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Abstract:



As a significant business activity, merger and acquisition (M&A) generally means transactions in which the ownership of companies, other business organizations or their operating units are transferred or combined. In a typical M&A procedure, M&A target selection is an important issue that tends to exert an increasingly significant impact on different business areas. Although some research works based on fuzzy methods have been explored on this issue, they can only deal with incomplete and uncertain information, but not inconsistent and indeterminate information that exists universally in the decision making process. Additionally, it is advantageous to solve M&A problems under the group decision making context. In order to handle these difficulties in M&A target selection background, we introduce a novel rough set model by combining interval neutrosophic sets (INSs) with multigranulation rough sets over two universes, called an interval neutrosophic (IN) multigranulation rough set over two universes. Then, we discuss the definition and some fundamental properties of the proposed model. Finally, we establish decision making rules and computing approaches for the proposed model in M&A target selection background, and the effectiveness of the decision making approach is demonstrated by an illustrative case analysis.
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1. Introduction


In the era of business intelligence, the development of computational intelligence approaches has far-reaching effects on business organizations’ daily activities, including project management, human resource allocation optimization, merger and acquisition (M&A), and so on. As a key business activity in many organizations, M&A requires business administrators to make effective decisions by analyzing massive business data. Additionally, in M&A, one of the most important elements that determines the success ratio of business organizations is M&A target selection [1]. To deal with this issue, some efforts have been made through combining fuzzy approaches with the classical M&A research [2,3,4,5]. On the basis of the fuzzy set (FS) theory [6], fuzzy approaches have been widely used in realistic decision making problems. However, there is much uncertain information induced from various vague sources, and this often leads to some limitations when analyzing information systems through using FSs. Consequently, many new concepts of high-order FSs were established over the past decades. Among them, as a typical representative of generalized FSs, intuitionistic fuzzy sets (IFSs) [7] are characterized by a membership degree and a non-membership degree that describe whether one element belongs to a certain set or not, which provide a flexible framework to handle imprecise data, both complete and incomplete in nature. However, IFSs cannot cope with all kinds of uncertainties perfectly, such as problems including inconsistent and indeterminate information. Hence, it is necessary to develop some new theories.



Smarandache [8,9] presented the concept of neutrosophic logic and neutrosophic sets (NSs) from philosophical standpoints. Additionally, an NS is characterized by each element of the universe owning a degree of truth, indeterminacy and falsity, respectively. However, NSs can only be applied in philosophical problems. In order to utilize NSs easily in real-world situations, Wang et al. [10] constructed the definition and some operational laws of interval neutrosophic sets (INSs). Ever since the establishment of INSs, many scholars have studied INSs from different viewpoints and obtained an increasing number of academic achievements [11,12,13,14,15,16,17,18,19,20,21]. In light of the above, M&A target selection using IN information could handle uncertain situations and indeterminate information well and provide corporate acquirers with more exemplary and flexible access to convey their understandings about the M&A knowledge base.



As a typical model in the granular computing paradigm [22], the multigranulation rough set model [23,24] aims to analyze complicated problems from multiple views and levels, and it is seen as an efficient way to integrate and analyze information in group decision making procedures. Specifically, the advantages of utilizing multigranulation rough sets to solve group decision making problems can be summed up as follows:

	
In group decision making procedures, according to actual requirements of realistic problems, multigranulation rough set model-based computations consider multiple binary relations at the same time, which could increase the efficiency of the whole knowledge discovery process for multi-source information systems.



	
In light of different risk attitudes, the multigranulation rough set model can be divided into two parts, i.e., optimistic multigranulation rough sets [23] based on the “seeking common ground while reserving differences” strategy and pessimistic multigranulation rough sets [24] based on the “seeking common ground while eliminating differences” strategy. Thus, the multigranulation rough set model is suitable for solving risk-based group decision making problems.








Additionally, the classical rough set [25] is usually expressed and computed based on a single universe; this may lead to a limitation when describing group decision making information that is made up of multiple aspects. Through extending a single universe to two universes, it is beneficial to express a complicated group decision making knowledge base. Hence, Pei and Xu [26] studied the concept of rough sets over two universes systematically. Since then, several scholars have researched rough sets over two universes widely according to numerous practical requirements [27,28,29,30,31,32,33]. Recently, in order to expand the application scopes of rough sets over two universes from the ideas of granular computing, Sun and Ma [34] introduced multigranulation rough sets over two universes, which could not only describe real-life decision making information effectively and reasonably through different universes of discourse, but also integrate each expert’s opinion to form an ultimate conclusion by aggregating multiple binary relations. Therefore, multigranulation rough sets over two universes constitute another approach to aid group decision making [35,36,37,38,39,40].



In this article, in order to handle the problems of IN data analysis and group decision making, it is necessary to introduce IN multigranulation rough sets over two universes through fusing multigranulation rough sets over two universes with INSs; both the general definition and some main properties of the proposed model are discussed. Then, we construct a new decision making method for M&A target selection problems by utilizing the proposed rough set model. Moreover, we give an illustrative case to interpret fundamental steps and a practical application to M&A target selection.



The rest of the article is structured as follows. In Section 2, we briefly introduce some concepts such as NSs, INSs and IN rough sets over two universes. Section 3 introduces IN multigranulation rough sets over two universes and some related properties. In Section 4, we establish decision making rules and an algorithm for M&A target selection problems. In Section 5, we give the steps of the proposed decision making approach by a case study, and conclusions and future research directions are illustrated in Section 6.




2. Preliminaries


In this section, we first review some fundamental concepts such as NSs, INSs and their properties. Next, we develop the definition of IN rough sets over two universes.



2.1. Neutrosophic Sets


NSs were defined by Smarandache [8] from philosophical standpoints. According to [8], NSs derive their origin from neutrosophy. In what follows, we review the concept of NSs.



Definition 1.

Let U be the universe of discourse, then an NS A can be expressed as the form [image: there is no content], where the functions [image: there is no content], [image: there is no content] and [image: there is no content] denote the degree of membership, the degree of indeterminacy and the degree of non-membership of the element [image: there is no content] to the set A. Additionally, the functions [image: there is no content], [image: there is no content] and [image: there is no content] are real standard or nonstandard subsets of [image: there is no content], that is [image: there is no content], [image: there is no content] and [image: there is no content]. There is no restriction on the sum of [image: there is no content], [image: there is no content] and [image: there is no content]. Thus, [image: there is no content] [8].






2.2. Interval Neutrosophic Sets


Since it is hard to utilize NSs in various practical situations, Wang et al. [10] developed the concept of INSs, which can be regarded as a subclass of NSs and a powerful structure in reflecting an expert’s inconsistent and indeterminate preferences in real-life decision making procedures. In what follows, we present the concept of INSs.



Definition 2.

[10] Let U be the universe of discourse; an INS A is characterized by a truth-membership function [image: there is no content], an indeterminacy-membership function [image: there is no content] and a falsity-membership function [image: there is no content]. Then, an INS A can be denoted as the following mathematical symbol:


[image: there is no content]








where [image: there is no content], [image: there is no content], [image: there is no content] for all [image: there is no content] to the set A. Thus, the sum of [image: there is no content], [image: there is no content] and [image: there is no content] satisfies the condition: [image: there is no content].





Suppose that U is the universe of discourse, then the set of all INSs on U is represented by [image: there is no content]. Moreover, [image: there is no content]. Based on the above definition, Wang et al. [10] defined the following operational laws on INSs.



Definition 3.

Let U be the universe of discourse, [image: there is no content], then [10]:

	1. 

	
the complement of A is denoted by [image: there is no content] such that [image: there is no content], [image: there is no content];




	2. 

	
the intersection of A and B is denoted by [image: there is no content] such that [image: there is no content], [image: there is no content][image: there is no content][image: there is no content];




	3. 

	
the union of A and B is denoted by [image: there is no content] such that [image: there is no content], [image: there is no content][image: there is no content][image: there is no content];




	4. 

	
inclusion: [image: there is no content] if and only if [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for any x in U;




	5. 

	
equality: [image: there is no content] if and only if [image: there is no content] and [image: there is no content].











Next, we introduce some fundamental properties of the above operations, which state some important algebraic properties of the operations defined on INSs.



Theorem 1.

Let U be the universe of discourse; suppose that A, B and C are three INSs. Then, the followings are true [10]:

	1. 

	
Double negation law: [image: there is no content];




	2. 

	
De Morgan’s laws: [image: there is no content], [image: there is no content];




	3. 

	
Commutativity: [image: there is no content], [image: there is no content];




	4. 

	
Associativity: [image: there is no content], [image: there is no content];




	5. 

	
Distributivity: [image: there is no content], [image: there is no content].











To compare the magnitude of different interval neutrosophic numbers (INNs), Zhang et al. [15] introduced the following comparison laws.



Definition 4.

Let [image: there is no content] be an INN; the score function of x is defined as follows [15]:


[image: there is no content]













It is noted that the score value is a significant index in ranking INNs. For an INN x, the bigger truth-membership [image: there is no content] is, the less indeterminacy-membership [image: there is no content] is, and the less falsity-membership [image: there is no content] is, the greater INN x is.




2.3. Interval Neutrosophic Rough Sets over Two Universes


In this subsection, we introduce IN relations over two universes firstly.



Definition 5.

Let U, V be two non-empty and finite universes of discourse; an IN relation R from U to V can be denoted as the following form:


[image: there is no content]








where [image: there is no content], [image: there is no content], [image: there is no content], denoting the truth-membership, the indeterminacy-membership and the falsity-membership for all [image: there is no content], respectively. Furthermore, the family of all IN relations on [image: there is no content] is represented by [image: there is no content].





According to IN relations over two universes, we present the definition of IN rough sets over two universes below.



Definition 6.

Let U, V be two non-empty and finite universes of discourse, and [image: there is no content], the pair [image: there is no content] is called an IN approximation space over two universes. For any [image: there is no content], the IN rough lower and upper approximations of A with respect to [image: there is no content], denoted by [image: there is no content] and [image: there is no content], are defined as follows:


[image: there is no content]










[image: there is no content]








where


μR̲ALx=∧y∈VωRLx,y∨μALy,μR̲AUx=∧y∈VωRUx,y∨μAUy,νR̲ALx=∨y∈V1−νRUx,y∧νALy,νR̲AUx=∨y∈V1−νRLx,y∧νAUy,ωR̲ALx=∨y∈VμRLx,y∧ωALy,ωR̲AUx=∨y∈VμRUx,y∧ωAUy,μR¯ALx=∨y∈VμRLx,y∧μALy,μR¯AUx=∨y∈VμRUx,y∧μAUy,νR¯ALx=∧y∈VνRLx,y∨νALy,νR¯AUx=∧y∈VνRUx,y∨νAUy,ωR¯ALx=∧y∈VωRLx,y∨ωALy,ωR¯AUx=∧y∈VωRUx,y∨ωAUy.











The pair [image: there is no content] is called an IN rough set over two universes of A.







3. Interval Neutrosophic Multigranulation Rough Sets over Two Universes


In this section, we present IN relations over two universes from a single granulation to multiple granulations, both the definition and properties of IN multigranulation rough sets over two universes will be elaborated on.



3.1. Optimistic in Multigranulation Rough Sets over Two Universes


Definition 7.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be m IN relations over [image: there is no content]; the pair [image: there is no content] is called an IN multigranulation approximation space over two universes. For any [image: there is no content], the optimistic IN multigranulation rough lower and upper approximations of A with respect to [image: there is no content], denoted by [image: there is no content] and [image: there is no content], are defined as follows:


∑i=1mRi̲OA=x,μ∑i=1mRi̲OALx,μ∑i=1mRi̲OAUx,ν∑i=1mRi̲OALx,ν∑i=1mRi̲OAUx,ω∑i=1mRi̲OALx,ω∑i=1mRi̲OAUxx∈U,










∑i=1mRi¯OA=x,μ∑i=1mRi¯OALx,μ∑i=1mRi¯OAUx,ν∑i=1mRi¯OALx,ν∑i=1mRi¯OAUx,ω∑i=1mRi¯OALx,ω∑i=1mRi¯OAUxx∈U,








where:


[image: there is no content]











The pair [image: there is no content] is called an optimistic IN multigranulation rough set over two universes of A.





Theorem 2.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be m IN relations over [image: there is no content]. Then, for any [image: there is no content], the following properties hold:

	1. 

	
[image: there is no content], [image: there is no content];




	2. 

	
[image: there is no content], [image: there is no content];




	3. 

	
[image: there is no content], [image: there is no content];




	4. 

	
[image: there is no content], [image: there is no content].











Proof. 


	
For all [image: there is no content], we have:


∑i=1mRi̲OAc=x,∨i=1m∧y∈VωRiLx,y∨μAcLy,∨i=1m∧y∈VωRiUx,y∨μAcUy,∧i=1m∨y∈V1−νRiUx,y∧νAcLy,∧i=1m∨y∈V1−νRiLx,y∧νAcUy,∧i=1m∨y∈VμRiLx,y∧ωAcLy,∧i=1m∨y∈VμRiUx,y∧ωAcUyx∈U=x,∨i=1m∧y∈V∼μRiLx,y∧μALy,∨i=1m∧y∈V∼μRiUx,y∧μAUy,∧i=1m∨y∈V∼νRiLx,y∨νALy,∧i=1m∨y∈V∼νRiUx,y∨νAUy,∧i=1m∨y∈V∼ωRiLx,y∨ωALy,∧i=1m∨y∈V∼ωRiUx,y∨ωAUyx∈U=x,∼∧i=1m∨y∈VμRiLx,y∧μALy,∼∧i=1m∨y∈VμRiUx,y∧μAUy,∼∨i=1m∧y∈VνRiLx,y∨νALy,∼∨i=1m∧y∈VνRiUx,y∨νAUy,∼∨i=1m∧y∈VωRiLx,y∨ωALy,∼∨i=1m∧y∈VωRiUx,y∨ωAUyx∈U=∑i=1mRi¯OAc.











Thus, we obtain [image: there is no content]. Then, [image: there is no content] is obtained in an identical fashion.



	
Since [image: there is no content], we have [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



So it follows that:


x,∨i=1m∧y∈VωRiLx,y∨μALy,∨i=1m∧y∈VωRiUx,y∨μAUy,∧i=1m∨y∈V1−νRiUx,y∧νALy,∧i=1m∨y∈V1−νRiLx,y∧νAUy,∧i=1m∨y∈VμRiLx,y∧ωALy,∧i=1m∨y∈VμRiUx,y∧ωAUyx∈U≤x,∨i=1m∧y∈VωRiLx,y∨μA′Ly,∨i=1m∧y∈VωRiUx,y∨μA′Uy,∧i=1m∨y∈V1−νRiUx,y∧νA′Ly,∧i=1m∨y∈V1−νRiLx,y∧νA′Uy,∧i=1m∨y∈VμRiLx,y∧ωA′Ly,∧i=1m∨y∈VμRiUx,y∧ωA′Uyx∈U.











Therefore, we have [image: there is no content]. Then, [image: there is no content] is obtained in a similar manner.



	
In light of the previous results, it is easy to obtain:[image: there is no content],



[image: there is no content].



	
In light of the previous results, it is easy to obtain:



[image: there is no content],



[image: there is no content].      □










Theorem 3.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be two IN relations over [image: there is no content]. If [image: there is no content], for any [image: there is no content], the following properties hold:

	1. 

	
[image: there is no content], for all [image: there is no content];




	2. 

	
[image: there is no content], for all [image: there is no content].











Proof. 

Since [image: there is no content], we have [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



Therefore, it follows that:


x,∨i=1m∧y∈VωRiLx,y∨μALy,∨i=1m∧y∈VωRiUx,y∨μAUy,∧i=1m∨y∈V1−νRiUx,y∧νALy,∧i=1m∨y∈V1−νRiLx,y∧νAUy,∧i=1m∨y∈VμRiLx,y∧ωALy,∧i=1m∨y∈VμRiUx,y∧ωAUyx∈U≥x,∨i=1m∧y∈VωRi′Lx,y∨μALy,∨i=1m∧y∈VωRi′Ux,y∨μAUy,∧i=1m∨y∈V1−νRi′Ux,y∧νALy,∧i=1m∨y∈V1−νRi′Lx,y∧νAUy,∧i=1m∨y∈VμRi′Lx,y∧ωALy,∧i=1m∨y∈VμRi′Ux,y∧ωAUyx∈U.











Thus, we obtain [image: there is no content]. Then, [image: there is no content] is obtained in an identical fashion.  □






3.2. Pessimistic in Multigranulation Rough Sets over Two Universes


Definition 8.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be m IN relations over [image: there is no content]; the pair [image: there is no content] is called an IN multigranulation approximation space over two universes. For any [image: there is no content], the pessimistic IN multigranulation rough lower and upper approximations of A with respect to [image: there is no content], denoted by [image: there is no content] and [image: there is no content], are defined as follows:


∑i=1mRi̲PA=x,μ∑i=1mRi̲PALx,μ∑i=1mRi̲PAUx,ν∑i=1mRi̲PALx,ν∑i=1mRi̲PAUx,ω∑i=1mRi̲PALx,ω∑i=1mRi̲PAUxx∈U,










∑i=1mRi¯PA=x,μ∑i=1mRi¯PALx,μ∑i=1mRi¯PAUx,ν∑i=1mRi¯PALx,ν∑i=1mRi¯PAUx,ω∑i=1mRi¯PALx,ω∑i=1mRi¯PAUxx∈U,








where:


μ∑i=1mRi̲PALx=∧i=1m∧y∈VωRiLx,y∨μALy,μ∑i=1mRi̲PAUx=∧i=1m∧y∈VωRiUx,y∨μAUy,ν∑i=1mRi̲PALx=∨i=1m∨y∈V1−νRiUx,y∧νALy,ν∑i=1mRi̲PAUx=∨i=1m∨y∈V1−νRiLx,y∧νAUy,ω∑i=1mRi̲PALx=∨i=1m∨y∈VμRiLx,y∧ωALy,ω∑i=1mRi̲PAUx=∨i=1m∨y∈VμRiUx,y∧ωAUy,μ∑i=1mRi¯PALx=∨i=1m∨y∈VμRiLx,y∧μALy,μ∑i=1mRi¯PAUx=∨i=1m∨y∈VμRiUx,y∧μAUy,ν∑i=1mRi¯PALx=∧i=1m∧y∈VνRiLx,y∨νALy,ν∑i=1mRi¯PAUx=∧i=1m∧y∈VνRiUx,y∨νAUy,ω∑i=1mRi¯PALx=∧i=1m∧y∈VωRiLx,y∨ωALy,ω∑i=1mRi¯PAUx=∧i=1m∧y∈VωRiUx,y∨ωAUy.











The pair [image: there is no content] is called a pessimistic IN multigranulation rough set over two universes of A.





Theorem 4.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be m IN relations over [image: there is no content]. Then, for any [image: there is no content], the following properties hold:

	1. 

	
[image: there is no content],



[image: there is no content];




	2. 

	
[image: there is no content],



[image: there is no content];




	3. 

	
[image: there is no content],



[image: there is no content];




	4. 

	
[image: there is no content],



[image: there is no content].











Theorem 5.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be two IN relations over [image: there is no content]. If [image: there is no content], for any [image: there is no content], the following properties hold:

	1. 

	
[image: there is no content], for all [image: there is no content];




	2. 

	
[image: there is no content], for all [image: there is no content].












3.3. Relationships between Optimistic and Pessimistic in Multigranulation Rough Sets over Two Universes


Theorem 6.

Let U, V be two non-empty and finite universes of discourse and [image: there is no content] be m IN relations over [image: there is no content]. Then, for any [image: there is no content], the following properties hold:

	1. 

	
[image: there is no content];




	2. 

	
[image: there is no content].











Proof. 

For any [image: there is no content], we have:


[image: there is no content]











Therefore, we have [image: there is no content]. Then, [image: there is no content] is obtained in an identical fashion.  □







4. The Model and Approach of Merger and Acquisition Target Selection


In this section, in order to explore M&A target selection, we develop a new method by utilizing IN multigranulation rough sets over two universes. Specifically, some main points of the established decision making method can be summarized in the following subsections.



4.1. The Application Model


Suppose that [image: there is no content] is a set of optional M&A targets and [image: there is no content] is a set of evaluation factors. Let [image: there is no content] be m IN relations, which reflect the related degree between some optional M&A targets and evaluation factors provided by m decision makers. In what follows, suppose that [image: there is no content] is a standard set, representing some requirements of corporate acquirers. Thus, we construct an IN information system that is denoted as [image: there is no content]. On the basis of the above descriptions, we calculate the optimistic and pessimistic IN multigranulation rough lower and upper approximations of A according to Definition 7 and Definition 8, respectively. Then, with reference to operational laws developed in [15]: [image: there is no content], we have [image: there is no content][image: there is no content], [image: there is no content][image: there is no content].



By virtue of the above operational laws, we further calculate the sets [image: there is no content] and [image: there is no content]. Since optimistic multigranulation rough sets are based on the “seeking common ground while reserving differences” strategy, which implies that one reserves both common decisions and inconsistent decisions at the same time, thus, the set [image: there is no content] can be seen as a risk-seeking decision strategy. Similarly, pessimistic multigranulation rough sets are based on the “seeking common ground while eliminating differences” strategy, which implies that one reserves common decisions while deleting inconsistent decisions. Hence, the set [image: there is no content] can be seen as a risk-averse decision strategy.



In realistic M&A target selection procedures, the enterprise’s person in charge can choose the optimal M&A target through referring to the above mentioned risk-seeking and risk-averse decision strategies. In what follows, in order to make better use of those decision strategies, we present a compromise decision strategy with a risk coefficient of decision makers, and the risk coefficient is denoted as [image: there is no content]. Based on this, the compromise decision strategy can be described as [image: there is no content]. Additionally, it is noted that the compromise decision strategy reduces to the risk-seeking decision strategy and the risk-averse decision strategy when [image: there is no content] and [image: there is no content], respectively. Moreover, the larger [image: there is no content] is, business administrators are more prone to seek the maximum of risk, while the smaller [image: there is no content] is, business administrators are more prone to seek the minimum of risk. Finally, by virtue of the risk coefficient, the optimal decision result can be obtained by selecting the M&A target with the largest score value in [image: there is no content].




4.2. Algorithm for Merger and Acquisition Target Selection Used IN Multigranulation Rough Sets over Two Universes


In what follows, we present an algorithm for M&A target selection based on IN multigranulation rough sets over two universes.








	Algorithm 1 M&A target selection based on IN multigranulation rough sets over two universes



	Require: The relations between the universes U and V provided by multiple experts [image: there is no content] and a standard set A.



	Ensure: The determined M&A target.

	
   Step 1. Calculate the following sets: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively;



	
   Step 2. Calculate the following sets: [image: there is no content], [image: there is no content] and [image: there is no content], respectively;



	
   Step 3. Determine the score values for optional M&A targets in compromise decision strategy [image: there is no content];



	
   Step 4. The optimal solution is the M&A target with the largest score value in [image: there is no content].













5. Numerical Example


In this section, by utilizing an illustrative case analysis that was previously modeled in [2], we show fundamental steps of the proposed decision making method in M&A target selection background.



5.1. Case Description


Suppose there is a steel corporate acquirer who aims to evaluate which target organization is suitable for the acquiring firm. In order to reflect the fairness of the procedure, the acquiring firm invites three specialists to establish M&A target selection information systems, denoted as [image: there is no content]. Suppose that [image: there is no content] is a set of optional M&A targets and another universe [image: there is no content] is a set of evaluation factors, where the evaluation factor represents mineral output, mining difficulty, proved reserves, reserve-production ratio, science and technology contribution rate, respectively. Based on the above, the M&A knowledge base can be composed of two kinds of objections related to M&A target selection, i.e., the optional M&A targets set and the evaluation factors set. In order to solve this group decision making problem, each decision maker provides his or her own thought about the M&A knowledge base that is shown as the following Table 1, Table 2 and Table 3.



Table 1. The knowledge of merger and acquisition (M&A) target selection given by Expert 1.
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Table 2. The knowledge of M&A target selection given by Expert 2.
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Table 3. The knowledge of M&A target selection given by Expert 3.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










Moreover, assume that decision makers provide a standard set that is represented by the following INS:


A={y1,0.7,0.8,0.4,0.6,0.2,0.3,y2,0.5,0.6,0.3,0.4,0.6,0.7,y3,0.7,0.8,0.2,0.3,0.4,0.5,y4,0.2,0.3,0.5,0.7,0.6,0.7,y5,0.4,0.5,0.2,0.3,0.8,0.9}.












5.2. Decision Making Process


According to Algorithm 1, we aim to seek the determined M&A target by utilizing the proposed model. At first, by virtue of Definitions 7 and 8, we calculate the optimistic and pessimistic IN multigranulation rough lower and upper approximations of A:


∑i=13Ri̲OA={x1,0.4,0.5,0.5,0.6,0.6,0.7,x2,0.4,0.5,0.5,0.7,0.7,0.8,x3,0.5,0.6,0.4,0.6,0.6,0.7,x4,0.4,0.5,0.5,0.6,0.6,0.7,x5,0.2,0.3,0.5,0.6,0.7,0.8};∑i=13Ri¯OA={x1,0.7,0.8,0.3,0.4,0.4,0.5,x2,0.5,0.6,0.3,0.5,0.6,0.7,x3,0.7,0.8,0.2,0.3,0.5,0.6,x4,0.7,0.8,0.2,0.3,0.5,0.6,x5,0.7,0.8,0.3,0.4,0.2,0.3};∑i=13Ri̲PA={x1,0.4,0.5,0.5,0.7,0.6,0.7,x2,0.4,0.5,0.5,0.7,0.8,0.9,x3,0.5,0.6,0.4,0.6,0.6,0.7,x4,0.3,0.4,0.5,0.7,0.7,0.8,x5,0.2,0.3,0.5,0.7,0.8,0.9};∑i=13Ri¯PA={x1,0.7,0.8,0.2,0.3,0.4,0.5,x2,0.5,0.7,0.3,0.4,0.5,0.6,x3,0.7,0.8,0.2,0.3,0.4,0.5,x4,0.7,0.8,0.2,0.3,0.4,0.5,x5,0.7,0.8,0.3,0.4,0.2,0.3}.











By virtue of the above results, we further calculated the sets [image: there is no content] and [image: there is no content].




∑i=13Ri̲OA⊕∑i=13Ri¯OA={x1,0.82,0.90,0.15,0.24,0.24,0.35,x2,0.70,0.80,0.15,0.35,0.42,0.56,x3,0.85,0.92,0.08,0.18,0.30,0.42,x4,0.82,0.90,0.10,0.18,0.30,0.42,x5,0.76,0.86,0.15,0.24,0.14,0.24},∑i=13Ri̲PA⊕∑i=13Ri¯PA={x1,0.82,0.90,0.10,0.21,0.24,0.35,x2,0.70,0.85,0.15,0.28,0.40,0.54,x3,0.85,0.92,0.08,0.18,0.24,0.35,x4,0.79,0.88,0.10,0.21,0.28,0.40,x5,0.76,0.86,0.15,0.28,0.16,0.27}.









Next, suppose business managers take [image: there is no content], then [image: there is no content] can be obtained as follows:


0.6∑i=13Ri̲OA⊕∑i=13Ri¯OA⊕1−0.6∑i=13Ri̲PA⊕∑i=13Ri¯PA={x1,0.82,0.90,0.13,0.23,0.24,0.35,x2,0.70,0.82,0.15,0.32,0.41,0.55,x3,0.85,0.92,0.08,0.18,0.28,0.39,x4,0.81,0.89,0.10,0.19,0.29,0.41,x5,0.76,0.86,0.15,0.25,0.15,0.25}.











At last, we determine the score values for five optional target organizations in [image: there is no content]; it is not difficult to obtain the ordering result for M&A targets in the compromise decision strategy: [image: there is no content]. Thus, we can see that the optimal selection is the third target enterprise.




5.3. Comparative Analysis


The above subsection shows basic steps and procedures of the proposed algorithm based on IN multigranulation rough sets over two universes in the M&A target selection background. In order to illustrate the effectiveness of the proposed decision making approach, we compare the newly-proposed decision making rules with the decision making method based on IN aggregation operators in this subsection. In the literature [15], Zhang et al. developed several common IN aggregation operators and applied them to a multiple criteria decision making problem. In what follows, a comparison analysis is conducted by utilizing the proposed M&A target selection approach with the interval neutrosophic number weighted averaging (INNWA) operator and the interval neutrosophic number weighted geometric (INNWG) operator presented in [15]. Prior to the specific comparison analysis, we review the above-mentioned IN aggregation operators. Let [image: there is no content][image: there is no content] be a collection of INNs and [image: there is no content] be the weight of [image: there is no content] with equal weight, then the INNWA operator and the INNWG operator are presented below.



	
The interval neutrosophic number weighted averaging (INNWA) operator:


[image: there is no content]











	
The interval neutrosophic number weighted geometric (INNWG) operator:


[image: there is no content]














On the basis of the INNWA and INNWG operators introduced above, the knowledge of M&A target selection given by Expert 1, Expert 2 and Expert 3 could be aggregated by using INNWA and INNWG operators, i.e., we aggregate IN relations over two universes [image: there is no content], [image: there is no content] and [image: there is no content] to a single IN relation over two universes, represented by [image: there is no content] and [image: there is no content], which is shown as the following Table 4 and Table 5.



Table 4. The aggregated knowledge of M&A target selection by using the interval neutrosophic number weighted averaging (INNWA) operator.
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Table 5. The aggregated knowledge of M&A target selection by using the interval neutrosophic number weighted geometric (INNWG) operator.
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Next, by virtue of IN rough sets over two universes presented in Definition 6, we calculate the IN rough lower and upper approximations of A with respect to [image: there is no content] and [image: there is no content], respectively.




RINNWA̲A={x1,0.40,0.50,0.50,0.67,0.60,0.70,x2,0.40,0.50,0.50,0.70,0.74,0.85,x3,0.50,0.60,0.40,0.60,0.60,0.70,x4,0.33,0.46,0.50,0.70,0.63,0.74,x5,0.20,0.30,0.50,0.67,0.74,0.88};RINNWA¯A={x1,0.70,0.80,0.23,0.37,0.33,0.46,x2,0.52,0.65,0.33,0.47,0.60,0.70,x3,0.70,0.80,0.20,0.30,0.43,0.52,x4,0.70,0.80,0.20,0.30,0.43,0.56,x5,0.70,0.80,0.30,0.40,0.20,0.30};RINNWG̲A={x1,0.40,0.50,0.50,0.67,0.60,0.70,x2,0.40,0.50,0.50,0.70,0.72,0.84,x3,0.50,0.60,0.40,0.60,0.60,0.70,x4,0.33,0.48,0.50,0.70,0.62,0.72,x5,0.20,0.30,0.50,0.67,0.72,0.88};RINNWG¯A={x1,0.70,0.80,0.23,0.37,0.40,0.50,x2,0.50,0.62,0.33,0.48,0.54,0.67,x3,0.70,0.80,0.20,0.30,0.44,0.54,x4,0.70,0.80,0.20,0.30,0.44,0.57,x5,0.70,0.80,0.30,0.40,0.20,0.30}.









Then, in a single granulation context, we further calculate the sets [image: there is no content] and [image: there is no content] when [image: there is no content]:


0.6RINNWA̲A⊕1−0.6RINNWA¯A={x1,0.54,0.65,0.37,0.53,0.51,0.62,x2,0.44,0.56,0.42,0.59,0.64,0.76,x3,0.59,0.69,0.31,0.46,0.53,0.62,x4,0.51,0.63,0.35,0.50,0.54,0.66,x5,0.46,0.57,0.41,0.55,0.44,0.58},0.6RINNWG̲A⊕1−0.6RINNWG¯A={x1,0.54,0.65,0.37,0.53,0.51,0.62,x2,0.44,0.55,0.42,0.61,0.64,0.77,x3,0.59,0.69,0.31,0.46,0.53,0.63,x4,0.51,0.64,0.35,0.50,0.54,0.66,x5,0.46,0.57,0.41,0.55,0.43,0.58}.











Finally, we compute the score values for five optional target organizations in [image: there is no content] and [image: there is no content] and further determine the M&A target with the largest score value. Then, the ranking results by utilizing INNWA and INNWG operators show that the best alternative is [image: there is no content], namely the third target enterprise, which is consistent with the decision result determined by Algorithm 1.




5.4. Result Analysis and Discussion


From the above ranking results, we can see that the proposed model takes full advantage of INSs and multigranulation rough sets over two universes in M&A target selection procedures, and the superiorities of utilizing INSs and multigranulation rough sets over two universes to deal with group decision making problems can be summarized as follows:

	
In the process of describing decision making information, INSs provide experts with more exemplary and flexible access to convey their understandings about the M&A knowledge base. Specifically, it is worth noting that a variety of decision making information systems based on INSs outperform some common extended forms of classical FSs, such as IFSs, interval-valued fuzzy sets (IVFSs), interval-valued intuitionistic fuzzy sets (IVIFSs) and single-valued neutrosophic sets (SVNSs). In the concept of INSs, by introducing the degree of indeterminacy and the degree of non-membership of an element to a set, decision makers could express their incomplete, indeterminate and inconsistent preferences more precisely, as well as avoid the loss of decision making information through considering the truth, indeterminacy and falsity membership functions in various decision making processes. Additionally, the expression of the degree of membership, the degree of indeterminacy and the degree of non-membership using an interval number enables decision makers to better model insufficiency in available information. Thus, INSs could effectively deal with the more uncertain information in M&A target selection.



	
In group decision making procedures, multigranulation rough sets over two universes can be seen as an efficient information fusion approach that could integrate each expert’s preference to form an ultimate conclusion by considering optimistic and pessimistic decision making strategies. Moreover, compared with classical IN group decision making approaches based on INNWA and INNWG operators, it is noted that INNWA and INNWG operators could only offer a one-fold information fusion strategy, i.e., the information fusion strategy based on averaging operators or geometric operators without considering the risk appetite of experts, which may cause the loss of risk-based information and further preclude the solution of risk-based group decision making problems. However, the proposed decision making approach based on multigranulation rough sets over two universes could not only provide risk-seeking and risk-averse decision strategies simultaneously, but also provide a compromise decision strategy that considers the risk preference of decision makers. Hence, multigranulation rough sets over two universes can be regarded as a multiple information fusion strategy that is suitable for solving risk-based group decision making problems.








As discussed previously, the advantages of the proposed model could provide a reasonable way to express some complicated decision making information, utilize risk-seeking and risk-averse decision strategies through considering the risk preference of decision makers and also increase the efficiency of M&A target selection.





6. Conclusions


In this article, in order to conduct group decision making from the granular computing paradigm, by combining multigranulation rough sets over two universes with INSs, a novel rough set model named IN multigranulation rough sets over two universes is developed. The definition and some properties of optimistic and pessimistic IN multigranulation rough sets over two universes are studied systematically. Then, by virtue of IN multigranulation rough sets over two universes, we further construct decision making rules and computing approaches for M&A target selection problems. At last, we illustrate the newly-proposed decision making approach on the basis of a practical M&A case study. It is desirable to study attribute reduction algorithms and uncertainty measures based on IN multigranulation rough sets over two universes in the future. Another future research direction is to apply the proposed decision making approach to other business intelligence issues.
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