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Abstract: There are many real-life problems that, because of the need to involve a wide domain of
knowledge, are beyond a single expert. This is especially true for complex problems. Therefore, it is
usually necessary to allocate more than one expert to a decision process. In such situations, we can
observe an increasing importance of uncertainty. In this paper, the Multi-Criteria Decision-Making
(MCDM) method called the Characteristic Objects Method (COMET) is extended to solve problems for
Multi-Criteria Group Decision-Making (MCGDM) in a hesitant fuzzy environment. It is a completely
new idea for solving problems of group decision-making under uncertainty. In this approach, we use
L-R-type Generalized Fuzzy Numbers (GFNs) to get the degree of hesitancy for an alternative under
a certain criterion. Therefore, the classical COMET method was adapted to work with GFNs in group
decision-making problems. The proposed extension is presented in detail, along with the necessary
background information. Finally, an illustrative numerical example is provided to elaborate the
proposed method with respect to the support of a decision process. The presented extension of the
COMET method, as opposed to others’ group decision-making methods, is completely free of the
rank reversal phenomenon, which is identified as one of the most important MCDM challenges.

Keywords: hesitant fuzzy sets; L-R-type generalized fuzzy numbers; Multi-Criteria Group
Decision-Making (MCGDM); Characteristic Objects Method (COMET)

1. Introduction

For human activities and their problems, the Multi-Criteria Group Decision-Making (MCGDM)
is an important tool [1,2]. In complex real-world conditions, it is not possible for a single Decision-Maker
(DM) to recognize all of the relevant aspects of a decision-making problem [3]. Thus, the decision-making
procedure requires considering many DMs or experts from different fields. In many group decision-making
problems, a group is established by various DMs from different fields, including work experience,
education backgrounds and knowledge structure [4]. It could be implemented to select the most
suitable alternative from a given set of decision variants or their subset [5,6]. The essential prerequisite
of the MCGDM is the combination of experts’ preferences and judgments about the candidate
alternatives versus the conflicting criteria [7], which is a popular trend of present research to develop
new group MCDM methods [8–11].

In the decision-making, the problems of uncertainty and hesitancy usually turn out to be
unavoidable. To express the DMs’ evaluation information more objectively, several tools have been
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developed, such as fuzzy set [1,12], interval-valued fuzzy set [13,14], linguistic fuzzy set [15–17], which
allow one to present an element’s membership function as a set denoted by a fuzzy number, an interval
fuzzy number, a linguistic variable and a fuzzy set, respectively. Intuitionistic fuzzy set [18] and fuzzy
multiset [19,20] are another two generalizations of the fuzzy set. Whilst the former contains three
types of information (the membership, the non-membership and the hesitancy), the latter permits the
elements to repeat more than once.

In many practical problems, sometimes, it is difficult to define the membership grade of an element,
because of a set of possible membership values [21]. This issue is very important in MCGDM problems,
when the DMs do not support the same membership grade for an element [22,23]. In this case,
the difficulty of establishing a common membership grade is caused not by the margin of error
(as happens in Intuitionistic Fuzzy Set (IFS)) or some possible distribution values (as happens in Type-2
Fuzzy Sets), but by the fact that several membership values are possible [10]. To deal with these
cases, the Hesitant Fuzzy Set (HFS) was introduced [24] as a new generalization of fuzzy sets. Many
MCDM methods have been extended by using the HFS theory, e.g., the ELECTRE family methods
[25], Viekriterijumsko Kompromisno Rangiranje (VIKOR) [26] or prospect theory [27]. There was also
established a number of new methods [13,28–30] or aggregation operators [31,32], which are based
on the HFS concept. Presently, group decision-making problems are solved for hesitant fuzzy sets
and with aggregation operators in [33–36]. Interval-valued hesitant fuzzy sets have been used in
the applications of group decision-making in [28,37–40]. MCGDM with hesitant two-tuple linguistic
information and by using trapezoidal valued HFSs is discussed in [41,42]. Yu [43] gave the concept of
triangular hesitant fuzzy sets and used it for the solution of decision-making problems. Unfortunately,
all of the mentioned group decision-making methods are susceptible to the occurrence of the rank
reversal phenomenon paradox, which lies at the heart of the main MCDM challenges.

The Characteristic Objects Method (COMET) is a useful technique in dealing with Multi-Criteria
Decision-Making (MCDM) problems [44–48]. It helps a DM to organize the structure of the
problems to be solved and carry out the analysis, comparisons and ranking of the alternatives,
where the complexity of the algorithm is completely independent of the alternatives’ number [49,50].
Additionally, comparisons between the Characteristic Objects (COs) are easier than comparisons
between alternatives. However, the most important merit of the COMET method is the fact that
this method is completely free of the rank reversals phenomenon [51] because the final ranking is
constructed based on COs and fuzzy rules.

In this study, we extend the COMET concept to develop a methodology for solving multi-criteria
group decision-making problems under uncertainty. The proposed method allows a group of DMs to
make their opinion independent of linguistic terms by using HFS. The proposed method is designed
for modeling uncertainty from different sources, which are related to expert knowledge. The main
motivation of this research is the fact that the presented extension is also completely free of the rank
reversals paradox as the classical version.

The group version of the HFS COMET method can be used in various research fields and disciplines
such as economics [29,30,32], resource management [51], production [52], transport [53], game theory
(Nash equilibrium) [54–63], medical problems [48,64], sustainability manufacturing [65] or web systems
[66]; especially in decision situations requiring the involvement of many experts [67].

The rest of this paper is organized as follows. In Section 2, we introduced some basic concepts
related to the hesitant fuzzy sets, L-R-type Generalized Fuzzy Numbers (GFNs), the fuzzy rule, the
rule base and the t-norm. In Section 3, we established a group decision-making method based on
COMET to deal with the uncertainty environment. In Section 4, an illustrative example is given to
demonstrate the practicality and effectiveness of the proposed approach. Finally, we conclude the
paper and give some remarks in Section 5.
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2. Preliminaries

The HFS [24], as a generalization of the fuzzy set, maps the membership degree of an element
to a set presented as several possible values between zero and one, which can better describe the
situations where people have hesitancy in providing their preferences over objects in the process of
decision-making.

In this section, we recall some important concepts that are necessary to understand our proposed
decision-making method.

Definition 1. A hesitant fuzzy set A on X is a function hA that when applied to X returns a finite subset of
[0, 1], which can be represented as the following mathematical symbol [24]:

A = {(x, hA(x))|x ∈ X},

where hA(x) is a set of some values in [0, 1], denoting the possible membership degrees of the element x ∈ X to
the set A. For convenience, Xia and Xu [68] named hA(x) a Hesitant Fuzzy Element (HFE).

Definition 2. For an HFS represented by its membership function h, we define its complement as follows [24]:

hc(x) =
⋃

γ∈h(x)

{1− γ}.

Definition 3. In reference [68], for an HFE h, Sc(h) = 1
lh ∑γ∈h γ, is called the score function of h, where lh is

the number of elements in h and Sc(h) ∈ [0, 1]. For two HFEs h1 and h2, if Sc(h1) > Sc(h2), then h2 ≺ h1,
if TODOSc(h1) = Sc(h2), then h1 ≈ h2.

Xia and Xu [68] define some operations on the HFEs (h, h1 and h2) and the scalar number k :

1. kh =
⋃

γ∈h

{1− (1− γ)k};

2. h1 ⊕ h2 =
⋃

γ1∈h1,γ2∈h2

{γ1 + γ2 − γ1γ2};

3. h1 ⊗ h2 =
⋃

γ1∈h1,γ2∈h2

{γ1γ2}.

Definition 4. Let L and R both be decreasing, shape functions from <+ = [0, ∞) to [0, 1] with L(0) =

ω; L(x) < ω for all x < 1; L(1) = 0 or (L(x) > 0 for all x and L(+∞) = 0) (and the same for R). A GFN is
called the L-Rtype if there are real numbers m, α > 0, β > 0 and ω (0 ≤ ω ≤ 1) with [69]:

µÃ(x) =

{
ωL(m−x

α ), x ≤ m
ωR( x−m

β ), x ≥ m

where m is called the mean value of Ã and α and β are called the left and right spreads, respectively. The L-R-type
GFN Ã is symbolically denoted by Ã = (m, α, β; ω)LR. If ω = 1, then Ã is called the L-R-type fuzzy number
and simply denoted by Ã = (m, α, β)LR.

For an L-R-type GFN Ã = (m, α, β; ω)LR, if L and R are of the form:

T(x) =

{
1− x, 0 ≤ x ≤ 1
0, otherwise

Then, Ã is called a generalized triangular fuzzy number denoted by Ã = (m, α, β; ω)T . Similarly, for
ω = 1, Ã is simply called a triangular fuzzy number denoted by Ã = (m, α, β)T .
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A fuzzy number Ã is called an L-R-type generalized trapezoidal fuzzy number if there are real numbers
m1, m2, α > 0 and β > 0 with the following membership function:

µÃ(x) =


ωL(m1−x

α ), x ≤ m1

ω, m1 ≤ x ≤ m2

ωR( x−m2
β ), x ≥ m2

where m1 and m2 are called the mean values of Ã and α, β are called the left and right
spreads, respectively. Symbolically, Ã is denoted by (m1, m2, α, β; ω)LR. The L-R-type generalized
trapezoidal fuzzy number Ã = (m1, m2, α, β; ω)LR divides into three parts: left part, middle part
and right part. The left, middle and right parts include the intervals [m1 − α, m1], [m1, m2] and
[m2, m2 + β], respectively.

If we take L and R to be of the form as mentioned in Equation (4), then Ã is called the generalized trapezoidal
fuzzy number denoted by (m1, m2, α, β; ω)T . A generalized trapezoidal fuzzy number Ã(m1, m2, α, β; ω)T is
simply called a trapezoidal fuzzy number denoted by Ã(m1, m2, α, β)T when ω = 1.

We know that the L-R-type fuzzy numbers are used to present real numbers in a fuzzy environment,
and trapezoidal fuzzy numbers are used to present fuzzy intervals that are widely applied in linguistics,
knowledge representation, control systems, database, and so forth [21,70–72]. Similarly, the L-R-type GFNs
are very general and allow one to represent the different types of information. For example, the L-R-type GFN
B̃ = (m, m, 0, 0; ω)LR with m ∈ < = (−∞, ∞) is used to denote a real number B̃, and the L-R-type GFN
C̃ = (m1, m2, 0, 0; ω)LR with m1, m2 ∈ < and m1 < m2 is used to denote an interval C̃.

Definition 5. For a triangular fuzzy number Ã, we define:

1. The support of Ã is S(Ã) = {x : µÃ(x) > 0} .
2. The core of Ã is C(Ã) = {x : µÃ(x) = 1} .

Definition 6. The fuzzy rule [73,74]:
The single fuzzy rule can be based on the modus ponens tautology [73,74]. The reasoning process uses

logical connectives IF-THEN, OR and AND.

Definition 7. The rule base [75]:
The rule base consists of logical rules determining causal relationships existing in the system between the

fuzzy sets of its inputs and outputs [75].

Definition 8. In reference [76], a triangular norm (t-norm) is a binary operation T : [0, 1]× [0, 1] → [0, 1]
satisfying ∀x, y, z ∈ [0, 1] :

1. T(x, y) = T(y, x) (commutativity),
2. T(x, y) ≤ T(x, z), if y ≤ z (monotonicity),
3. T(x, T(y, z)) = T(T(x, y), z) (associativity),
4. T(x, 1) = x (neutrality of one).

Throughout this paper, only the product is used as a t-norm operator, i.e.,
P(µα1(x), µα2(y)) = µα1(x).µα2(y).

3. COMET for MCGDM Using HFS

Consider an MCGDM problem in which the ratings of the alternative evaluations are expressed
as HFSs. The solution procedure for the proposed MCGDM approach is described below.

Let Aj (j = 1, 2, ..., m) be the set of alternatives and suppose a group of DMs D = {d1, d2, ..., dk} is
asked to evaluate the given alternatives with respect to several criteria Ci (i = 1, 2, ..., n). The ranking
algorithm of the COMET has the following five steps:
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Step 1: Define the space of the problem as follows:
Let F be the collection of all L-R-type GFNs and F1δ

i , F2δ
i , ..., Fqδ

i be different families of subsets of
F selected by a DM dδ (δ = 1, 2, ..., k) for each criterion Ci (i = 1, 2, ..., n) where

F1δ
i = {F1δ

i1 , F1δ
i2 , ..., F1δ

ici
};

F2δ
i = {F2δ

i1 , F2δ
i2 , ..., F2δ

ici
};

...
Fqδ

i = {Fqδ
i1 , Fqδ

i2 , ..., Fqδ
ici
}.

In this way, the following result is obtained:
C1 =

{
Fbδ

11 , Fbδ
12 , ..., Fbδ

1c1

}
;

C2 =
{

Fbδ
21 , Fbδ

22 , ..., Fbδ
2c2

}
;

...
Cn =

{
Fbδ

n1 , Fbδ
n2 , ..., Fbδ

ncn

}
;

where 1 ≤ b ≤ q and c1, c2, ..., cn are the numbers of fuzzy numbers in each family Fbδ
i (1 ≤ b ≤ q, 1 ≤

i ≤ n) for all criteria.
Initially, suppose each alternative is assessed by all DMs by means of n criteria in the form of a

single family of TFNs Ft
i (1 ≤ i ≤ n) with their fuzzy semantics as shown in Figures 1–6. Suppose

each DM further provides the hesitant information of an alternative for each criterion in the form of
L-R-type GFNs. Note that, in this method, the observations already provided by all of the DMs for
each criterion in the form of the single family of TFNs set Ft

i (1 ≤ i ≤ n) is a necessary part of all of
the family of the remaining L-R-type GFNs set during the computation. The core of each criterion is
defined as the core of each Ft

i (1 ≤ i ≤ n), i.e.,

C(C1) =
{

C(Ft
11), C(Ft

12), ..., C(Ft
1c1

)
}

;

C(C2) =
{

C(Ft
21), C(Ft

22), ..., C(Ft
2c2

)
}

;
...
C(Cn) =

{
C(Ft

n1), C(Ft
n2), ..., C(Ft

ncn)
}

.

Step 2: Generate the characteristic objects:
By using the Cartesian product of all TFNs cores, the COs can be obtained as follows:
CO = C(C1)×C(C2)× ...×C(Cn)

As the result of this, the ordered set of all COs is obtained:
CO1 =

{
C(Ft

11), C(Ft
21), ..., C(Ft

n1)
}

;
CO2 =

{
C(Ft

11), C(Ft
21), ..., C(Ft

n2)
}

;
...
COs =

{
C(Ft

1c1
), C(Ft

2c2
), ..., C(Ft

ncn)
}

;

where s =
n
∏
i=1

ci is a number of COs.

Step 3: Rank and evaluate the characteristic objects:
A comparison of COs is obtained by adding the opinion of DMs. After this, determine the Matrix

of Expert Judgment (MEJ) as follows:

MEJ=


h̃11 h̃12 · · · h̃1s
h̃21 h̃22 · · · h̃2s

...
...

. . .
...

h̃s1 h̃s2 · · · h̃ss


where h̃αβ = {h̃ω

αβ, ω = 1, 2, ..., lh̃αβ
} is the HFE containing preferences of all DMs and is obtained as a

result of comparing COα and COβ. The more preferred CO obtains a stronger preference degree, and
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the second object obtains a weaker one. If the preferences are balanced, then both objects obtain a
preference degree denoted by HFE h̃ f = {0.5}. The selection of h̃αβ depends solely on the knowledge
and opinion of the experts. Mathematically, h̃αβ should satisfy the following conditions:

1. h̃σ(ω)
αβ + h̃

σ(lh̃αβ
−ω+1)

βα = 1, α, β = l, 2, ..., s;
2. h̃αα = {0.5}, α = l, 2, ..., s;
3. lh̃αβ

= lh̃βα
, α, β = l, 2, ..., s.

where the values in h̃αβ are assumed to be arranged in increasing order for convenience, and let

h̃σ(ω)
αβ (ω = 1, 2, ..., lh̃αβ

) denote the ωth smallest value in h̃αβ and lh̃αβ
the number of the values in h̃αβ.

The last equation indicates that the sum of the ωth smallest value in h̃αβ and the ωth largest value
in h̃βα should be equivalent to one, which is the complement condition as introduced by Torra in [24]
(see Definition 2). In other words, if h̃αβ = {h̃ω

αβ, ω = 1, 2, ..., lh̃αβ
} is known, then we can obtain h̃βα,

which is given by h̃βα = {1− h̃ω
αβ, ω = 1, 2, ..., lh̃αβ

}. The second equation indicates that the diagonal

elements in MEJ should be equivalent to {0.5}, which implies the balanced preference degrees of COα

and COβ. The third equation indicates that the number of elements in h̃αβ and h̃βα should be the same.
Suppose H̃α = ⊕s

β=1h̃αβ, where each H̃α is an HFE. Afterward, we get a vertical vector SJ of the

summed judgments where SJα = Sc(H̃α) =
1

lH̃α
∑γ∈H̃α

γ (see Definition 3). To assign the approximate

value of preference to each CO, we use the same MATLAB code as used by Salabun in [45]. As a
result, we get a vertical vector P, where the α-th component of P represents the approximate value of
preference for COα.

Step 4: The rule base:
Each CO and value of preference is converted to a fuzzy rule as follows:
IF COα THEN Pα

IF C(Ft
1α) AND C(Ft

2α) AND ... THEN Pα

In this way, the complete fuzzy rule base is obtained, which can be presented as follows:
IF CO1 THEN P1

IF CO2 THEN P2
...
IF COs THEN Ps

Step 5: Inference in a fuzzy model and final ranking:
Each alternative activates the specified number of fuzzy rules, where for each one, the fulfillment

degree of the conjunctive complex premise is determined. The fulfillment degrees of each activated
rule corresponding to each element of Fb

i (1 ≤ b ≤ q, 1 ≤ i ≤ n) always sum to one. Each alternative is
a set of crisp numbers, corresponding to criteria C1, C2, ..., Cn. It can be presented as follows:

Aj =
{

a1j, a2j, ..., anj
}

, where the following conditions must be satisfied:
a1j ∈ [C(Ft

11), C(Ft
1c1

)];
a2j ∈ [C(Ft

21), C(Ft
2c2

)];
...
anj ∈ [C(Ft

n1), C(Ft
ncn)].

To infer the final ranking of the alternatives corresponding to each criterion, we proceed as follows:
For each j = 1, 2, ..., m,

a1j ∈ [C(Ft
1k1

), C(Ft
1(k1+1))];

a2j ∈ [C(Ft
2k2

), C(Ft
2(k2+1))];

...
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anj ∈ [C(Ft
nkn

), C(Ft
n(kn+1))];

where ki = 1, 2, ..., (ci − 1), (1 ≤ i ≤ n). The activated rules (COs), i.e., the group of those COs where
the membership function of each alternative Aj (1 ≤ j ≤ m) is non-zero, are:(

C(Ft
1k1

), C(Ft
2k2

), ..., C(Ft
nkn

)
)

;(
C(Ft

1k1
), C(Ft

2k2
), ..., C(Ft

n(kn+1))
)

;
...(

C(Ft
1(k1+1)), C(Ft

2(k2+1)), ..., C(Ft
n(kn+1))

)
.

The number of COs are obviously 2n and 1 ≤ 2n ≤ s.
Let p1, p2, ..., p2n be the approximate values of the preference of the activated rules (COs), which

were already calculated in Step 3, where pη’s (1 ≤ η ≤ 2n) are some values in Pα’s (1 ≤ α ≤ s). We
denote the HFE at the point x ∈ Aj (1 ≤ j ≤ m) provided by a DM dδ (δ = 1, 2, ..., k) as:

hδ
ij(x) = {F1δ

ij (x), F2δ
ij (x), ..., Fqδ

ij (x)}

for each criterion Ci (i = 1, 2, .., n).
To aggregate the information in the form of HFEs from every DM, in order to achieve a single HFE,

which summarizes all of the information provided by the different DMs, there are several aggregation
operators that are available in the literature. However, in this paper, we simply use the average
operator to get the average of the membership values obtained from LR-type GFNs provided by the
DMs in the form of HFE corresponding to each aij ∈ Aj (1 ≤ i ≤ n, 1 ≤ j ≤ m). Suppose hij(x) is an
HFE obtained as a result of aggregating the HFEs hδ

ij(x), (δ = 1, 2, ..., k) where:

hij(x) = {F1
ij(x), F2

ij(x), ..., Fq
ij(x)}

Let Aj be HFE, which is computed as the sum of the products of all activated rules, as their
fulfillment degrees and their values of the preference, i.e.,

Aj = p1
(
h1k1(a1j)⊗ h2k2(a2j)⊗ . . . hnkn(anj)

)
⊕ p2

(
h1k1(a1j)⊗ h2k2(a2j)⊗ . . . hn(kn+1)(anj)

)
⊕ . . . p2n

(
h1(k1+1)(a1j)⊗ h2(k2+1)(a2j)⊗ . . . hn(kn+1)(anj)

)
The preference of each alternative Aj (1 ≤ j ≤ m) can be found by finding the score of the

corresponding HFE Aj (1 ≤ j ≤ m) as follows:

Sc(Aj) =
1

lAj
∑

y∈Aj

y

The final ranking of alternatives is obtained by sorting the preference of alternatives. The greater
the preference value, the better the alternative Aj (1 ≤ j ≤ m).

As the summary of this section, Figure 1 presents the stepwise procedure of the proposed extension
of the COMET method. After initiating the decision process, the procedure starts by modeling the
structure of a considered decision problem. At this point, each expert determine generalized fuzzy
numbers for each criterion. This is followed by generating characteristic objects in Step 2, evaluating
the preferences of the characteristic objects in Step 3 and generating the fuzzy rule base in Step 4. The
procedure ends by computing the assessment for each alternative from the considered set. The set of
alternatives can be ranked according to the descending order of the computed assessments.
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Figure 1. The procedure of the proposed extension of COMET to group decision-making.

4. An Illustrative Example

In this section, an example is given to understand our approach. We used the method proposed
in Section 3 to get the most desirable alternative, as well as to rank the alternatives from the best to the
worst or vice versa.

Let us consider a factory, whose maximum capacity of using mobile units is a total of 1000 per
month, which intends to select a new mobile company. Four companies A1, A2, A3 and A4 are available,
and three DMs are asked to consider two criteria C1 (fixed line rent) and C2 (rates per unit) to decide
which mobile company to choose. The fixed line rent, rates per unit and the original ranking order of
the feasible mobile companies are shown in Table 1.
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Table 1. Original ranking of the alternatives, where LR - fixed line rent and R/U - rates per unit.

Alternatives C1 (LR) C2 (R/U) Bill Amount Original Rank

A1 150 1500 1650 2
A2 50 2000 2050 3
A3 250 1250 1500 1
A4 30 2150 2180 4

A set of TFNs and trapezoidal fuzzy numbers for both criteria C1 and C2 set by three DMs are
shown in Tables 2 and 3. The average of the membership values obtained from LR-type GFNs for both
the criteria are shown in Table 4.

Table 2. LR-type Group Fuzzy Numbers (GFNs) selected by the Decision-Makers (DMs) for criteria C1.

DM1 {(30, 30, 200), (30, 200, 300), (200, 300, 300)}
{(30, 30, 30, 170), (30, 170, 220, 300), (220, 300, 300, 300)}

DM2 {(30, 30, 200), (30, 200, 300), (200, 300, 300)}
{(30, 30, 30, 180), (30, 180, 230, 300), (230, 300, 300, 300)}

DM3 {(30, 30, 200), (30, 200, 300), (200, 300, 300)}
{(30, 30, 30, 160), (30, 160, 215, 300), (215, 300, 300, 300)}

Table 3. LR-type GFNs selected by the DMs for criteria C2.

DM1 {(1200, 1200, 1800), (1200, 1800, 2500), (1800, 2500, 2500)}
{(1200, 1200, 1200, 1600), (1200, 1600, 1900, 2500), (1900, 2500, 2500, 2500)}

DM2 {(1200, 1200, 1800), (1200, 1800, 2500), (1800, 2500, 2500)}
{(1200, 1200, 1200, 1700), (1200, 1700, 1900, 2500), (1900, 2500, 2500, 2500)}

DM3 {(1200, 1200, 1800), (1200, 1800, 2500), (1800, 2500, 2500)}
{(1200, 1200, 1200, 1650), (1200, 1650, 1950, 2500), (1950, 2500, 2500, 2500)}

Table 4. Average of the membership values obtained from LR-type GFNs for criteria C1.

Average of the Membership Values Obtained from LR-Type GFNs for Criterion C2

30 50 150 250
(1, 0, 0) (0.8824, 0.1176, 0) (0.2941, 0.7059, 0) (0, 0.5000, 0.5000)
(1, 0, 0) (0.8567, 0.1433, 0) (0.8567, 0.1433, 0) (0, 0.6425, 0.3575)

1250 1500 2000 2150
(0.9167, 0.0833, 0) (0.5000, 0.5000, 0) (0, 0.7143, 0.2857) (0, 0.5000, 0.5000)
(0.8880, 0.1120, 0) (0.3278, 0.6722, 0) (0, 0.8586, 0.1414) (0, 0.6010, 0.3990)

The graphical representation of L-R-type GFNs selected by the DMs for both the criteria C1 and
C2 are shown in Figures 2–7, respectively.
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Figure 2. Graphical representation of LR-type GFNs selected by DM1 for the criterion C1.
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Figure 3. Graphical representation of LR-type GFNs selected by DM1 for the criterion C2.
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Figure 4. Graphical representation of LR-type GFNs selected by DM2 for the criterion C1.
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Figure 5. Graphical representation of LR-type GFNs selected by DM2 for the criterion C2.
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Figure 6. Graphical representation of LR-type GFNs selected by DM3 for the criterion C1.
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Figure 7. Graphical representation of LR-type GFNs selected by DM3 for the criterion C2.
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The cores of the family of TFNs for both the criteria C1 and C2 are respectively {30, 200, 300} and
{1200, 1800, 2500}. The solution of the COMET is obtained for different number of COs. The simplest
solution involves the use of nine COs, which are presented as follows:

CO1 = {30, 1200}, CO2 = {30, 1800}, CO3 = {30, 2500}
CO4 = {200, 1200}, CO5 = {200, 1800}, CO6 = {200, 2500}
CO7 = {300, 1200}, CO8 = {300, 1800}, CO9 = {300, 2500}

To rank and evaluate the COs, suppose the three DMs give their assessments by providing the
HFEs as shown in Tables 5 and 6, and therefore, the Matrix of Expert Judgment (MEJ) is as follows:

Table 5. Matrix of Expert Judgment (MEJ).

CO1 CO2 CO3 CO4 CO5

CO1 {0.5} {0.8, 1} {0.8, 0.9} {0.7, 0.8} {0.8, 0.9, 1}
CO2 {0, 0.2} {0.5} {0.8, 1} {0, 0.1, 0.2} {0.9, 1}
CO3 {0.1, 0.2} {0, 0.2} {0.5} {0, 0.2, 0.3} {0.1, 0.2}
CO4 {0.2, 0.3} {0.8, 0.9, 1} {0.7, 0.8, 1} {0.5} {0.8, 0.9, 1}
CO5 {0, 0.1, 0.2} {0, 0.1} {0.8, 0.9} {0, 0.1, 0.2} {0.5}
CO6 {0, 0.2} {0, 0.2} {0, 0.1} {0, 0.2} {0, 0.1, 0.2}
CO7 {0, 0.2} {0.8, 1} {0, 0.8} {0, 0.2} {0.8, 0.9, 1}
CO8 {0, 0.1, 0.2} {0.1, 0.2} {0.7, 0.8, 1} {0.1, 0.2} {0, 0.1, 0.2}
CO9 {0, 0.2} {0, 0.1} {0.2, 0.3} {0, 0.1, 0.2} {0, 0.2}

Table 6. Matrix of Expert Judgment (MEJ).

CO6 CO7 CO8 CO9 SJ

CO1 {0.8, 1} {0.8, 1} {0.8, 0.9, 1} {0.8, 1} 0.999999
CO2 {0.8, 1} {0, 0.2} {0.8, 0.9} {0.9, 1} 0.999980
CO3 {0.9, 1} {0, 0.2} {0, 0.2, 0.3} {0.7, 0.8} 0.995033
CO4 {0.8, 1} {0.8, 1} {0.8, 0.9} {0.8, 0.9, 1} 0.999998
CO5 {0.8, 0.9, 1} {0, 0.1, 0.2} {0.8, 0.9, 1} {0.8, 1} 0.999751
CO6 {0.5} {0, 0.1, 0.2} {0.2, 0.3} {0.8, 0.9, 1} 0.968745
CO7 {0.8, 0.9, 1} {0.5} {0.8, 1} {0.8, 0.9} 0.999970
CO8 {0.7, 0.8} {0, 0.2} {0.5} {0.7, 0.8, 0.9} 0.996636
CO9 {0, 0.1, 0.2} {0.1, 0.2} {0.1, 0.2, 0.3} {0.5} 0.841614

The vector SJ on the basis of MEJ is obtained as follows:

SJ = [0.999999, 0.999980, 0.995033, 0.999998, 0.999751, 0.968745, 0.999970,

0.996636, 0.841614]T

A vertical vector P is obtained by using a MATLAB code (see [45]) as follows:

P = [1.0000, 0.7500, 0.2500, 0.8750, 0.5000, 0.1250, 0.6250, 0.3750, 0]T

Each component of the vector P represents the approximate values of the preference for the
generated COs. Each CO and the value of preference pi is converted to a fuzzy rule, as follows:
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IF LR ∼ 30 AND R/U ∼ 1200 THEN P1 ∼ 1.0000
IF LR ∼ 30 AND R/U ∼ 1800 THEN P2 ∼ 0.7500
IF LR ∼ 30 AND R/U ∼ 2500 THEN P3 ∼ 0.2500
IF LR ∼ 200 AND R/U ∼ 1200 THEN P4 ∼ 0.8750
IF LR ∼ 200 AND R/U ∼ 1800 THEN P5 ∼ 0.5000
IF LR ∼ 200 AND R/U ∼ 2500 THEN P6 ∼ 0.1250
IF LR ∼ 300 AND R/U ∼ 1200 THEN P7 ∼ 0.6250
IF LR ∼ 300 AND R/U ∼ 1800 THEN P8 ∼ 0.3750
IF LR ∼ 300 AND R/U ∼ 2500 THEN P9 ∼ 0.0000

With respect to Model 4, for the alternative A1 = {150, 1500}, we have nine rules (COs), but the
activated rules are CO1, CO2, CO4, CO5. The approximate values of the preference of corresponding
COs are p1 ∼ 1, p2 ∼ 0.7500, p3 ∼ 0.8750, p4 ∼ 0.5000. The HFE A1 and the preference value of the
corresponding alternative A1 are computed respectively as follows:

A1 = p1 h11(150)⊗ h21(1500)⊕ p2 h11(150)⊗ h22(1500)⊕ p3h12(150)⊗ h21(1500)⊕
p4h12(150)⊗ h22(1500)

Sc(A1) =
1

lA1
∑y∈A1

y = 0.5725

Similarly, we can find the preference values for the rest of the alternatives and their ranking,
which are shown in Table 7.

Table 7. Comparison of the original ranking with the ranking obtained using the proposed method.

Alternatives C1 (LR) C2 (R/U) Original Ranking Preference Values New Ranking

A1 150 1500 2 0.5725 3
A2 50 2000 3 0.6236 2
A3 250 1250 1 0.6272 1
A4 30 2150 4 0.5281 4

The best choice is the alternative A3 followed by A2, A1 and A4. The worst choice is the alternative
A4. The extrema elements are consistent with the original ranking. However, the ranking obtained by
the COMET method is not perfect. The main reason is that this problem was solved under an uncertain
environment by a group of decision-makers. In other words, it is extremely difficult to make a reliable
decision using uncertain data, but we believe that it is possible. This example also illustrates how hard
it is to make a group decision under uncertainty. Notwithstanding, the COMET method shows the
best and the worst decision.

The main contribution of the proposed approach can be expressed by the most important
properties of this extension, i.e., the proposed approach is completely free of the rank reversal
phenomenon and obtains not only a discrete value of priority, but the mathematical function, which
can be used to calculate the priority for all alternatives from the space of the problem. Quantitative
expression of efficiency is a very difficult task because a large number of assumptions is needed.
Additionally, the reference ranking of the alternatives set is needed in this task, but the reference rank
is almost always unknown. However, the problem of quantitative effectiveness assessment is a very
important and interesting direction for further research.

5. Conclusions

The hesitant fuzzy sets theory is a useful tool to deal with uncertainty in multi-criteria group
decision-making problems. Various sources of uncertainty can be a challenge to make a reliable decision.
The paper presented the extension of the COMET method, which was proposed for solving real-life
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problems under the opinions of experts in a hesitant fuzzy environment. Therefore, the proposed
approach successfully helps to deal with group decision-making under uncertainty. The basic concept
of the proposed method is based on the distance of alternatives from the nearest characteristic objects
and their values of preference. The characteristic objects are obtained from the crisp values of all of the
considered fuzzy numbers for each criterion. The proposed method is different from all of the previous
techniques for MCGDM due to the fact that it uses hesitant fuzzy sets theory and the modification
of the COMET method. The prominent feature of the proposed method is that it could provide a
useful and flexible way to efficiently facilitate DMs under a hesitant fuzzy environment. The related
calculations are simple and have a low computational complexity. Hence, it enriched and developed
the theories and methods of MCGDM problems and also provided a new idea for solving MCGDM
problems. Finally, a practical example was given to verify the developed approach and to demonstrate
its practicality and effectiveness.

During the research, some possible areas of improvement of the proposed approach were
identified. From a formal way, the COMET method can be extended over intuitionistic fuzzy sets,
hesitant intuitionistic fuzzy sets, hesitant intuitionistic fuzzy linguistic term sets or other uncertain
forms. Additionally, analysis and improvement of the accuracy of the presented extension of the
COMET method should be performed. The future works may cover the practical usage of the proposed
approach in the different decision-making domains.
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49. Faizi, S.; Rashid, T.; Sałabun, W.; Zafar, S.; Wątróbski, J. Decision Making with Uncertainty Using Hesitant
Fuzzy Sets. Int. J. Fuzzy Syst. 2017, 1–11, doi:10.1007/s40815-017-0313-2.

50. Piegat, A.; Sałabun, W. Identification of a multicriteria decision-making model using the characteristic objects
method. Appl. Comput. Intell. Soft Comput. 2014, 2014, 1–14.
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52. Wątróbski, J.; Jankowski, J. Guideline for MCDA method selection in production management area. In New
Frontiers in Information and Production Systems Modelling and Analysis; Springer: Berlin, Germany, 2016,
pp. 119–138.

53. Sałabun, W.; Ziemba, P. Application of the Characteristic Objects Method in Supply Chain Management and
Logistics. In Recent Developments in Intelligent Information and Database Systems; Springer: Berlin, Germany,
2016; pp. 445–453.

54. Bector, C.R.; Chandra, S. Fuzzy mathematical programming and fuzzy matrix games; Springer: Berlin, Germany,
2005; Volume 169.

55. Chakeri, A.; Dariani, A.N.; Lucas, C. How can fuzzy logic determine game equilibriums better? In Proceedings
of the 4th International IEEE Conference Intelligent Systems, 2008 IS’08, Varna, Bulgaria, 6–8 September 2008;
Volume 1, pp. 2–51.

56. Chakeri, A.; Habibi, J.; Heshmat, Y. Fuzzy type-2 Nash equilibrium. In Proceedings of the 2008 International
Conference on Computational Intelligence for Modelling Control & Automation, Vienna, Austria,
10–12 December 2008; pp. 398–402.

57. Chakeri, A.; Sadati, N.; Dumont, G.A. Nash Equilibrium Strategies in Fuzzy Games. In Game Theory Relaunched;
InTech: Exton, PA, USA, 2013.

58. Chakeri, A.; Sadati, N.; Sharifian, S. Fuzzy Nash equilibrium in fuzzy games using ranking fuzzy numbers.
In Proceedings of the 2010 IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona, Spain,
18–23 July 2010; pp. 1–5.

59. Chakeri, A.; Sheikholeslam, F. Fuzzy Nash equilibriums in crisp and fuzzy games. IEEE Trans. Fuzzy Syst.
2013, 21, 171–176.

60. Garagic, D.; Cruz, J.B. An approach to fuzzy noncooperative nash games. J. Optim. Theory Appl. 2003, 118,
475–491.

61. Sharifian, S.; Chakeri, A.; Sheikholeslam, F. Linguisitc representation of Nash equilibriums in fuzzy games.
In Proceedings of the 2010 Annual Meeting of the North American Fuzzy Information Processing Society
(NAFIPS), Toronto, ON, Canada, 12–14 July 2010; pp. 1–6.

62. Sharma, R.; Gopal, M. Hybrid game strategy in fuzzy Markov-game-based control. IEEE Trans. Fuzzy Syst.
2008, 16, 1315–1327.



Symmetry 2017, 9, 136 17 of 17

63. Tan, C.; Jiang, Z.Z.; Chen, X.; Ip, W.H. A Banzhaf function for a fuzzy game. IEEE Trans. Fuzzy Syst. 2014, 22,
1489–1502.

64. Piegat, A.; Sałabun, W. Comparative analysis of MCDM methods for assessing the severity of chronic liver
disease. In Proceedings of the 14th International Conference on Artificial Intelligence and Soft Computing,
Zakopane, Poland, 14–18 June 2015; pp. 228–238.
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