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Abstract: In this article, we put forward the multi-objective matrix game model based on fuzzy
payoffs. In order to solve the game model, we first discuss the relationship of two fuzzy numbers via
the lower limit− 1

2 of the possibility degree. Then, utilizing this relationship, we conclude that the
equilibrium solution of this game model and the optimal solution of multicriteria linear optimization
problems are of equal value. Finally, to illustrate the effectiveness and correctness of the obtained
model, an example is provided.
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1. Introduction

The multicriteria zero sum game is a generalization of the standard zero sum game model.
The multicriteria zero sum game is also known as the multi-objective matrix game as it can be
represented by multiple payoffs. Along with the collision of distinct decision makers in the social
and corporate circumstance, much research in recent years has focused on multiple objective matrix
game problems.

The notions of maxmin and minmax values were first used to discuss the multi-objective game
model in [1]. Zeleny [2] studied the matrix game based on multiple payoff through notions of
compromise solutions and a decomposition of parametric spaces. Ghose et al. [3] proposed the
concepts of Pareto-optimal, Pareto saddle points and security levels of the multicriteria matrix game
and analyzed the existence of Pareto saddle points of this game problem. Afterwards, the same game
model was discussed by Fernandez et al. [4] and they proved that efficient solutions of multicriteria
linear optimization problems and Pareto-optimal security strategies (POSS) for each Player are of equal
value. Meanwhile, they obtained the set of all POSS through alternative ways.

The fuzzy set theory was initially introduced in 1965 by Zadeh [5]. The fuzziness occurring
in the game problems is categorized as the fuzzy game problems. Single objective fuzzy game
problems and related problems have attracted a wide range of research [6–11]. Therefore, fuzzy games
theory has been extensively studied in some fields, such as economics, engineering and management
science [12–19]. In order to deal with the fuzzy matrix games problem, a method of robust ranking is
formulated by Bhaumik [20]. In terms of fuzzy games problems, Tan et al. [21] presented a concept
of the potential function. Furthermore, they also reached a conclusion that the solution of fuzzy
games and the marginal value of potential functions are equivalent. In [19], in order to solve the
game problem quickly, the gradient iterative algorithm was proposed. Cevikle et al. [22] utilized the
fuzzy relation method to find the solution of matrix games in terms of fuzzy goals and fuzzy payoffs.
Chakeri et al. [23] used fuzzy logic to determine the priority of the payoff based on the linguistic
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preference relation and proposed the notion of linguistic Nash equilibrium. Fuzzy preference relation
has been widely used in fuzzy game theory [24–27]. At the same time, they [24] utilize the same
method [23] to determine the priority of the payoff based on fuzzy preference relation. In order to deal
with this game model, a new approach is put forward. Moreover, Sharifian et al. [28] also applied
fuzzy linguistic preference relation to fuzzy game theory.

Although the research on single objective fuzzy matrix games has become increasingly
widespread, there are still few conclusions in the multicriteria case. The major contributions in
this aspect have been studied in [18,29–32]. Sakawa et al. [32] discussed the fuzzy multicriteria
games model with fuzzy goals according to the theory of maxmin value. In order to solve
multiple decision-making problems, a model of fuzzy multiple matrix games is presented by
Peldschus et al. [18]. Subsequently, Chen [30] found that the equilibrium solution of multiple matrix
games based on fuzzy payoffs is equivalent to the solution of the fuzzy multi-objective attribute
decision-making problem. Inspired by [3,4], Aggarwal et al. [29] applied the notions of POSS and
security levels of apiece players to research the multicriteria matrix game in terms of fuzzy goals and
demonstrated that this game problem and fuzzy multiple objective linear optimization problems are of
equal value. Taking elicitation from [29,33,34], we can take inspiration and put forward a new model
of the multiple objective matrix game based on fuzzy payoffs according to the lower limit− 1

2 of the
possibility degree.

The outline of this article is as follows: The background of this paper is introduced in Section 1.
Section 2 introduces some basic definitions and recalls some results concerning crisp multi-objective
matrix games and the fuzzy numbers. Furthermore, we discuss the relationship of two fuzzy numbers
via the lower limit− 1

2 of the possibility degree. In Section 3, The multiple objective matrix game
model based on fuzzy payoffs is considered. We conclude that the equilibrium solution of this game
model and the optimal solution of multi-objective linear optimization problems are of equal value.
In Section 4, a small numerical example is given.

2. Preliminaries

In this section, we begin to depict a crisp multiple objective matrix game in [29]. For this, we
recall some definitions.

Definition 1. [3] The set of mixed strategies for Player I is denoted by

Sm = {x = (x1, x2, · · · , xm)
T ∈ Rm|

m

∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , m.} (1)

Similarly, The set of mixed strategies for Player II is denoted by

Sn = {y = (y1, y2, · · · , yn)
T ∈ Rn|

n

∑
j=1

yj = 1, yj ≥ 0, j = 1, 2, · · · , n.} (2)

where xT is the transposition of x, Rm and Rn are m- and n-dimensional Euclidean spaces.

Multiple payoff matrixes of multicriteria matrix games are taken as follows [3]:

A1 =

 a1
11 · · · a1

1n
...

. . .
...

a1
m1 · · · a1

mn

 , · · · , Ar =

 ar
11 · · · ar

1n
...

. . .
...

ar
m1 · · · ar

mn

 . (3)

In order not to lose generality, we suppose that Player I and Player II are maximized players.
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A multiple objective matrix game (MOG) [29] is defined by

MOG = (Sm, Sn, Ak(1, 2, · · · , r)).

Definition 2. [3] When Player I chooses a mixed strategy x ∈ Sm and Player II chooses a mixed strategy
y ∈ Sn, a vector

E (x, y, A) = xT Ay = [E1 (x, y) , E2 (x, y) , · · · , Er (x, y)]
=
[
xT A1y, xT A2y, · · · , xT Ary

] (4)

is called an expected payoff of Player I. As the multi-objective game (MOG) is zero-sum, the payoff for Player II
is −xT Ay.

Definition 3. (x∗, y∗) ∈ Sm × Sn is called a solution of the (MOG) model if

x∗Aky ≥ (Vk)∗, ∀y ∈ Sn,

xAky∗ ≤ (Vk)∗, ∀x ∈ Sm.

Here, x∗ and y∗ are called the equilibrium solution for Player I and Player II, respectively. Furthermore,
(Vk)∗(k = 1, 2, · · · , r) are called the values of (MOG).

Given a multi-objective game (MOG), its solution can be obtained by solving the following pair
of primal-dual multiple objective linear optimization problems (MOGLP) and (MOGLD).

(MOGLP) max (V1, V2, · · · , Vr)

such that
m
∑

i=1
(aij)

kxi ≥ Vk, (k = 1, 2, · · · , r, j = 1, 2, · · · , n),

∀x ∈ Sm, ∀y ∈ Sn,
(MOGLD) min (W1, W2, · · · , Wr)

such that
n
∑

j=1
(aij)

kyj ≤Wk, (k = 1, 2, · · · , r, i = 1, 2, · · · , m),

∀x ∈ Sm, ∀y ∈ Sn.

The following notations, definitions and results will be needed in the sequel.
We denote KC as the family of all bounded closed intervals in R [35], that is,

KC = {[aL, aR]|aL, aR ∈ R and aL ≤ aR}.

A fuzzy set x̃ of R is characterized by a membership function µx̃ : R→ [0, 1] [5]. For each such
fuzzy set x̃, we denote by [x̃]α = {x ∈ R : µx̃(x) ≥ α} for any α ∈ (0, 1], its α-level set. We define the
set [x̃]0 by [x̃]0 =

⋃
α∈(0,1] [x̃]

α, where A denotes the closure of a crisp set A. A fuzzy number x̃ is a
fuzzy set with non-empty bounded closed level sets [x̃]α = [x̃L(α), x̃R(α)] for all α ∈ [0, 1], where
[x̃L(α), x̃R(α)] denotes a closed interval with the left end point x̃L(α) and the right end point x̃R(α) [36].
We denote the class of fuzzy numbers by F .

Definition 4. [37] Let x̃ and ỹ be fuzzy numbers. It is said that x̃ precedes ỹ (x̃ � ỹ), if x̃R(α) ≤ x̃R(α) and
ỹL(α) ≤ ỹL(α), α ∈ [0, 1].

Definition 5. [5] Let x̃ be fuzzy numbers, If the membership function ux̃(x) of the fuzzy number x̃ is denoted by

ux̃(x) =


0, x < á, x > à,
x−á
a−á , á ≤ x ≤ a,
à−x
à−a , a < x ≤ à.
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Then, x̃ is called a triangular fuzzy number. Furthermore, the triangular fuzzy number x̃ is presented by
x̃ = (á, a, à).

Furthermore, the α-level set of the triangular fuzzy number x̃ = (á, a, à) is the closed interval [5]

[x̃]α = [x̃L(α), x̃R(α)] = [(a− á)α + á,−(à− a)α + à], α ∈ (0, 1]. (5)

Definition 6. [38] Let x̃i be fuzzy numbers and bi ≥ 0 (i = 1, 2, · · · , n) be real numbers. Then,
n
∑

i=1
x̃ibi is a

fuzzy number.

We define the new relationship of two fuzzy numbers.

Definition 7. Let x̃ and ỹ be fuzzy numbers. The width of [x̃]α = [x̃L(α), x̃R(α)] and [ỹ]α = [ỹL(α), ỹR(α)]

respectively are given by

w(x̃) = x̃R(α)− x̃L(α), w(ỹ) = ỹR(α)− ỹL(α), α ∈ [0, 1].

We say that p(x̃ � ỹ) is possibility a degree of x̃ � ỹ, where

p(x̃ � ỹ) = 1−max{min{1,
x̃R(α)− ỹL(α)

w(x̃) + w(ỹ)
}, 0}.

Definition 8. Let x̃ and ỹ be fuzzy numbers. If p(x̃ � ỹ) ≥ 1
2 , we say that x̃ precedes ỹ (x̃ � ỹ). Furthermore,

1
2 is the lower limit of the possibility degree of x̃ � ỹ. That is, x̃ precedes ỹ with the possibility degree not less
than 1

2 .

Theorem 1. Let x̃ and ỹ be fuzzy numbers. Then x̃ � ỹ if and only if p(x̃ � ỹ) ≥ 1
2 .

Proof. Sufficiency: Since p(x̃ � ỹ) ≥ 1
2 . According to the above Definition 8, we get x̃ � ỹ.

Necessity: Since x̃ � ỹ. Then, By Definition 4, we have

x̃R(α) ≤ ỹR(α) and x̃L(α) ≤ ỹL(α) α ∈ [0, 1].

Hence,
x̃R(α) + x̃L(α)

2
≤ ỹR(α) + ỹL(α)

2
α ∈ [0, 1].

x̃R(α)− ỹL(α)

2
≤ ỹR(α)− x̃L(α)

2
α ∈ [0, 1].

x̃R(α)− ỹL(α) ≤
ỹR(α)− ỹL(α) + x̃R(α)− x̃L(α)

2
α ∈ [0, 1].

x̃R(α)− ỹL(α)

ỹR(α)− ỹL(α) + x̃R(α)− x̃L(α)
≤ 1

2
α ∈ [0, 1].

Thus,

min{1,
x̃R(α)− ỹL(α)

ỹR(α)− ỹL(α) + x̃R(α)− x̃L(α)
} ≤ 1

2
α ∈ [0, 1].

max{min{1,
x̃R(α)− ỹL(α)

ỹR(α)− ỹL(α) + x̃R(α)− x̃L(α)
}, 0} ≤ 1

2
α ∈ [0, 1].

1−max{min{1,
x̃R(α)− ỹL(α)

ỹR(α)− ỹL(α) + x̃R(α)− x̃L(α)
}, 0} ≥ 1

2
α ∈ [0, 1].
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Therefore, by Definition 7, we have that

1−max{min{1,
x̃R(α)− ỹL(α)

w(ỹ) + w(x̃)
}, 0} ≥ 1

2
α ∈ [0, 1].

That is to say,

p(x̃ � ỹ) ≥ 1
2

.

3. A Generalized Model for a Multi-Objective Fuzzy Matrix Game

Sm and Sn are given in Section 2. Suppose that the elements of Ãk (k = 1, 2, · · · , r) are fuzzy
numbers. Let Ṽk

0 and W̃k
0 be the aspiration levels as fuzzy numbers of Player I and Player II, respectively.

Therefore, the multiple objective matrix game based on fuzzy payoffs, denoted by MOFP, can be
presented as

MOFP = (Sm, Sn, Ãk, Ṽk
0 , W̃k

0 , (k = 1, 2, · · · , r)).

Now, we have the following definition to define the solution of MOFP.

Definition 9. Let (x, y) ∈ Sm × Sn. If x ∈ Sm and y ∈ Sn satisfy the following the conditions:

(Ṽk
0 )
∗ � x∗T Ãky, ∀y ∈ Sn,

xÃky∗ � (W̃k
0 )
∗, ∀x ∈ Sm.

Then, (x∗, y∗) ∈ Sm × Sn is called the equilibrium solution of (MOFP).

In order to obtain the equilibrium solution of (MOFP), we conclude the following the theorem.

Theorem 2. Let α ∈ (0, 1] be fixed. (x, ((Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α) + (Ṽr

0 )R(α))) and
(y, ((W̃1

0 )L(α) + (W̃1
0 )R(α), · · · , (W̃r

0)L(α) + (W̃r
0)R(α))) are optimal solutions of multi-objective linear

optimization problems (MOCLP1) and (MOCLD1) if and only if (x, y) is the equilibrium solution of (MOFP).

(MOCLP1) max [(Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α)) + (Ṽr

0 )R(α)]

such that (Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤
m
∑

i=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]xi,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀, (k = 1, 2, · · · , r; j = 1, 2, · · · , n).

(MOCLD1) min [(W̃1
0 )L(α) + (W̃1

0 )R(α), · · · , (W̃r
0)L(α) + (W̃r

0)R(α)]

such that
n
∑

j=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]yj ≤ (W̃k

0 )L(α) + (W̃k
0 )R(α),

0 ≤ α ≤ 1,
∀y ∈ Sn, (k = 1, 2, · · · , r; i = 1, 2, · · · , m).

Proof. By utilizing Definition 9, we obtain that (x, y) is the equilibrium solution of (MOFP) if and only if
(x, y) is the optimal solution of multiple objective fuzzy optimization problems (MOFP1) and (MOFD1).

(MOFP1) Find x ∈ Sm such that
Ṽk

0 � (xT Ãky), ∀y ∈ Sn,
(MOFD1) Find y ∈ Sn such that

(xT Ãky) � W̃k
0 , ∀x ∈ Sm, (k = 1, 2, · · · , r).
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Furthermore, by Theorem 1, the problems (MOFP1) and (MOFD1) respectively are equivalent to

(MOP1) Find x ∈ Sm such that
p(Ṽk

0 � (xT Ãky)) ≥ 1
2 , ∀y ∈ Sn,

(MOD1) Find y ∈ Sn such that
p((xT Ãky) � W̃k

0 ) ≥
1
2 , ∀x ∈ Sm, (k = 1, 2, · · · , r).

By Definition 7, the problems (MOP1) and (MOD1) can be rewritten as (MOP2) and (MOD2),
respectively.

(MOP2) max [((Ṽ1
0 )L(α), · · · , (Ṽr

0 )L(α)), ((Ṽ1
0 )R(α), · · · , (Ṽr

0 )R(α))]

such that 1−max{min{1, (Ṽk
0 )R(α)−(xT Ãk

L(α)y)
(Ṽk

0 )R(α)−(Ṽk
0 )L(α)+xT(Ãk

R(α)−Ãk
L(α))y

}, 0} ≥ 1
2 ,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

(MOD2) min [((W̃1
0 )L(α), · · · , (W̃r

0)L(α)), ((W̃1
0 )R(α), · · · , (W̃r

0)R(α))]

such that 1−max{min{1, (xT Ãk
R(α)y)−(W̃

k
0 )L(α)

xT(Ãk
R(α)−Ãk

L(α))y+(W̃k
0 )R(α)−(W̃k

0 )L(α)
}, 0} ≥ 1

2 ,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

That is equivalent to

(MOP3) max [((Ṽ1
0 )L(α), · · · , (Ṽr

0 )L(α)), ((Ṽ1
0 )R(α), · · · , (Ṽr

0 )R(α))]

such that max{min{1, (Ṽk
0 )R(α)−(xT Ãk

L(α)y)
(Ṽk

0 )R(α)−(Ṽk
0 )L(α)+xT(Ãk

R(α)−Ãk
L(α))y

}, 0} ≤ 1
2 ,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

(MOD3) min [((W̃1
0 )L(α), · · · , (W̃r

0)L(α)), ((W̃1
0 )R(α), · · · , (W̃r

0)R(α))]

such that max{min{1, (xT Ãk
R(α)y)−(W̃

k
0 )L(α)

xT(Ãk
R(α)−Ãk

L(α))y+(W̃k
0 )R(α)−(W̃k

0 )L(α)
}, 0} ≤ 1

2 ,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

That is to say,

(MOP4) max [((Ṽ1
0 )L(α), · · · , (Ṽr

0 )L(α)), ((Ṽ1
0 )R(α), · · · , (Ṽr

0 )R(α))]

such that (Ṽk
0 )R(α)−(xT Ãk

L(α)y)
(Ṽk

0 )R(α)−(Ṽk
0 )L(α)+(xT Ãk

R(α)y)−(xT Ãk
L(α)y)

≤ 1
2 ,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

(MOD4) min [((W̃1
0 )L(α), · · · , (W̃r

0)L(α)), ((W̃1
0 )R(α), · · · , (W̃r

0)R(α))]

such that (xT Ãk
R(α)y)−(W̃

k
0 )L(α)

xT(Ãk
R(α)−Ãk

L(α))y+(W̃k
0 )R(α)−(W̃k

0 )L(α)
≤ 1

2 ,

0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

By arranging the models (MOP4) and (MOD4), we have
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(MOP5) max [((Ṽ1
0 )L(α), · · · , (Ṽr

0 )L(α)), ((Ṽ1
0 )R(α), · · · , (Ṽr

0 )R(α))]

such that (Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤ xT(Ãk
R(α) + Ãk

L(α))y,
0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

(MOD5) min [((W̃1
0 )L(α), · · · , (W̃r

0)L(α)), ((W̃1
0 )R(α), · · · , (W̃r

0)R(α))]

such that xT(Ãk
R(α) + Ãk

L(α))y ≤ (W̃k
0 )L(α) + (W̃k

0 )R(α),
0 ≤ α ≤ 1,
∀x ∈ Sm, ∀y ∈ Sn, (k = 1, 2, · · · , r).

Since Sm and Sn are convex polytopes. Furthermore, the problems (MOP5) and (MOD5) are crisp
multiple objective linear optimization problems; it is sufficient to consider only the extreme points of
Sm and Sn. Thus, the problems (MOP5) and (MOD5) can be converted into

(MOCLP) max [((Ṽ1
0 )L(α), · · · , (Ṽr

0 )L(α)), ((Ṽ1
0 )R(α), · · · , (Ṽr

0 )R(α))]

such that (Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤
m
∑

i=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]xi,

0 ≤ α ≤ 1,
∀x ∈ Sm, (k = 1, 2, · · · , r; j = 1, 2, · · · , n).

(MOCLD) min [((W̃1
0 )L(α), · · · , (W̃r

0)L(α)), ((W̃1
0 )R(α), · · · , (W̃r

0)R(α))]

such that
n
∑

j=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]yj ≤ (W̃k

0 )L(α) + (W̃k
0 )R(α),

0 ≤ α ≤ 1,
∀y ∈ Sn, (k = 1, 2, · · · , r; i = 1, 2, · · · , m).

That is equal to

(MOCLP1) max [(Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α)) + (Ṽr

0 )R(α)]

such that (Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤
m
∑

i=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]xi,

0 ≤ α ≤ 1,
∀x ∈ Sm, (k = 1, 2, · · · , r; j = 1, 2, · · · , n).

(MOCLD1) min [(W̃1
0 )L(α) + (W̃1

0 )R(α), · · · , (W̃r
0)L(α) + (W̃r

0)R(α)]

such that
n
∑

j=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]yj ≤ (W̃k

0 )L(α) + (W̃k
0 )R(α),

0 ≤ α ≤ 1,
∀y ∈ Sn, (k = 1, 2, · · · , r; i = 1, 2, · · · , m).

Remark 1. When the elements of Ãk, Ṽk
0 and W̃k

0 (k = 1, 2, · · · , r) are crisp numbers, the MOFP model
reduces the MOG model, and the optimization problems MOCLP1 and MOCLD1 become the optimization
problems MOGLP and MOGLD.

Theorem 3. Let α ∈ (0, 1] be fixed. If (x, ((Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α) + (Ṽr

0 )R(α))) and
(y, ((W̃1

0 )L(α) + (W̃1
0 )R(α), · · · , (W̃r

0)L(α) + (W̃r
0)R(α))) are the optimal solutions of (MOCLP1) and

(MOCLD1), then,
r

∑
k=1

[(Ṽk
0 )L(α) + (Ṽk

0 )R(α)] ≤
r

∑
k=1

[(W̃k
0 )L(α) + (W̃k

0 )R(α)].

Proof. By Theorem 2, we obtain

(Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤
m

∑
i=1

[(ãk
ij)L(α) + (ãk

ij)R(α)]xi (6)
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and
n

∑
j=1

[(ãk
ij)L(α) + (ãk

ij)R(α)]yj ≤ (W̃k
0 )L(α) + (W̃k

0 )R(α) (7)

Since ∀x ∈ Sm, ∀y ∈ Sn, we have

(Ṽk
0 )L(α) + (Ṽk

0 )R(α) =
n
∑

j=1
[(Ṽk

0 )L(α) + (Ṽk
0 )R(α)]yj

≤
n
∑

j=1

m
∑

i=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]xiyj

(8)

m
∑

i=1

n
∑

j=1
[(ãk

ij)L(α) + (ãk
ij)R(α)]xiyj ≤

m
∑

i=1
[(W̃k

0 )L(α) + (W̃k
0 )R(α)]xi

= (W̃k
0 )L(α) + (W̃k

0 )R(α)

(9)

Therefore, observe that

(Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤ (W̃k
0 )L(α) + (W̃k

0 )R(α)

Then,
r

∑
k=1

[(Ṽk
0 )L(α) + (Ṽk

0 )R(α)] ≤
r

∑
k=1

[(W̃k
0 )L(α) + (W̃k

0 )R(α)].

Theorem 4. Let α ∈ (0, 1] be fixed. If the elements of Ãk (k = 1, 2, · · · , r) are triangular fuzzy numbers, then
(x, ((Ṽ1

0 )L(α) + (Ṽ1
0 )R(α), · · · , (Ṽr

0 )L(α) + (Ṽr
0 )R(α))) and (y, ((W̃1

0 )L(α) + (W̃1
0 )R(α), · · · , (W̃r

0)L(α) +

(W̃r
0)R(α))) are the optimal solutions of (MOCLP2) and (MOCLD2) if and only if (x, y) is the equilibrium

solution of (MOFP).

(MOCLP2) max [(Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α)) + (Ṽr

0 )R(α)]

such that (Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤
m
∑

i=1
[(ák

ij + àk
ij)(1− α) + 2αak

ij]xi

0 ≤ α ≤ 1,
∀x ∈ Sm, (k = 1, 2, · · · , r; j = 1, 2, · · · , n).

(MOCLD2) min [(W̃1
0 )L(α) + (W̃1

0 )R(α), · · · , (W̃r
0)L(α) + (W̃r

0)R(α)]

such that
n
∑

j=1
[(ák

ij + àk
ij)(1− α) + 2αak

ij]yj ≤ (W̃k
0 )L(α) + (W̃k

0 )R(α),

0 ≤ α ≤ 1,
∀y ∈ Sn, (k = 1, 2, · · · , r; i = 1, 2, · · · , m).

Proof. Since the elements of Ãk (k = 1, 2, · · · , r) are triangular fuzzy numbers, using (5), we have

[ãk
ij]

α = [(ãk
ij)L(α), (ãk

ij)R(α)] = [(ak
ij − ák

ij)α + ák
ij,−(àk

ij − ak
ij)α + àk

ij], α ∈ (0, 1].

Hence,
(ãk

ij)L(α) + (ãk
ij)R(α) = (ák

ij + àk
ij)(1− α) + 2αak

ij
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By utilizing Theorem 2, we have that (x, ((Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α) + (Ṽr

0 )R(α)))

and (y, ((W̃1
0 )L(α) + (W̃1

0 )R(α), · · · , (W̃r
0)L(α) + (W̃r

0)R(α))) are optimal solutions of (MOCLP2) and
(MOCLD2) if and only if (x, y) is the equilibrium solution of (MOFP).

(MOCLP2) max [(Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), · · · , (Ṽr
0 )L(α)) + (Ṽr

0 )R(α)]

such that (Ṽk
0 )L(α) + (Ṽk

0 )R(α) ≤
m
∑

i=1
[(ák

ij + àk
ij)(1− α) + 2αak

ij]xi

0 ≤ α ≤ 1,
∀x ∈ Sm, (k = 1, 2, · · · , r; j = 1, 2 · · · , n).

(MOCLD2) min [(W̃1
0 )L(α) + (W̃1

0 )R(α), · · · , (W̃r
0)L(α) + (W̃r

0)R(α)]

such that
n
∑

j=1
[(ák

ij + àk
ij)(1− α) + 2αak

ij]yj ≤ (W̃k
0 )L(α) + (W̃k

0 )R(α),

0 ≤ α ≤ 1,
∀y ∈ Sn, (k = 1, 2, · · · , r; i = 1, 2 · · · , m).

4. Example

In order to illustrate the effectiveness and correctness of the obtained model, we consider multiple
payoffs of the multiple objective matrix game based on fuzzy payoffs (MOFP) that are taken as

Ã1 =

[
(2.90, 3.00, 3.10) (7.75, 8.00, 8.20)
(3.50, 4.00, 4.20) (0.90, 1.00, 1.20)

]
and

Ã2 =

[
(4.80, 5.00, 5.50) (1.80, 2.00, 2.75)
(5.75, 6.00, 6.40) (0.75, 1.00, 1.20)

]
.

In order to solve the game for a given α, by Theorem 4, we have to solve the following problems
(MOGCLP3) and (MOGCLD3).

(MOCLP3) max [(Ṽ1
0 )L(α) + (Ṽ1

0 )R(α), (Ṽ2
0 )L(α)) + (Ṽ2

0 )R(α)]

such that (Ṽ1
0 )L(α) + (Ṽ1

0 )R(α) ≤ 6x1 + (7.7 + 0.3α)x2

(Ṽ1
0 )L(α) + (Ṽ1

0 )R(α) ≤ (15.95 + 0.05α)x1 + (2.1− 0.1α)x2

(Ṽ2
0 )L(α) + (Ṽ2

0 )R(α) ≤ (10.3− 0.3α)x1 + (12.15− 0.15α)x2

(Ṽ2
0 )L(α) + (Ṽ2

0 )R(α) ≤ (4.55− 0.55α)x1 + (1.95 + 0.05α)x2

0 ≤ α ≤ 1,
x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0, (k = 1, 2, · · · , r).

(MOCLD3) min [(W̃1
0 )L(α) + (W̃1

0 )R(α), (W̃2
0 )L(α) + (W̃2

0 )R(α)]

such that 6y1 + (15.95 + 0.05α)y2 ≤ (W̃1
0 )L(α) + (W̃1

0 )R(α),
(7.7 + 0.3α)y1 + (2.1− 0.1α)y2 ≤ (W̃1

0 )L(α) + (W̃1
0 )R(α),

(10.3− 0.3α)y1 + (4.55− 0.55α)y2 ≤ (W̃2
0 )L(α) + (W̃2

0 )R(α),
(12.15− 0.15α)y1 + (1.95 + 0.05α)y2 ≤ (W̃2

0 )L(α) + (W̃2
0 )R(α),

0 ≤ α ≤ 1,
y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0, (k = 1, 2, · · · , r).

By solving the above problems (MOGCLP3) and (MOGCLD3), particularly, let α∗ = 1, then
we can obtain that ((x∗1 = 0.20, x∗2 = 0.80), ((Ṽ1

0 )L(α
∗) + (Ṽ1

0 )R(α
∗) = 4.80, (Ṽ2

0 )L(α
∗) + (Ṽ2

0 )R(α
∗) =

2.40)) is the optimal solution of (MOGCLP3) and ((y∗1 = 0.80, y∗2 = 0.20), ((W̃1
0 )L(α

∗) + (W̃1
0 )R(α

∗) =

8.00, (W̃2
0 )L(α

∗) + (W̃2
0 )R(α

∗) = 10.00)) is optimal solution of (MOGCLD3). By Theorem 4, we have
that ((x∗1 = 0.20, x∗2 = 0.80), (y∗1 = 0.80, y∗2 = 0.20)) is the equilibrium solution of (MOFP).
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5. Conclusions

In this paper, we proposed the multicriteria matrix game model based on fuzzy payoffs. In order
to solve the game model, we first discussed the relationship of two fuzzy numbers via the lower
limit− 1

2 of the possibility degree. Then, utilizing this relationship, we conclude that the equilibrium
solution of this game model and optimal solutions of a pair of multiple objective linear optimization
problems are of equal value. We will use other more effective methods to study the matrix game in the
future.
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