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Abstract: A joint-optimization method is proposed for enhancing the behavior of the l1-norm- and
sum-log norm-penalized NLMS algorithms to meet the requirements of sparse adaptive channel
estimations. The improved channel estimation algorithms are realized by using a state stable model
to implement a joint-optimization problem to give a proper trade-off between the convergence and
the channel estimation behavior. The joint-optimization problem is to optimize the step size and
regularization parameters for minimizing the estimation bias of the channel. Numerical results
achieved from a broadband sparse channel estimation are given to indicate the good behavior of the
developed joint-optimized NLMS algorithms by comparison with the previously proposed l1-norm-
and sum-log norm-penalized NLMS and least mean square (LMS) algorithms.

Keywords: NLMS algorithm; least mean square (LMS); zero attracting; joint-optimization; sparse
channel estimations

1. Introduction

Recently, adaptive channel estimation has been extensively studied all over the world [1,2].
From these adaptive filtering frameworks, the LMS adaptive filtering algorithm has been deeply
discussed for adaptive control, system identification, channel estimation applications owing to its
low computational complexity and easy practical realization [3–5]. Although the LMS algorithm
can effectively estimate the broadband multi-path channel, it has a sensitivity to the input signal
scaling, and it is difficult to select an agreeable learning rate to achieve a stable and robust channel
estimation behavior [6–11]. Subsequently, the NLMS has been proposed by using the normalization of
the input training signal power in order to overcome the above addressed problem [12,13]. However,
the conventional NLMS algorithm cannot perform well for dealing with sparse channel estimation.

Additionally, the broadband multi-path channel or underwater communication channel might
be a sparse channel, which has been studied in recent decades [13–17]. From the measurement of
the wireless channel, the channel impulse response can be regarded as sparse channel. This is to
say that only a few channel impulse responses in most of the multi-path channels are dominant,
while the major channel responses are zeros or their magnitudes are near-zeros. The traditional LMS-
and NLMS-based channel estimation methods cannot make use of the inherent sparse properties of
these broadband multi-path channels [6–13]. To utilize the sparse structures of the broadband sparse
channel, compressed sensing (CS) methods have been introduced for developing various channel
estimation algorithms used in sparse cases [18–20]. Although some of these CS-based sparse channel
estimations can achieve robust estimation performance, these CS algorithms may have high complexity
for dealing with time-varying channels or they have difficulty in constructing desired measurement
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matrices with the restricted isometry property limitation [21]. Thus, simple sparse channel estimation
developments have attracted much more attentions in the recent decades.

Sparse LMSs have been presented under the inspiration of the CS techniques [22,23], which are
realized by using a norm constraint term in the cost function of the LMS. The first sparse LMS
algorithm motivated by the CS technique is carried out by introducing a l1-norm constraint term into
the basic LMS to exploit the in-nature sparse characteristics of broadband multi-path channel [24–27].
As a result, a zero attractor is given in the updating equation of the sparse LMS algorithm to put
forward a zero-attracting (ZA) LMS (ZA-LMS) algorithm. Furthermore, a reweighting ZA-LMS
(RZA-LMS) was reported by using a sum-log constraint instead of the l1-norm penalty in the ZA-LMS
algorithm [24,27]. Subsequently, the zero attracting techniques have been widely researched, and a
great quantity of sparse LMS algorithms was exploited by using different norm constraints, such as
lp-norm and smooth approximation l0-norm constraints [28–32]. Furthermore, the zero attracting
(ZA) technique has also been expanded into the affine projection algorithm and the normalized
NLMS algorithms to further exploit the applications of the ZA algorithms [12,33–40], which includes
ZA-NLMS and RZA-NLMS algorithms. However, the affine projection algorithm has higher complexity
than the NLMS algorithm, which limited its applications. Thus, the sparse NLMS algorithms have
been extensively studied and have been used for sparse channel estimations. However, the behavior
of these NLMS-based channel estimations was affected by the modified step size and the regularized
parameters. The normalized step size has an important effect on the compromise between the channel
estimation behavior and convergence speed, while the regularization parameter depends on the
SNR of the systems [41]. From [41], we can see that the proposed joint-optimization method cannot
utilize the sparsity of the multi-channels. In addition, the step size and the regularization parameters
should be selected to address the conflict requirement between the channel estimation behavior
and the convergence speed.

In this paper, a joint-optimization method is discussed to enhance the behavior of the ZA- and
RZA-NLMS algorithms for estimating finite impulse response (FIR) sparse channels. Their estimation
behaviors are discussed via a broadband multi-path channel, which is a prior known sparse channel
from the previous studies [6,7,9,12,14,24,27–40]. The proposed algorithms are realized by implementing
a joint-optimization on the regularization parameter and step size to achieve a minimization of
the channel estimation misalignment, where the joint-optimization method is obtained from [41].
The joint-optimization scheme is derived in detail in the context of zero attraction theory, and it is
incorporated into the previously-proposed ZA- and RZA-NLMS algorithms to form zero-attracting
joint-optimization NLMS (ZAJO-NLMS) and reweighted ZAJO-NLMS (RZAJO-NLMS) algorithms.
The parameter selection and the behavior of our ZAJO-NLMS and RZAJO-NLMS are evaluated though
a sparse channel, which is similar to [6,7,9,12,14,24,27–40]. The computer simulations indicate that our
ZAJO-NLMS and RZAJO-NLMS algorithms perform better than the previously-presented ZA-NLMS,
RZA-NLMS, ZA-LMS, RZA-LMS, traditional LMS and NLMS algorithms for dealing with sparse
channel estimation.

The structure is illustrated herein. We review the basic NLMS and the previously-reported
ZA-NLMS, as well as the RZA-NLMS algorithms in Section 2 through estimating a broadband
multipath wireless communication channel. Section 3 gives the derivation of the joint-optimization
scheme and the proposed ZAJO-NLMS and RZAJO-NLMS algorithms. In Section 4, our ZAJO-NLMS
and RZAJO-NLMS algorithms will be evaluated though a broadband sparse multipath channel,
and their channel estimation behaviors are discussed and compared with the previous ZA-NLMS,
RZA-NLMS, ZA-LMS, RZA-LMS, traditional LMS and NLMS algorithms. At last, a short summary is
given in Section 5.

2. NLMS-Based Sparse Adaptive Channel Estimation Algorithm

We review the traditional NLMS and its sparse forms, which include the ZA-NLMS
and RZA-NLMS, over a sparse multipath wireless channel, which is given in Figure 1.
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Figure 1. Typical adaptive filter-based channel estimation system. FIR, finite impulse response.

x(n) = [x(n), x(n− 1), · · · , x(n− N − 1)]T is used as a training input signal, which is transmitted
over an FIR channel w = [w0, w1, · · · , wN−1]

T . In this paper, N denotes the length of a multipath
channel, and (·)T is the transpose operation. The channel output is y(n), which is denoted as
y(n) = xT(n)w. The expected signal d(n) is acquired at the receiver, and d(n) = y(n) + v(n).
v(n) denotes an additional white Gaussian noise (AWGN). The NLMS-based channel estimation
algorithms aim to get the unknown sparse channel w by utilizing x(n) and y(n) to minimize the instant
error e(n). We define e(n) = d(n)− xT(n)ŵ(n). ŵ(n) denotes the estimated vector. The cost function
of the traditional NLMS is depicted as:

min ‖ŵ(n + 1)− ŵ(n)‖2

s. t. :d(n)− xT(n)ŵ(n + 1) = 0
. (1)

By using the Lagrange multiplier method to carry out the desired minimization of (1) and
introducing a controlling step size, the updating of the traditional NLMS is obtained [3–5]:

ŵ(n + 1) = ŵ(n) +
µe(n)x(n)

xT(n)x(n) + δ
. (2)

µ denotes a step size of the NLMS algorithm, and δ represents a regularization parameter with small
value, which is to prevent from dividing by zero. Although the NLMS algorithm can give a good
estimation of the sparse channel w by the use of the update Equation (2), it cannot use the sparsity
property of the practical existing multi-path channels. Recently, the ZA technique has been introduced
into the original cost function of the traditional NLMS for exploiting the sparseness of the channel.
Then, the ZA-NLMS algorithm is presented by using an l1-norm penalty to modify the original cost
function of the traditional NLMS. Thus, the modified cost function for the reported ZA-NLMS is
written as:

min ‖ŵ(n + 1)− ŵ(n)‖2 + γ1 ‖ŵ(n + 1)‖1
s. t. : d(n)− xT(n)ŵ(n + 1) = 0

, (3)

where γ1 denotes a zero attracting strength parameter used to get a balance between the estimation
behavior and the sparseness of ‖ŵ(n + 1)‖1. Furthermore, the Lagrange multiplier method is utilized
to find out a solution of (3). As a result, the updating equation of ZA-NLMS is described as [12]:

ŵ(n + 1) = ŵ(n) +
µZA−NLMSe(n)x(n)

xT(n)x(n) + δ
− ρZA−NLMSsgn{ŵ(n)}, (4)
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where µZA-NLMS denotes a step size and ρZA-NLMS denotes the zero-attracting strength controlling factor
for the ZA-NLMS algorithm, respectively. The ZA-NLMS algorithm utilizes the sparse characteristic
of the multi-path wireless channel. However, it exerts a uniform zero attracting on all of the channel
taps. Thus, the ZA-NLMS algorithm may reduce the estimation behavior when the designated channel
is less sparse. To address this problem, a sum-log penalty [42] is utilized to form the RZA-NLMS
algorithm, whose cost function is written as:

min ‖ŵ(n + 1)− ŵ(n)‖2 + γ2
N
∑

i=1
log(1 + ε |wi|)

s. t. : d(n)− xT(n)ŵ(n + 1) = 0
. (5)

We also employ the Lagrange multiplier method to solve Equation (5). Then, the channel
coefficients of the RZA-NLMS algorithm are updated by: [12]

ŵi(n + 1) = ŵi(n) +
µRZA−NLMSe(n)xi(n)

xT
i (n)xi(n) + δ

− ρRZA−NLMS
sgn {ŵi(n)}
1 + ε |ŵi(n)|

, (6)

or its vector form:

ŵ(n + 1) = ŵ(n) +
µRZA−NLMSe(n)x(n)

xT(n)x(n) + δ
− ρRZA−NLMS

sgn {ŵ(n)}
1 + ε |ŵ(n)| , (7)

where µRZA−NLMS is a step size, while ρRZA-NLMS denotes a zero-attracting strength controlling factor
of the RZA-NLMS algorithm, respectively. Here, ε is a threshold that is used for controlling the
reweighted factor 1/(1 + ε |ŵ(n)|).

From the above discussions, it is observed that the previously-proposed ZA-NLMS
and RZA-NLMS exert the desired zero-attractor on each iteration. The proposed zero attractors
attract the zero channel coefficients to zero quickly compared with the traditional NLMS algorithm.
Thus, we can say that the sparse NLMS algorithms, namely ZA-NLMS and RZA-NLMS, utilize
different sparse penalties to achieve various zero attractors. The traditional NLMS-based channel
estimation algorithm is concluded as follows:

ŵ(n + 1) = ŵ(n) + Error updating term. (8)

Comparing to the traditional NLMS method mentioned in (8), the mentioned sparse NLMS-based
channel estimation algorithms provide amazing zero attractors for both ZA-NLMS and RZA-NLMS,
and hence, their updated equation is:

ŵ(n + 1) = ŵ(n) + Error updating term︸ ︷︷ ︸
NLMS

+zero attractor

︸ ︷︷ ︸
sparse NLMS

. (9)

3. Proposed Sparse Joint-Optimization NLMS Algorithms

Though the proposed sparse NLMS algorithms effectively utilize the in-nature properties
of the wireless multi-path channel for achieving a superior channel estimation behavior, their
performance will be affected by step size, regularization parameter δ and the zero-attracting
strength controlling factor. After that, various techniques have been presented to enhance the
behavior of the ZA-NLMS and RZA-NLMS algorithms, including variable step size methods and
parameter-adjusting techniques [32]. Herein, we concentrate on constructing a joint-optimization
method on the regularization parameter δ and step size.
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Next, we will introduce our proposed ZAJO-NLMS algorithm in detail. Here, we consider
the updating equation of the ZA-NLMS algorithm:

ŵ(n + 1) = ŵ(n) +
µZA−NLMSe(n)x(n)

xT(n)x(n) + δ
− ρZA−NLMSsgn{ŵ(n)}, (10)

where µZA-NLMS denotes a step size, δ represents a regularization parameter and:

e(n) = d(n)− xT(n)ŵ(n) (11)

denotes the instantaneous channel estimation error at instant n. As we know,
E
{

xT(n)x(n)
}
= Nδ2

x [41]; E {·} represents expectation, and δ2
x represents the variance of x(n).

For large N, we can get xT(n)x(n) ≈ Nδ2
x [43]. Then, we have:

ŵ(n + 1) ≈ ŵ(n) +
µZA−NLMSe(n)x(n)

Nδ2
x + δ

− ρZA−NLMSsgn {ŵ(n)} . (12)

Next, we consider w(n) as a channel that can be modeled as a simplified first order Markov
model [41],

w(n + 1) = w(n) + g(n), (13)

where g(n) represents an AWGN signal with zero mean. Furthermore, we assume that g(n) is
independent of the channel w(n). Therefore, we can get:

Rg = δ2
gIN , (14)

where IN is an N× N identity matrix. Thus, the variance of δ2
g gives an important uncertainty on w(n).

Here, we define a posteriori bias as:

∆(n) = w(n)− ŵ(n). (15)

Here, we can get:

∆(n + 1) = ∆(n) + g(n)− µZA−NLMSe(n)x(n)
Nδ2

x + δ
+ ρZA−NLMSsgn {ŵ(n)} . (16)

Taking the l2-norm on (16), using expectation on its left and right sides and getting rid of
the uncorrelated products based on the i.i.d. assumptions, we have:

E
{
‖∆(n + 1)‖2

2

}
= E

{
‖∆(n)‖2

2

}
+ Nδ2

g + ρ2
ZA−NLMSE

{
sgn2 {ŵ(n)}

}
− 2µZA−NLMS

Nδ2
x+δ

E
{

xT(n)∆(n)e(n)
}
+ 2ρZA−NLMSE {∆(n)sgn {ŵ(n)}} − 2µZA−NLMS

Nδ2
x+δ

E
{

xT(n)g(n)e(n)
}

+
µ2

ZA−NLMS
(Nδ2

x+δ)2 E
{

e2(n)xT(n)x(n)
} . (17)

Now, we concentrate on the last five terms in the Equation (17). From the above discussion, the
instantaneous error is illustrated as:

e(n) = xT(n)w(n) + xT(n)g(n) + v(n) (18)

By taking the Equation (18) into account, we can get:

E
{

xT(n)∆(n)e(n)
}
= E

{
∆T(n)x(n)e(n)

}
= E

{
∆T(n)x(n)xT(n)∆(n)

}
= E

{
tr
[
∆(n)∆T(n)x(n)xT(n)

]} , (19)
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where tr [·] represents the trace operation of a matrix. Assume that the misalignments at the instant n
and (n + 1) are uncorrelated. In the stable state, a posteriori bias correlation matrix is approximated as
a diagonal matrix [41], which is because the bias of each coefficient tends to be uncorrelated. Thus,
we obtain:

E
{

∆T(n)x(n)e(n)
}
≈ tr

{
E
[
∆(n)∆T(n)

]
E
[
x(n)xT(n)

]}
= δ2

xE
{
‖∆(n)‖2

2

}
. (20)

Similarly, the cross-correlation E
{

xT(n)g(n)e(n)
}

can also be obtained based on (18). Therefore,
the correlation matrix of g(n) can be regarded as a diagonal matrix. By eliminating the uncorrelated
terms, we obtain:

E
{

xT(n)g(n)e(n)
}
= E

{
gT(n)x(n)e(n)

}
= E

{
gT(n)x(n)xT(n)g(n)

}
= E

{
tr
[
g(n)gT(n)x(n)xT(n)

]}
≈ tr

{
E
[
g(n)gT(n)

]
E
[
x(n)xT(n)

]}
= Nδ2

xδ2
g

. (21)

Then, the expectation term E
{

e2(n)xT(n)x(n)
}

can also be calculated by taking Equation (18)
into consideration. Similarly, we have:

E
{

e2(n)xT(n)x(n)
}
= tr

{
E
[
e2(n)x(n)xT(n)

]}
= tr

{
E
[
v2(n)x(n)xT(n)

]}
+

tr
{

E
{[

∆(n)x(n) + gT(n)x(n)
]2 x(n)xT(n)

}} . (22)

Here, we assume that the correlation matrix of x(n) approximates a diagonal matrix, which has
been widely used for simplifying the analysis [41,44]. Furthermore, this also motivates us to further
develop the second term in Equation (22) based on the Gaussian moment factoring theory [45]. Then,
we obtain:

E
{

e2(n)xT(n)x(n)
}

= Nδ2
xδ2

v + tr
{

δ4
x

{
Nδ2

g + E
{
‖∆(n)‖2

2

}}
IN + 2δ4

x

{
δ2

gIN + E
[
∆(n)∆T(n)

]}}
= Nδ2

xδ2
v + (N + 2)δ4

x

{
E
{
‖∆(n)‖2

2

}
+ Nδ2

g

} . (23)

As we know, at the stable status, we get:

E {sgn [ŵ(n)]} = sgn [ŵ(n)] , (24)

and ρZA−NLMS is very small. Thus, Equation (17) can be approximated to be:

E
{
‖∆(n + 1)‖2

2

}
≈ E

{
‖∆(n)‖2

2

}
+ Nδ2

g −
2µZA−NLMS

Nδ2
x+δ

E
{

xT(n)∆(n)e(n)
}

− 2µZA−NLMS
Nδ2

x+δ
E
{

xT(n)g(n)e(n)
}
+

µ2
ZA−NLMS
(Nδ2

x+δ)2 E
{

e2(n)xT(n)x(n)
} (25)

From the discussions above, we substitute Equations (20), (21) and (23) into Equation (25)
and denote m(n) = E

{
‖∆(n + 1)‖2

2

}
; we have:

m(n) = f (µZA−NLMS, δ, N, δ2
x)E

{
‖∆(n)‖2

2

}
+ g(µZA−NLMS, δ, N, δ2

x, δ2
v , δ2

g), (26)

where:

f (µZA−NLMS, δ, N, δ2
x) = 1− 2δ2

x
Nδ2

x + δ
µZA−NLMS +

(N + 2)δ4
x

(Nδ2
x + δ)2 µ2

ZA−NLMS, (27)

and:

g(µZA−NLMS, δ, N, δ2
x, δ2

v , δ2
g) =

Nµ2
ZA−NLMSδ2

x

[
δ2

v + (N + 2)δ2
xδ2

g

]
(Nδ2

x + δ)2 −
2NµZA−NLMSδ2

xδ2
g

Nδ2
x + δ

+ Nδ2
g. (28)
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From the result in Equation (26), we can see that the convergence speed and the misadjustment
components are separated from each other. The first term of Equation (26) plays a significant role in
the convergence speed of adaptive filters, which depends on µZA-NLMS, δ, input signal power and
filter length. It is worth noting that the convergence speed component does not rely on the δ2

v and
δ2

g of the model [41]. Thus, the noise power δ2
v and the uncertainties δ2

g do not give any effect on
the convergence. We can see that fastest convergence speed can be achieved when Equation (27)
reaches its minimum. Then, we have:

∂ f (µZA−NLMS, δ, N, δ2
x)

∂µZA−NLMS
= 0. (29)

Therefore, we can get:

µH =
δ + Nδ2

x
(N + 2)δ2

x
, (30)

where µH is the fastest convergence speed controlling factor. As we know, the regularization
parameter δ is small, and the length N is large. Thus, µH ≈ 1 for achieving the fastest convergence
speed, which is well known in [3,44]. Furthermore, the stability condition is obtained by letting∣∣ f (µZA−NLMS, δ, N, δ2

x)
∣∣ < 1, which results in:

0 < µstable < 2
δ + Nδ2

x
(N + 2)δ2

x
= 2µH (31)

Again, by considering δ = 0 and N � 2, the stability conditions of the NLMS and ZA-NLMS
algorithms can be obtained, which is written as µNLMS/ZA-NLMS.

The second term of Equation (26) gives large effects on the misalignment of the proposed
algorithm, which significantly depends on the noise power δ2

v and the uncertainties δ2
g of the model.

With the increment of these two parameters, the misalignment is also increased [41]. The lowest
misalignment is obtained when Equation (28) reaches the minimum. Furthermore, by taking the step
size into account, we can get the lowest misalignment, which can be expressed as:

µL =
δ2

g(δ + Nδ2
x)

δ2
v + (N + 2)δ2

xδ2
g

. (32)

As we know, the broadband channel is always time-varying, and hence, δ2
g = 0. In this case,

µL = 0. This is to say that the lowest misalignment is achieved as the step size approximates zero [3].
From the discussions mentioned above, we follow the optimization criterion to mimic the channel
estimation misalignment to obtain the optimized sparse RZA-NLMS and ZA-NLMS algorithms,
which is based on the convergence analysis above.

An ideal adaptive filtering algorithm needs low misalignment and a rapid convergence speed
rate. Unluckily, the results in Equations (30) and (32) give opposite directions. Thus, we need to
optimize the step size to enhance the channel estimation behavior. Furthermore, the regularization
affects the behaviors on sparse NLMS algorithms. From (27), we can see that the convergence decreases
when the regularization parameter δ increases, while the misalignment in Equation (28) always
increases when regularization parameter δ decreases. Thus, we should control the step size and δ

to mimic the effects on the performance of the channel estimation algorithms. Additionally, we also
follow a minimization problem with respect to the channel estimation misalignment. According
to Equation (26) and assuming these two parameters are dependent on time, we can impose [41]:

∂m(n)
∂µZA−NLMS

= 0,
∂m(n)

∂δ
= 0. (33)
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Then, we can get the same result, which is expressed as:

µZA−NLMS

Nδ2
x + δ

=
m(n− 1) + Nδ2

g

Nδ2
v + (N + 2)δ2

x

[
m(n− 1) + Nδ2

g

] , (34)

which gives a joint-optimization procedure. Then, we introduce Equation (34) into Equation (10) to
obtain the updating equation of our ZAJO-NLMS algorithm. Then, we can get:

ŵ(n + 1) = ŵ(n) +

[
m(n− 1) + Nδ2

g

]
x(n)e(n)

Nδ2
v + (N + 2)δ2

x

[
m(n− 1) + Nδ2

g

] − γZAJOsgn {ŵ(n)} . (35)

Obversely, we should update the m(n) in (35). Then, substituting (34) into (26) results in:

m(n) =

1−
δ2

x

[
m(n− 1) + Nδ2

g

]
Nδ2

v + (N + 2)δ2
x

[
m(n− 1) + Nδ2

g

]
[m(n− 1) + Nδ2

g

]
. (36)

When n→ ∞, we have:

δ2
x

(
m(∞) + Nδ2

g

)
− N(N + 2)δ2

gδ2
x

[
m(∞) + Nδ2

g

]
− N2δ2

gδ2
v = 0, (37)

whose solution is expressed as:

m(∞) =
Nδ2

g

2

[
N + (N + 2)

√
1 +

4δ2
v

(N + 2)2δ2
gδ2

x

]
. (38)

Similarly to the extraction of the ZAJO-NLMS, a reweighting factor is incorporating into
the ZAJO-NLMS. As a result, the updating equation is obtained for realizing the RZAJO-NLMS algorithm:

ŵ(n + 1) = ŵ(n) +

[
m(n− 1) + Nδ2

g

]
x(n)e(n)

Nδ2
v + (N + 2)δ2

x

[
m(n− 1) + Nδ2

g

] − γRZAJO
sgn {ŵ(n)}
1 + ε |ŵ(n)| . (39)

From the proposed ZAJO- and RZAJO-NLMS algorithms, we found that the regularization
parameter δ and step size are joint-optimized, while the zero attractor keeps invariable. From the above
discussions, we found that there are two additional zero attraction terms, namely −γZAJOsgn {ŵ(n)}
and −γRZAJO

sgn{ŵ(n)}
1+ε|ŵ(n)| , in the ZAJO-NLMS and RZAJO-NLMS algorithms, which are different

from [41] due to the zero attractors. In this paper, the proposed ZAJO-NLMS and RZAJO-NLMS
algorithms are implemented by the combination of the zero-attraction-based NLMS and the
joint-optimization method in [41]. As a result, the ZAJO-NLMS and RZAJO-NLMS algorithms are
constructed to deal with the sparse channel estimation, which can give better performance due to the
joint-optimization and the zero attractors −γZAJOsgn {ŵ(n)} and −γRZAJO

sgn{ŵ(n)}
1+ε|ŵ(n)| .

Our contributions can be summarized as follows:

(1) Two optimized ZAJO-NLMS and RZAJO-NLMS algorithms with zero attractors have been
proposed for sparse channel estimation, in the context of the state variable model.

(2) The proposed ZAJO-NLMS and RZAJO-NLMS algorithms are realized by using
the joint-optimization method and the zero attraction techniques to mimic the channel
estimation misalignment.

(3) The behaviors of the proposed ZAJO-NLMS and RZAJO-NLMS algorithms are evaluated for
estimating sparse channels.
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(4) The ZAJO-NLMS and RZAJO-NLMS algorithms can achieve both faster convergence and lower
misalignment than the ZA- and RZA-NLMS algorithms owing to the joint-optimization, which
effectively adjusts the step size and the regularization parameter. In the future, we will develop
an optimal algorithm to optimize the zero-attractor terms.

4. Results and Discussion

We construct several experiments to look into the estimation behavior of our ZAJO-NLMS
and RZAJO-NLMS algorithms through a multi-path wireless communication channel, which
is a general sparse channel model obtained from the measurement [14,17] and which
has been widely used for verifying the estimation performance of NLMS-based channel
estimations [6,7,9,12,14,24,27–40]. Moreover, the channel estimation behavior is evaluated using
mean-square error, and the channel estimation performance is also compared with the traditional LMS,
NLMS, ZA-LMS, RZA-LMS, ZA-NLMS and RZA-NLMS algorithms. Here, a multipath channel has a
length of N = 16. This channel with varying K is used for predicting the estimation behavior by means
of the mean square error (MSE) standard. In the investigation, the channel estimation performance with
different sparsity level K is also analyzed in detail. The K dominant coefficients are distributed randomly in
the channel, and it is limited by ‖w‖2

2 = 1. An example of a typical broadband sparse multi-path wireless
channel is given in Figure 2.
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Figure 2. A typical broadband sparse multi-path channel.

Here, the sparse channel has a length of 16, and it has three dominant coefficients. The number
of non-zero coefficients is denoted as sparsity level K. In all of the experiments, x(n) is a Gaussian
signal, and v(n) is a Gaussian noise. The received signal has a power of Eb = 1. The power of the noise
v(n) is given by δ2

v. The estimation behaviors of our ZAJO-NLMS and RZAJO-NLMS algorithms are
accessed by the MSE given by:

MSE(n) = E
{
‖w(n)− ŵ(n)‖2

}
. (40)

Since the step size and the regularization parameter have been optimized based on the derivation
of our ZAJO-NLMS and RZAJO-NLMS, only the zero-attracting parameter can affect the performance
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of these proposed algorithms. Thus, we investigated the effects of the γZAJO and γRZAJO on the MSE.
The performance is shown in Figures 3 and 4 for γZAJO and γRZAJO, respectively.
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Figure 3. The effect of the γZAJO on the zero-attracting joint-optimization (ZAJO)-NLMS for sparse
channel estimation.
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Figure 4. Effect of the γRZAJO on the reweighted zero-attracting joint-optimization (RZAJO)-NLMS for
sparse channel estimation.

We can see that both γZAJO and γRZAJO have important effects on the sparse channel estimation.
With a decrement of the γZAJO, the MSE of the ZAJO-NLMS algorithm shown in Figure 3 is getting
better when γZAJO ranges from 3× 10−3 to 1× 10−4. As for γZAJO = 1× 10−5, both the convergence
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speed and MSE are deteriorated. From Figure 4, it is observed that γRZAJO has the same trend
as that of the γZAJO. Thus, we can properly select γZAJO and γRZAJO to achieve desired channel
estimation performance. According to the parameter effects in Figures 3 and 4, we choose
γZAJO = γRZAJO = 3× 10−4 to investigate the effects of the sparsity level on the sparse channel
estimation performance.

Next, we set the sparsity level of the broadband sparse multi-path to K = 1, 2, 4, 8
to analyze the channel estimation performance. The simulation parameters are
µLMS = µZALMS= µRZALMS = 0.05, µNLMS= µZANLMS =µRZANLMS = 0.5,
ρZALMS = ρRZALMS = ρZANLMS = ρRZANLMS= γZAJO = γRZAJO = 3× 10−4. The results are
comparatively shown in Figures 5–8 for K = 1, K = 2, K = 4 and K = 8, respectively. It is
observed from Figure 5 that our RZAJO-NLMS algorithm achieves the quickest convergence
and smallest steady-state error compared with the traditional LMS, NLMS, ZA-LMS, RZA-LMS,
ZA-, RZA- and ZAJO NLMS algorithms. The proposed RZAJO-NLMS algorithm has much more
gains than the traditional RZA-NLMS algorithm. Additionally, our proposed ZAJO-NLMS algorithm
achieves better channel estimation behaviors than those of the RZA-NLMS algorithm for K = 1.
When the sparsity level K increases from 2 to 8, the gain between the RZAJO-NLMS and RZA-NLMS
algorithm is getting small. However, our proposed RZAJO-NLMS algorithm outperforms all of
the other sparse channel estimation algorithms with reference to both the MSE and convergence.
When K = 8, our proposed ZAJO-NLMS algorithm achieves quicker convergence compared to the
traditional NLMS to get the same MSE level. On the contrary, the behavior of the ZA-NLMS becomes
worse than that of the traditional NLMS. Thereby, our proposed RZAJO- and ZAJO-NLMS algorithms
are more useful for adaptive sparse channel estimation applications.
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Figure 5. MSE of our presented ZAJO- and RZAJO-NLMS algorithms for K = 1.
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Figure 6. MSE of our presented ZAJO- and RZAJO-NLMS algorithms for K = 2.
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Figure 7. MSE of our presented ZAJO- and RZAJO-NLMS algorithms for K = 4.
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Figure 8. MSE of our presented ZAJO- and RZAJO-NLMS algorithms for K = 8.

5. Conclusions

We proposed joint-optimization sparse NLMS algorithms, namely RZAJO-NLMS
and ZAJO-NLMS. The joint-optimization was realized by using a state model to improve
the channel estimation performance of both the ZA- and RZA-NLMS algorithms. Our RZAJO-
and ZAJO-NLMS algorithms are based on the joint-optimization of step size and the regularization
parameter. The proposed joint-optimization was derived in detail. Furthermore, the estimation
behavior of our RZAJO- and ZAJO-NLMS algorithms is evaluated on a broadband sparse multi-path
channel with different sparsity levels. The results verified that our RZAJO-NLMS algorithm
provides the fastest convergence speed rate and lowest MSE. In addition, the proposed ZAJO-NLMS
outperforms the previously-reported ZA-NLMS and traditional NLMS algorithms.

This study provided the RZAJO-NLMS and ZAJO-NLMS algorithms based on the zero attracting
and the joint-optimization techniques. The proposed joint-optimization technique can be expanded
to the lp-norm (0 ≤ p ≤ 1) constrained NLMS, normalized LMF (NLMF) and normalized
least mean mixed norm (NLMMN) to enhance the sparse channel estimation performance or
sparse system identification. In addition, the proposed method can be used for exploiting the
two-dimensional (2D) adaptive filters for imaging processing, which can be used for medical imaging
denoising applications [46]. Moreover, our proposed RZAJO-NLMS and ZAJO-NLMS algorithms
can be integrated into the orthogonal frequency-division multiplexing (OFDM) and multiple-input
multiple-output (MIMO) OFDM systems to improve the quality of the communication systems [47,48].
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