirements. Obviously, NN is very suitable for the expression of determinate and/or
indeterminate information in indeterminate environments. Hence, NNs have been applied to decision
making [4–6] and fault diagnosis [7,8] in recent years.

Although neutrosophic statistics was defined by Smarandache in 1996 [1–3], it has not been
developed since then. Unfortunately, the existing theory of neutrosophic probability and statistics
introduced in [1–3] encounters a great deal of difficulties in engineering applications. In fact,
the neutrosophic probability and statistics in [1–3] is very difficult to be used for engineering
applications in the current form. Therefore, it is necessary to propose new neutrosophic probability and
a statistical method to be easily used for engineering applications. Motivated by the Smarandache’s
neutrosophic probability and NN, in the original study, this paper firstly proposes a new concept
of neutrosophic probability in neutrosophic interval distributions, which is called neutrosophic
interval probability (NIP), and then originally introduces the NN with the confidence degree of
NIP, which is called a neutrosophic interval statistical number (NISN). Finally, in an actual case,
NISNs are used for the expressions of joint roughness coefficient (JRC) values with indeterminate
information because determining the JRC value effectively is a key parameter in the shear strength
between rock joint surfaces in geotechnical engineering [9]. The main advantage of the new
neutrosophic interval statistical method is that it is more suitable for engineering applications and
expressions to solve the difficult problems of existing neutrosophic/classical statistical problems under
indeterminate environments.

To realize the study, this article is organized as follows. Section 2 gives the definition of NIP based
on neutrosophic possibility in an interesting range. Section 3 presents NISN based on combining NN
with the confidence degree of NIP. In Section 4, by an actual case, NISNs are used for expressing the
JRC values with indeterminate information as an engineering application in geotechnical mechanics.
In Section 5, conclusions and future research directions are presented.

2. Neutrosophic Interval Probability

In this section, we give the definition of NIP based on neutrosophic probability in an
interesting range.

Definition 1. Let a = [xL, xU] be an interesting range of all the sample individuals. A NIP can be defined
as P = <[xL, xU], (PT, PI, PF)>, where PT is a truth-probability belonging to the determinate range, PI is an
indeterminacy-probability belonging to the indeterminate range, and PF is a falsity-probability belonging to the
almost impossible/failure range. Then, the sum of the three probabilities satisfies PT + PI + PF = 1.

Let us consider n samples with the same sizes as the same trials corresponding to some trial
characteristic. By statistical analysis for the n trial data, we can obtain the maximum value xU

(upper bound) and the minimum value xL (lower bound) in all trial data and the average value xm and
standard deviation σ. Based on these statistical results, we propose the following calculation methods
of NIP.
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First, the interesting range of all the sample individuals is represented by the interval value
a = [xL, xU] according to the maximum and minimum values (i.e., the upper and lower bounds)
of the trial data. Then, in the interesting range of all the sample individuals we can calculate the
truth-probability PT = nT/n, the indeterminacy-probability PI = nI/n, and the falsity-probability
PF = nF/n from a statistical viewpoint, where nT implies the frequency in the robust/credible interval
[xm − σ, xm + σ], nI implies the frequency in the indeterminate/uncertain intervals [xm − 3σ, xm − σ)
and (xm + σ, xm + 3σ], and nF indicates the frequency in the remaining/incredible intervals [xL, xm − 3σ)
and (xm + 3σ, xU].

Let us consider the following example to show the calculation of NIP.

Example 1. Assume that 100 samples (n = 100) with the same sizes are taken to measure some mechanical
characteristic of the sample individuals. For the obtained measuring data, the distributions of the statistical data
are shown in Table 1.

Table 1. Distribution of 100 sample data.

n xm σ [xL, xU] nT in [1.5, 2.5] nI in [0.5, 1.5) and (2.5, 3.5] nF in [0, 0.5) and (3.5, 5]

100 2 0.5 [0,5] 70 25 5

From Table 1, we can determinate the NIP by the following procedures:
First, the interesting range of all the sample individuals is a = [0, 5].
Then, we can calculate the truth-probability, the indeterminacy-probability, and the

falsity-probability, respectively, as follows:
PT = nT/n = 70/100 = 0.7, PI = nI/n = 25/100 = 0.25, and PF = nF/n =5/100 = 0.05.
Thus, the NIP is P = <[xL, xU], (PT, PI, PF)> = <[0,5], (0.7, 0.25, 0.05)>.
From the example, we can see that the existing classical/neutrosophic probability cannot represent

such a probability problem. Hence, the NIP contains much more information and demonstrates its
advantage in such an expressed case.

3. Neutrosophic Interval Statistical Number

By combining a NN with the confidence degree of NIP, we present NISN for effectively expressing
some statistical characteristic of trial data with indeterminate information.

Let a NIP be P = <[xL, xU], (PT, PI, PF)> and the ideal NIP be P* = <[xL, xU], (1, 0, 0)>. Then, the
cosine measure value between P and P* [4] is defined as the confidence degree

e = cos(P, P∗) =
P · P∗

‖P‖ · ‖P∗‖ =
PT√

P2
T + P2

I + P2
F

for e ∈ [0, 1] (1)

Thus, NISN is presented as

Ne = xm + (1− e)I = xm +

1− PT√
P2

T + P2
I + P2

F

I for I ∈ [in f I, sup I] (2)

where xm is the average value/determinate part of Ne and I is indeterminacy. Here, I may take the
robust/credit interval [−σ, σ] based on a standard deviation σ.

Obviously, if e = 1 for P = <[xL, xU], (1, 0, 0)>, then Ne = xm, which is degenerated to the classical
average value (crisp value) xm with the maximum confidence degree; if e = 0 for P = <[xL, xU], (0, 0, 1)>,
then Ne = xm + I, which is degenerated to a NN without confidence degree. However, when 0 < e < 1,
the confidence degree of e can affect the indeterminate part (1 − e)I of the NISN Ne.
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For Example 1, by using Equation (2) the NISN is calculated as

Ne = xm +

(
1− PT√

P2
T+P2

I +P2
F

)
I

= 2 +
(

1− 0.7√
0.72+0.252+0.052

)
I

= 2 + 0.06I

If I = [−σ, σ] = [−0.5, 0.5], then Ne = [1.97, 2.03].
Obviously, the NISN can indicate the interval range of actual measuring data effectively and

reasonably under indeterminate environments, while the classical statistical method is only a crisp
value xm, which is a specialty of the proposed neutrosophic interval statistical method.

4. Joint Roughness Coefficient Values Expressed by Using Neutrosophic Interval Statistical
Number in Geotechnical Mechanics

Statistical analysis of geotechnical engineering is an important mathematical tool for modeling
and quantifying uncertainties of geotechnical mechanics parameters. It is one of the initial and essential
procedures because a lot of subsequent evaluations of risk and reliability depend on these parameters.
In nature, the mechanical properties of geological bodies are very complex, and its various mechanical
parameters are vague, incomplete, imprecise, and indeterminate [9]. However, it is difficult to describe
the indeterminacy of geotechnical parameters by the classical statistical method. Clearly, NISNs can
effectively describe the incompleteness, uncertainty, and indeterminacy of geotechnical parameters by
combining a NN with the confidence degree of NIP. In this section, we apply NISNs to express the
indeterminate value of JRC because determining the JRC value effectively is a key parameter in the
shear strength between rock joint surfaces.

To show the effectiveness and rationality of the proposed neutrosophic interval statistical
method, we chose natural rock joint surface samples, with collected data from Changshan County,
Zhejiang province, China. Here, as an actual case, we select a set of data measured by taking 10 groups
of samples with the lengths of 10, 20, . . . 100 cm. According to the proposed neutrosophic interval
statistical method, we use NISNs to express the JRC values.

Firstly, we give the total number of n samples, the mean value xm and the standard deviation σ of
each length L, and then the results of their statistical analysis are shown in Table 2.

Table 2. Results of the statistical analysis for actual measuring data.

Sample Length L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm

n 187 85 51 39 34 34 34 34 34 34
xm 10.6035 9.9647 9.5320 8.8760 8.6121 8.6463 8.3931 8.1107 7.9051 7.7175
σ 2.2090 1.6606 1.5695 1.5994 1.4899 1.5942 1.3637 1.2203 1.0893 1.0050

Then, the frequency distributions in the different JRC intervals for each length L are shown in
Figure 1. It is clear that most of the data are in the range of the truth probability, a small number of
data is distributed on both sides of the truth range as the part of the indeterminacy, and the frequency
of both sides is almost equal. Also there are a few data belonging to the false probability. Generally, all
the distributions are almost in normal distribution, deflecting to left.
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Figure 1. Frequency distributions in the different joint roughness coefficient (JRC) intervals for each
length L.

By taking the sample length L = 100 cm as an example, the calculation process is indicated by the
following steps.

First, NIP is calculated as

P =
〈
[xL, xU ], (PT , PI , PF)

〉
= 〈[6.42, 11.50], (27/34, 6/34, 1/34)〉

= 〈[6.42, 11.50], (0.7941, 0.1765, 0.0294)〉.

Then by using Equation (2), the NISN is calculated as

Ne = xm +

(
1− PT√

PT
2+PI

2+PF
2

)
I

= 7.7175 +
(

1− 0.7941√
0.79412+0.17652+0.02942

)
I

= 7.7175 + 0.0245I.

Assume that I = [−σ, σ] = [−1.0050, 1.0050] is specified as the robust/credit interval, then
Ne = [7.6929, 7.7421].

For other lengths of the data, we also obtain these results by above similar calculation steps, which
are shown in Table 3.

Table 3. The neutrosophic interval probability (NIP) and neutrosophic interval statistical number
(NISN) of each length L.

L P Ne

10 cm <(6.62,16.41),0.6898,0.3102,0> 10.6035 + 0.0879I [10.4093,10.7978]
20 cm <(6.59,14.26),0.6706,0.3294,0> 9.9647 + 0.1024I [9.7946,10.1348]
30 cm <(6.81,14.24),0.7255,0.2745,0> 9.5320 + 0.0647I [9.4305,9.6336]
40 cm <(6.59,14.06),0.7180,0.2051,0.0769> 8.8760 + 0.0435I [8.8064,8.9456]
50 cm <(6.15,13.36),0.6765,0.2941,0.0294> 8.6121 + 0.0837I [8.4874,8.7367]
60 cm <(6.48,13.49),0.7353,0.2353,0.0294> 8.6463 + 0.0483I [8.5694,8.7233]
70 cm <(6.24,13.08),0.7647,0.2059,0.0294> 8.3931 + 0.0350I [8.3453,8.4409]
80 cm <(6.22,12.41),0.7647,0.2059,0.0294> 8.1107 + 0.0350I [8.0679,8.1534]
90 cm <(6.54,12.11),0.7647,0.2059,0.0294> 7.9051 + 0.0350I [7.8669,7.9433]
100 cm <(6.42,11.50),0.7941,0.1765,0.0294> 7.7175 + 0.0245I [7.6929,7.7421]
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In Figure 2, there are JRC values in each length L expressed by using NISNs. Obviously, the
interval values indicate symmetry regarding the average values, which imply their imprecise, uncertain
information. Hence, we cannot give this indeterminate information just by the crisp statistical value such
as an average value. That is to say, the classical statistical method ignores and loses some information
which may be important and significant. However, we can use NISN to express it effectively and
reasonably. In Figure 2, we can also see that the NISNs can contain the average values (red points) and the
black arrows show the indeterminate ranges indicted by numerical values. In general, when the sample
length is increased, the indeterminate range is decreased. Clearly, NISNs can provide an effective and
reasonable new way for the expression of JRC values under indeterminate environments.

In this original study, the superiority of the proposed neutrosophic interval statistical method over
the existing neutrosophic statistical methods is in its ability to overcome the aforementioned drawback
of Smarandache’s neutrosophic statistical method and to be more suitable for engineering applications
under indeterminate environments. However, the classical statistical method cannot describe and
deal with the indeterminate problems with the truth-probability, indeterminacy-probability, and
falsity-probability, and then it only is a special case of the proposed neutrosophic interval statistical
method in the determinate case, which may lose some useful information in engineering problems with
indeterminate information; while the proposed neutrosophic interval statistical method can contain
much more information and be easily applied in engineering areas under indeterminate environments.
Therefore, it is more general and more feasible than the classical statistical method and the existing
neutrosophic statistical method [1–3].
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Figure 2. JRC ranges expressed by NISNs corresponding to each length L.

5. Conclusions

This study first proposed the concepts of NIP and NISN, and then applied them to the JRC
expressions by an actual case. However, NIP is an extension of the classical probability. In classical
probability, the data are known and formed by crisp numbers (truth-probability), while in NIP, the data
are composed of the truth-probability, indeterminacy-probability, and falsity-probability in different
frequency distribution ranges. Since NISN consists of the determinate part and the indeterminate part
with the confidence degree of NIP, NISN is very suitable for the expression of measuring data with
indeterminate information such as JRC. Then in the classical statistical method, geotechnical mechanics
parameters, such as JRC, are represented only by average values and/or standard deviations, but they
cannot express indeterminate values and lose some useful information. It is obvious that NISN can
effectively and reasonably express indeterminate information in engineering areas under indeterminate
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environments. In the future, we shall apply NISNs to the expression and analysis of engineering
experimental/measuring data, economic data, fault diagnosis data, and medical diagnosis data.
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