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1. Introduction

The rapid progress of networks facilitates more and more computers being connected together
to exchange large amounts of information and share system resources. Various resources distributed
among hosts are shared across the networks in the form of network services provided by servers. Before
providing the services, the servers should have the ability to authenticate users’ identities. A simple
method uses a large, random secret (128-bit or 256-bit) that is secretly shared between the user and the
server. Using the common secret, the server can easily authenticate the user. However, because the user
may not remember it, she/he may need a device such as a smart card to store it [1–6]. Another method
is to employ an easy-to-remember password instead of the large, random secret. The password
approach offers a simple and practical solution for user identification to allow people to remember
their passwords without any devices [7,8]. However, passwords narrow down the possibilities and
make it easier for attackers to mount guessing attacks [3]. Most of these types of schemes [9–11] require
symmetric cryptosystems, and others require public-key cryptosystems [12] to protect passwords
which are transferred over an unsecured network.

To repair these security flaws, Tseng et al. employed the Diffie-Hellman key exchange scheme [13]
and the one-way hash function [14]. Lee et al. employed the one-way hash function, and Hwang et al.
employed a server’s public cryptosystem to solve the security flaws present in the Peyravian-Zunic
scheme. Unfortunately, in 2003, Lin and Hwang [15] and Yang et al. [16] simultaneously pointed
out that the Hwang-Yeh improved password change schemes suffered from denial of service (DOS)
attack and repaired the security flaws. On the other hand, Yang et al. [17] pointed out that Tseng
et al.’s improved password change scheme also suffered from DOS attack. DOS attack leads to an
adversary who can intercept the request for a password change sent by a legal user and modify
it with a wrong password. The user is under the impression that she/he has changed her/his
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password successfully. However, she/he cannot log in to the server the next time. Compare with
Yang et al.’s scheme [16], the Lin-Hwang scheme [15] additionally allows the client and the server in the
password-authenticated protocol to establish a session key. In this respect, it is similar to the password
authenticated key exchange (PAKE) schemes [17,18]. In the PAKE schemes, two parties via pre-shared
password technology agree to a common session key. To protect sensitive data from eavesdropping
and modification between two parties, the authenticated key can be used for protecting sensitive data
and ensuring data integrity. Because of their different motives, the related-PAKE schemes [19] do not
provide two parties to change their shared password.

On the other hand, the public-key cryptosystem exists in the Lin-Hwang scheme and Yang et al.’s
scheme. In particular, to avoid an adversary from replacing the original public keys of the server
with her/his own keys, certificates (e.g., digital signatures) should be introduced into their scheme.
A certificate from a trusted authority is what servers with public keys will ask for before providing
service. This means that users need a large storage space for storing certificates. More bandwidth is
also needed to verify the signatures.

In this paper, we propose new PAKE and protected password change (PPC) protocols which are
based on the computational Diffie-Hellman assumption and the one-way hash function. The proposed
PAKE scheme has the following four basic security requirements:

• Mutual authentication: the user and the server can authenticate each other.
• Session key security: no-one except the user and the server can agree to the common session key

with a non-negligible probability.
• Forward secrecy: when the password is compromised, it does not reveal the earlier session keys.
• Know-key security: when the session key is lost, it does not reveal other session keys. This limits

the damage caused by a compromised session key to that compromised session only.
• Withstanding an off-line password guessing attack: an adversary cannot find an equation to verify

whether his/her guess password is correct.

The proposed PPC scheme not only satisfies the above requirements but also allows clients to
arbitrarily change their own passwords.

The security of the schemes in [13,16] is evaluated by heuristic security analysis. In heuristic
security analysis, any successful attack requires a resource level (e.g., time and space) greater than
the fixed resources of a perceived adversary. If the protocol survives the analysis, such an analysis
is said to have heuristic security (ad hoc security). Obviously, many schemes were often shown to
be insecure (unforeseen attacks may occur) after they were first put forward. In view of this defect,
we employ Bellare, Poincheval and Rogaway’s model (called the BPR model) [20], which provides
the formal model for provable security in the complex-theoretic framework of modern cryptography,
to prove the security of our PAKE and PPC protocols.

The organization of the article is as follows. In Section 2, we will propose new PAKE and PPC
protocols. In Section 3, the formal validation of the security of our schemes using the BPR model is
shown. Finally, we shall conclude this article in Section 4.

2. The Proposed Scheme

To get rid of the security flaws, we shall propose the PAKE and PPC protocols. In the system,
two large prime numbers p and q are published such that q|p− 1. Let g be a generator with order q
in the Galois field GF(p), which is based on the Diffie-Hellman scheme. In this system, a user has
the identity id and the corresponding password pw. The password pw is secretly shared only by the
user and the server. The server employs a one-way hash function H(·) to store Hpw = H(id, pw) in a
verification table. Here, we give the identity of the server as S because the client may be involved in
distinct, concurrent executions of the PAKE and PPC protocols with other servers. The two protocols
are described as follows.



Symmetry 2017, 9, 134 3 of 12

Password Authenticated Key Exchange Protocol:

Step 1. Client =⇒ Server: 〈id, Rc ⊕ H(id, pw)〉
The user gives his/her id and pw to the client. The client computes the hash value H(id, pw).
Then the client chooses a random number c ∈ [1, q − 1] and computes Rc = gc mod p.
Then the client sends id and Rc ⊕ H(id, pw) to the server.

Step 2. Server =⇒ Client: 〈S, H(K, Rc)〉
After receiving id and Rc ⊕ H(id, pw), the server retrieves Hpw from the verification
table and recovers Rc by computing (Rc ⊕ H(id, pw)) ⊕ Hpw. Then the server computes
K = (Rc)s = gcs mod p, where s ∈ [1, q− 1] is the server privacy key and Rs = gs mod p is
the server public key. Then the server sends H(K, Rc) to the client.

Step 3. Client =⇒ Server: 〈id, H(K, Rs)〉
After receiving S and H(K, Rc), the client computes K = (Rs)c = gsc mod p. Then the
client computes H(K, Rc) and compares it with the received H(K, Rc). If these two values
are equivalent, the client computes H(K, Rs) and sends it together with id to the server.
This check is used for authenticating the server.

Step 4. Server: Access granted or Access denied
After receiving id and H(K, Rs), the server uses its own copies K and his public key Rs

to compute H(K, Rs) and compares it with the received H(K, Rs). If these two values are
equivalent, the server grants the client’s login request. Otherwise, the server denies the
client’s login request.

The performance of the proposed protocol is analyzed as follows. The client needs 3 hashing
operations, 1 exclusion operation, and 2 exponentiation operations in Steps 1 and 3. The server needs
2 hashing operations, 1 exclusion operation, and 1 exponentiation operation in Steps 2 and 4.

Protected Password Change Protocol:

Assume that the client wants to change his password from an old password pw to a new password
newpw. The steps are as follows.

Step 1*. Client =⇒ Server: 〈id, Rc ⊕ H(id, pw), Rc ⊕ Hnewpw〉
The messages id and Rc ⊕ H(id, pw) are the same as those in Step 1 in the PAKE protocol.
The client additionally sends Rc ⊕ Hnewpw to the server.

Step 2*. Server =⇒ Client: 〈S, H(Hnewpw, K, Rc)〉
After receiving id, Rc⊕H(id, pw), and Rc⊕H(id, newpw), the server retrieves Hpw from the
verification table to recover Rc by computing (Rc ⊕ H(id, pw))⊕ Hpw. Then the server uses
the recovered Rc to further obtain Hnewpw by computing (Rc ⊕ Hnewpw)⊕ Rc. Then the
server computes K = (Rc)s = gcs mod p, and H(Hnewpw, K, Rc). Then the server sends
H(Hnewpw, K, Rc) to the client.

Step 3*. Client =⇒ Server: 〈id, H(K, Rs)〉
After receiving S and H(Hnewpw, K, Rc), the client computes K = (Rs)c mod p and
H(H(id, newpw), K, Rc). Then the client checks whether the received H(Hnewpw, K, Rc)

is equal to H(H(id, newpw), K, Rc). If the two values are equivalent, the client sends id and
H(K, Rs) to the server.

Step 4*. Server: Access granted or Access denied
After receiving id and H(K, Rs), the server uses it own copies K and public key Rs to compute
H(K, Rs) and compares it with the received H(K, Rs) in Step 3*. If these two values are
equivalent, the server stores the recovered Hnewpw in Step 1* into a verification table.
Otherwise, the server denies the client’s password change request.

From the above descriptions of the two protocols, the client and the server can agree to
a common session key SK = H(K) = H(gcs mod p) after mutual authentication. On the other hand,
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the proposed PAKE protocol is similar to the Yeh-Sun scheme [19]. The difference is in the messages
〈S, Rs ⊕ H(K, Rc)〉 and 〈Rs, pw, H(K, Rc)〉 that are sent by the server in Step 1 in our scheme and in
the Yeh-Sun scheme, respectively. The computational complexity can be reduced to an exclusive-or
operation in our scheme. Their scheme assumes that only two parties agree to a common session
key. The two parties directly store the password without using the hash function. In fact, several
password-authenticated key exchanges can be used for authentication between the client and the
server. However, they do not allow users to arbitrarily change their own passwords.

Since a server in a distributed computer system provides service to many users, it does not only
authenticate a single user. To avoid the stolen-verifier attack, the server stores Hpw instead of pw
in a verification table. The stolen-verifier attack occurs when an adversary steals the verification
table from the server and uses it directly to masquerade as a legal user. The main purpose for using
user authentication against the stolen-verifier attack is to reduce the immediate danger to the user
authentication [15]. On the other hand, Yang et al.’s employs a message authentication code replace
a one-way hash function to store password in a verification table [16]. The keying material of the
message authentication code is kept secret by the server and store apart from the verification table.
For the same reason, we can employ Yang et al.’s method to store the password in our scheme.

3. Formal Security Proof

In this section, we use the BPR model [20] to formally prove the PAKE protocol in the random
oracle model (ideal hash model). The model can be reduced to breaking the security of the protocol and
treated as difficult as solving the underlying primitives. After analyzing the security of the PAKE protocol,
we can easily extend its result to the PPC protocol. Hence, we only give a complete analysis of the PAKE
protocol. In the following, we will treat users (holding passwords) as clients to simplify the protocol.

3.1. The Model

The model is principally used to formally: (1) define the characteristics of participating entities;
(2) define an adversary’s capabilities; and (3) describe the protocol. The details are described as follows.

Protocol Participants:

We fix a nonempty set of CLIENT and a specific SERVER in the PAKE protocol. Either a client or
a server may have many instances, called oracles, involved in distinct, concurrent executions of the
PAKE protocol. We denote an instance i of a client as ∏i

C and an instance j of a server as ∏
j
S.

Session Identity (SID) and Partner Identity (PID):

The session identity is used to uniquely name the ensuing session. SID(∏i
U) is the concatenation

of all flows with the oracle ∏i
U . PID(∏i

U) = U′, denoted as ∏i
U, is communication with an instance

of participant U′. For example, for the oracles ∏i
C and ∏

j
S, their own SID(∏i

C) and SID(∏
j
S) equals

〈id, Rc ⊕ H(id, pw)|S, Rs, H(K, Rc)|id, H(K, Rs)〉, PID(∏i
C) equals S, and PID(∏

j
S) equals id in the PAKE

protocol. The SID and PID are public, and an adversary can just listen in on the wire and construct it.

Accepting and Terminating:

There are two states, accept ACC(∏i
U) and terminate TERM(∏i

U), for an oracle ∏i
U . When an oracle

has enough information to compute the session key SK, the state of ACC(∏i
U) is set to true. An oracle

can accept at any time and it accepts at most once. When an oracle sends or receives the last message
of the protocol, receives an invalid message, or misses an expected message, the state of TERM(∏i

U) is
set to true. As soon as an oracle terminates, it will not send out any message.
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Oracle Queries (Adversary’s Capabilities):

An adversary has an endless supply of oracles and makes various queries to them. Each query
models a capability of the adversary. The more types of query, the more security requirements, such as
forward secrecy, known-key security, etc., that the protocol can satisfy. In the following, there are six
types of queries that adversary can make.

• Send(∏i
U, m): This query models an adversary sending a message m to the oracle ∏i

U, and the
oracle responds to what the protocol say to and updates SID, PID, and its states. The adversary
query of the form Send(∏i

U, “start”) initiates an execution of the protocol.

• Execute(∏i
C, ∏

j
S): This query models an adversary obtaining an honest execution of the protocol

between two oracles ∏i
C and ∏

j
S, and outputs a completed transcript corresponding to them.

• Reveal(∏i
U): This query models an adversary obtaining a session key SK with an unconditional

return by ∏i
U. The Reveal query will let us deal with known-key security. The Reveal query is

only available to an adversary if the state ACC(∏i
U) of ∏i

U is true.
• Corrupt(∏i

U): This query models an adversary obtaining a password pw with unconditional
return by ∏i

U. The Corrupt query will let us deal with forward secrecy.
• Hash(m): In the ideal hash model, an adversary gets hash results by making queries to a random

oracle. After receiving this query, the random oracle will check whether m has been queried. If so,
it returns the result previously generated by the adversary. Otherwise, it generates a random
number r, returns r to the adversary, and stores (m, r) in the Hash table, which is a record set used
to record all previous Hash queries.

• Test(∏i
U): This query models the semantic security of the session key SK. During an execution of

the protocol, the adversary can ask any of the above queries and ask a Test query once. Then ∏i
U

flips a coin b and returns SK if b = 1, or a random string if b = 0. The Test query is asked only
once and is only available if is fresh (see Section 4). This query only measures adversarial success.
It does not correspond to any actual adversarial ability.

Description of the PAKE Protocol:

In the following, we describe how to initialize the PAKE protocol and how instances behave when
an adversary makes queries.

Initialize(1l, 1k), where l and k are security parameters (l〈k).

(1) Select two prime numbers p with length |p| = k and q with length |q| = l. Let g be a generator
with order q in the Galois Field GF(p), which is based on the Diffie-Hellman scheme.

(2) Select a hash function H(·): {0, 1}∗ → {0, 1}k.
(3) Each client sets up an identity id and a password pw from a set D of the dictionary. Let n be the

number of passwords in D. The server stores Hpw = H(id, pw) in a verification table.
(4) Each oracle ∏i

U is set to:
ACC(∏i

U)← TERM(∏i
U)← f alse

and
SK(∏i

U)← SID(∏i
U)← PID(∏i

U)← null.

In the following, assume that a client ∏i
C and a server ∏

j
S execute the protocol. The processes of

the oracles are described as follows:

Execute(∏i
C, ∏

j
S)

(1) Send1(∏i
C, “start”);

c R← [1, q− 1];
Rc ← gc mod p;
msg− out1 ← 〈id|Rc ⊕ H(id, pw)〉;
return(msg− out1).
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(2) Send2(∏
j
S, m), where m 6= “start”;

(mS
1 , mS

2)← m;
Rc ← mS

2 ⊕ Hpw;

s R← [1, q− 1];
Rs ← gs mod p;
K← Rs

c mod p;
msg− out2 ← 〈S|Rs|H(K, Rc)〉;
SK(∏

j
S)← H(K); SID(∏

j
S)← 〈m|msg− out2〉;

PID(∏
j
S)← mS

1 ;

ACC(∏
j
S)← true;

TERM(∏
j
S)← f alse;

return(msg− out2).
(3) Send3(∏i

C, m), where m 6= “start”;
(mC

1 , mC
2 , mC

3 )← m;
Rs ← mC

2 ;
K← Rc

s mod p;
if m = H(K, Rc) then

msg− out3 ← 〈id|H(K, Rs)〉;
SK(∏i

C)← H(K);
SID(∏i

C)← 〈msg− out1|m|msg− out3〉;
PID(∏i

C)← mC
1 ;

ACC(∏i
C)← TERM(∏i

C)← true;
else

ACC(∏i
C)← f alse; TERM(∏i

C)← true;
return(msg− out3).

(4) Send4(∏
j
S, m), where m 6= “start”;

(mS
3 , mS

4)← m;
if mS

4 = H(K, Rs) then // access granted

SID(∏
j
S)← 〈SID(∏

j
S)|m〉;

ACC(∏
j
S)← TERM(∏

j
S)← true;

else // access denied
ACC(∏

j
S)← f alse; TERM(∏

j
S)← true;

return(null).

3.2. Definitions of Security

This section defines what constitutes breaking the PAKE and what the formal notions of security
of the underlying primitives are.

Partnering:

If two oracles ∏i
C and ∏

j
S accept and separately hold (SK(∏i

C), SID(∏i
C), PID(∏i

C)), and

(SK(∏
j
S), SID(∏

j
S), PID(∏

j
S)), and the following conditions hold, we say the two oracles are partnered.

• SK(∏i
C) = SK(∏

j
S),

SID(∏i
C) = SID(∏

j
S),

PID(∏i
C) = S and PID(∏

j
S) = id.

• id ∈ CLIENT and S is the SERVER.
• No oracle besides and accepts with a session key SK = SK(∏i

C) = SK(∏
j
S).
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These definitions are to ensure that two oracles have directly exchanged messages
(SID(∏i

C) = SID(∏
j
S)), established the common session key (SK(∏i

C) = SK(∏
j
S)), and have no other

partners besides each other (PID(∏i
C) = S and PID(∏

j
S) = id).

Freshness:

An oracle ∏i
U is identified as fresh if the following conditions hold.

• ∏i
U has accepted (ACC(∏i

U) = true).
• No oracle has been asked for a Corrupt query before ∏i

U accepts.
• Neither ∏i

U nor its partner has been asked for a Reveal query.

Assume that two oracles ∏i
C and ∏

j
S are partnered and establish a session key. The session key is

fresh if and only if both oracles are fresh.

Authenticated Key Exchange Security (AKE Security):

In an execution of the PAKE protocol, we say an adversary A wins (a game of breaking the
AKE security) if A asks a single Test query to a fresh oracle ∏i

U and correctly guesses the bit b,
which is selected by ∏i

U in the Test query. We denote the AKE advantage A has in attacking the PAKE
protocol as AdvAKE

PAKE(A); the advantage is taken over all bit tosses. The PAKE protocol is AKE-secure if
AdvAKE

PAKE(A) is negligible.

Mutual Authentication (MA):

In an execution of the PAKE protocol, we say an adversary A violates the mutual authentication
between the client and the server if some server or client accepts but has no partner oracle. We denote
the AKE advantage A has in attacking the PAKE protocol as AdvMA

PAKE(A). The PAKE protocol is
MA-secure if AdvMA

PAKE(A) is negligible.

Computational Diffie-Hellman (CDH) Assumption:

Let p and q be large prime numbers such that q|p−1. Let g be a generator with order q in theGF(p).
And let ĉ ∈ [1, q− 1] and ŝ ∈ [1, q− 1] be two random numbers. Assume that B is a CDH attacker whose
probability of giving a challenge ψ = (gĉ mod p, gŝ mod p) to output z = gĉ·ŝ mod p is ε. We denote this
success probability as SuccCDH

ϕ→z (B). The CDH problem is intractable if SuccCDH
ϕ→z (B) is negligible.

Adversary’s Resources:

The security is formulated as a function of the amount of resources an adversary A expends.
The resources are:

• t: the adversary A running time. By convention, this includes the amount of space it takes to
describe the adversary.

• qse, qex, qre, qco, qh: these count the number of Send, Execute, Reveal, Corrupt, and Hash
queries separately asked by the adversary A, i.e., the number of qse in the PAKE protocol is
qse = qse1 + qse2 + qse3 + qse4 (qse1, qse2, qse3, and qse4 are, respectively, the number of Send1, Send2,
Send3, and Send4 queries asked by A).

3.3. Security Proofs of the Password Authenticated Key Exchange and Protected Password Change Protocols

Theorem 1. Let A1 be an adversary attacking the AKE-security of the PAKE protocol within a time period t
after the number of Send queries qse and the number of Hash queries qh. Then we have:

AdvAKE
PAKE(t, qse, qh) ≤

qse

n
+ qh × qse × SuccCDH

ψ→z (t
′) +

qh

2k , (1)
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where t′ is the running time of a CDH attacker B.

Proof. We divide the process of proof in Theorem 1 into two parts as follows. (1) Password guessing
attack: show that the transcripts that the adversary gets are independent of the password in the
theoretical information sense; (2) Session key security: Let B play two roles with adversary A1 and the
CDH problem. With adversary A1, B plays the role of a simulator, who provides indistinguishability to
adversary A1 (A1 has no ability to distinguish the real protocol and B’s simulated protocol). With the
CDH problem, B plays the role of an attacker to solve the challenge of the CDH problem. When A1

distinguishes the real protocol and B’s simulated protocol that B is faced with the CDH problem.

3.3.1. Password Guessing Attack

Based on the random oracle model, for any query from Hash(m = (id, pw′)) for guessing the
password pw′, there exists a record {(id, pw′), r} in the Hash table. Because c ∈ [1, q− 1] is chosen
at random (implying that Rc is a random number), the adversary A1 observes that the message
〈id, Rc ⊕ H(id, pw)〉 is returned from the Send1 query, which is independent of r. On the other hand,
A1 can get all the transcripts by asking an Execute query. However, the transcripts that the adversary gets
are independent of the passwords. Therefore, the adversary gets no advantage for the off-line guessing
attack. The probability λ of the on-line password guessing attack is bounded by qse and n as follows:

λ ≤ qse

n
. (2)

The on-line guessing attack can be prevented by letting the server take the appropriate intervals
between trials.

3.3.2. Simulator/Computational Diffie-Hellman Attacker: B

To analyze the session key security, we assume that B has knowledge of the content of the
verification table. Assume that A1 can get an advantage ε in breaking the AKE security of the PAKE
protocol within time t, and B is given a challenge ψ = (gĉ mod p, gŝ mod p) to output z = gĉ·ŝ mod p
with probability within time t′. Initializing the PAKE protocol, B chooses a random number i from
[1, qse1] and sets a counter cnt to zero. After that, B starts running A1 and answers the queries made by
A1 as explained below.

1. When A1 makes a Send1 query, B increases the counter cnt by 1. If cnt 6= i, B answers according
to the PAKE protocol (return 〈id, Rc ⊕ H(id, pw)〉). If cnt = i, B answers by using the element
gĉ mod p from the challenge ψ (return 〈id, (gĉ mod p)⊕ H(id, pw)〉). When A1 makes a Send2

query, if the input is not equal to the message 〈id, (gĉ mod p)⊕ H(id, pw)〉, B answers according
to the PAKE protocol (return 〈S, Rs, H(K, Rc)〉). If the input is the flow corresponding to the
challenge ψ, B answers by using the element gŝ mod p from the challenge ψ (return 〈S, gŝ mod
p, random〉, where random is a random element with length k). Here, it is difficult for B to simulate
an indistinguishable answer without the ability to solve the challenge ψ.

2. When A1 makes a Reveal query, B checks whether the oracle has accepted and is fresh. If so,
B answers by using the session key SK. However, if the session key has to be constructed from
the challenge ψ, B halts and output fail.

3. When A1 makes a Corrupt or Execute query, B answers in a straightforward way.
4. When A1 makes a Hash(m) query, B checks whether m is in the Hash table. If so, B returns the

previous result. Otherwise, B returns a random number r from {0, 1}k and appends (m, r) to the
Hash table.

5. When A1 makes a single Test query, B answers in a straightforward way. If the session key has to
be constructed from the challenge ψ, B answers with a random string for the Test query on an oracle.
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Obviously,A1 cannot distinguish the real protocol and B’s simulated protocol unless the challenge
ψ is involved. The probability of B correctly guessing which session key A1 will use for the Test query
is the probability of cnt being equal to i (the probability that B has to output z). We denote it by A1.
Then we have:

α =
1

qse1
≥ 1

qse
. (3)

If it is assumed that A1 has broken the AKE security of the PAKE protocol (A1 outputs a bit
b′ after the Test query and wins), then at least one of the Hash queries must equal SK stored in the
Hash table. We denote β as the probability that B correctly chooses among the possible Hash queries.
Then we have:

β ≥ 1
qh

. (4)

From the above, the probability of B outputting z from the challenge ψ is the probability ε that A1

breaking the AKE security of the PAKE protocol multiplied by the probability α that B outputting z
multiplied by the probability β that B correctly choosing among the possible Hash queries:

SuccCDH
ψ→z (B) = ε× α× β ≥ ε× 1

qse
× 1

qh
. (5)

We can rewrite the above equation as:

ε ≤ SuccCDH
ψ→z (B)× qse × qh. (6)

From the above analysis, the advantage of A1 in attacking the PAKE protocol is the probability λ

that the on-line password guessing attack added to the probability ε of breaking the AKE security of
the PAKE protocol added to A1 making Hash queries with just the right session key by pure chance.
The concrete security of the PAKE protocol is as follows:

AdvAKE
PAKE(A1) = λ + ε + pure chance ≤ qse

n
+ qh × qse × SuccCDH

ψ→z (B) +
qh

2k . (7)

Theorem 2. Let A2 be an adversary attacking the MA-security of the PAKE protocol within a time period t
after the number of Send queries qse and the number of Hash queries qh. Then we have:

AdvMA
PAKE(t, qse, qh) ≤ AdvAKE

PAKE(t
′, qse, qh) +

qh

2k , (8)

where t′ is the running time of the adversary A1 attacking the AKE security of the PAKE protocol.

Proof. The probability is A1 breaking the AKE-security added to A2 making Hash queries with just
the right, mutually authenticated messages (H(K, Rc) or H(K, Rs)) by pure chance. Because we have
given Hash queries with just the right session key by pure chance in Theorem 1, it may just be one of the
right authenticated messages. The advantage of A2 attacking MA-secure is A1 attacking AKE-secure
added to A2 making Hash queries with just the right authenticated messages by pure chance (one
includes A1 making Hash queries with just the right session key):

AdvMA
PAKE(A2) ≤ AdvAKE

PAKE(A1) +
qh

2k =
qse

n
+ qh × qse × SuccCDH

ψ→z (B) +
qh

2k−1 . (9)

From Theorems 1 and 2, we can easily extend its result to the PPC protocol. The AKE-security
and MA-security are shown in Theorems 3 and 4, respectively.
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Theorem 3. LetA1 be an adversary attacking the AKE-security of the PPC protocol within a time period t after
qse interactions with the parties and q∗h Hash queries. Then we have:

AdvAKE
PPC (t, q∗se, q∗h) ≤

q∗se
n

+ q∗h × q∗se × SuccCDH
ψ→z (t

′) +
q∗h
2k , (10)

where t′ is the running time of a CDH attacker B.

Theorem 4. LetA2 be an adversary attacking the AKE-security of the PPC protocol within a time period t after
q∗se interactions with the parties and q∗h Hash queries. Then we have:

AdvMA
PAKE(t, q∗se, q∗h) ≤ AdvAKE

PAKE(t
′, q∗se, q∗h) +

q∗h
2k , (11)

where t′ is the running time of the adversary A1 attacking the AKE security of the PPC protocol.

q∗se and q∗h are separately the number of Send query and Hash query made by the adversary in
the PPC protocol.

4. Comparisons

In this section, we compare our scheme with Zhang et al.’s scheme [21], Ahmed et al.’s scheme [22],
Liu et al.’s scheme [23], Lee et al.’s scheme [9], Wei et al.’s scheme [24], and Yang et al.’s scheme [16],
which provide a password authentication protocol and a PPC protocol. In the Key Compromise
Impersonation attack [25], an attacker who is in possession of a client’s password installed at a victim,
can impersonate any server. In the proposed scheme, even if the attacker knows the client’s password,
he/she is unable to compute the H(K, Rc) in Step 2 of the proposed PAKE Protocol because the attacker
does not know the server’s privacy key. In 2016, Ahmed et al. proposed a dynamic ID-based user
authentication scheme for multi-server environment [22]. Their scheme is vulnerable to off-line identity
guessing and off-line password guessing with smart card stolen attacks [26]. In 2016, Wei et al. proposed
a smart card-based user authentication scheme [24]. Their scheme is vulnerable to password guessing
attack and denial of service attack [27]. In 2017, Liu et al. proposed a user password authentication
scheme with a smart card [23]. Their scheme is simple and efficient. However, their scheme is vulnerable
to the replaying attack [28].

From Table 1, it is obvious that only the security of our scheme is proven in the standard model.

Table 1. Comparisons among related schemes and our proposed scheme.

Title [21] [22] [23] [9] [24] [16] Our Scheme

Off-line guessing attack No Yes No No No Yes No
Stolen-verifier attack No Yes No No No No No
Replay attack No No Yes Yes No No No
DOS attack No No No Yes No Yes No
Key Compromise Impersonation Attack No No No No No No No
Mutual Authentication Yes Yes Yes No Yes Yes Yes
Session key establishment Yes Yes Yes No Yes No Yes
Forward Secrecy No No No - Yes - Yes
Provable security Yes No Yes No No No Yes
Known-password by Server Yes No No No No No No

5. Conclusions

In this paper, we have proposed a new scheme to resist the security flaws of the forgery server
attack and denial of service attack. The proposed scheme can successfully solve these security flaws
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with less computation and, in addition, establish the session key. The provable security is given
a thorough analysis in our scheme. In terms of security analysis, it is more convincing than heuristic
security. Although the proposed scheme used less calculation, it still needed the exponential operation.
In the future, researchers should develop a secure scheme without the use of exponential operation,
so that it can be applied to the Internet of Things devices.
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