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Abstract: To compute the minimum distance between a point and a parametric surface, three
well-known first-order algorithms have been proposed by Hartmann (1999), Hoschek, et al. (1993)
and Hu, et al. (2000) (hereafter, the First-Order method). In this paper, we prove the method’s
first-order convergence and its independence of the initial value. We also give some numerical
examples to illustrate its faster convergence than the existing methods. For some special cases where
the First-Order method does not converge, we combine it with Newton’s second-order iterative
method to present the hybrid second-order algorithm. Our method essentially exploits hybrid
iteration, thus it performs very well with a second-order convergence, it is faster than the existing
methods and it is independent of the initial value. Some numerical examples confirm our conclusion.

Keywords: point projection; intersection; parametric surface; hybrid second-order algorithm;
First-Order method; Newton’s second iterative method

1. Introduction

In this paper, we discuss how to compute the minimum distance between a point and a parametric
surface, and to return the nearest point (footpoint) on the surface as well as its corresponding
parameter, which is also called the point projection problem (or the point inversion problem) of
a parametric surface. It is a very interesting problem in geometric modeling, computer graphics and
computer vision [1]. Both projection and inversion are essential for interactively selecting curves and
surfaces [1,2], for the curve fitting problem [1,2], for reconstructing surfaces [3–5] and for projecting
a space curve onto a surface for surface curve design [6,7]. It is also a key issue in the ICP (iterative
closest point) algorithm for shape registration [8]. Mortenson (1985) [9] turns the projection problem
into finding the root of a polynomial, then finds the root by using the Newton–Raphson method. Zhou
et al. (1993) [10] present an algorithm for computation of the stationary points of the squared distance
functions between two point sets. The problem is reformulated in terms of solution of n polynomial
equations with n variables expressed in the tensor product Bernstein basis. Johnson and Cohen (2005)
[11] present a robust search for distance extrema from a point to a curve or a surface. The robustness
comes from using geometric operations with tangent cones rather than numerical methods to find
all local extrema. Limaien and Trochu (1995) [12] compute the orthogonal projection of a point onto
parametric curves and surfaces by constructing an auxiliary function and finding its zeros. Polak et al.
(2003) [13] present a new feedback precision-adjustment rule with a smoothing technique and standard
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unconstrained minimization algorithms in the solution of finite minimax problems. Patrikalakis and
Maekawa (2001) [14] reduce the distance function problem to solving systems of nonlinear polynomial
equations. Based on Ma et al. [1], Selimovic (2006) [15] presents improved algorithms for the projection
of points on NURBS curves and surfaces. Cohen et al. (1980) [16] provide classical subdivision
algorithms which have been widely applied in computer-aided geometric design, computer graphics,
and numerical analysis. Based on the subdividing concept [16], Piegl and Tiller (1995) [17] present an
algorithm for point projection on NURBS surfaces by subdividing a NURBS surface into quadrilaterals,
projecting the test point onto the closest quadrilateral, and then recover the parameter from the
closest quadrilateral. Liu et al. (2009) [18] propose a local surface approximation technique—torus
patch approximation—and prove that the approximation torus patch and the original surface are
second-order osculating. By using the tangent line and the rectifying plane, Li et al. (2013) [19] present
an algorithm for finding the intersection between the two spatial parametric curves. Hu et al. (2005) [8]
use curvature iteration information for solving the projection problem. Scholars (Ku-Jin Kim (2003) [20],
Li et al. (2004) [21], Chen et al. (2010) [22], Chen et al. (2009) [23], Bharath Ram Sundar et al. (2014)
[24]) have fully analyzed and discussed the intersection curve between two surfaces, the minimum
distance between two curves, the minimum distance between curve and surface and the minimum
distance between two surfaces. By clipping circle technology, Chen et al. (2008) [25] provide a method
for computing the minimum distance between a point and a NURBS curve. Then, based on clipping
sphere strategy, Chen et al. (2009) [26] propose a method for computing the minimum distance
between a point and a clamped B-spline surface. Being analogous to [25,26], based on an efficient
culling technique that eliminates redundant curves and surfaces which obviously contain no projection
from the given point, Young-Taek Oh et al. (2012) [27] present an efficient algorithm for projecting
a given point to its closest point on a family of freeform curves and surfaces. Song et al. (2011) [7]
propose an algorithm for calculating the orthogonal projection of parametric curves onto B-spline
surfaces. It uses a second-order tracing method to construct a polyline to approximate the pre-image
curve of the orthogonal projection curve in the parametric domain of the base surface. Regarding the
projection problem, Kwanghee Ko et al. (2014) [28] give a detailed review on literatures before 2014.
To sum up, those algorithms employ various techniques such as turning the problem into finding
the root of the system of nonlinear equations, geometric methods, subdivision methods and circular
clipping algorithms. It is well known that there are three classical first-order algorithms for computing
the minimum distance between a point and a parametric surface [29–31]. However, they did not
prove convergence for the First-Order method. In this paper, we contribute in two aspects. Firstly, we
prove the method’s first-order convergence and its independence of the initial value. We also give
some numerical examples to illustrate its faster convergence than the existing ones. Secondly, for
some special cases where the First-Order method does not converge, we combine it with Newton’s
second-order iterative method to present the hybrid second-order algorithm. Our method essentially
exploits hybrid iteration, thus it performs very well with a second-order convergence, it is faster than
the existing methods, and it is independent of the initial value. Some numerical examples confirm
our conclusion.

The rest of this paper is organized as follows. Section 2 presents a convergence analysis for the
First-Order method for orthogonal projection onto a parametric surface. In Section 3, some numerical
examples illustrate that it converges faster than the existing methods. In Section 4, for some special
cases where the First-Order method is not convergent, an improved hybrid second-order algorithm is
presented. Convergence analysis and experimental results for the hybrid second-order algorithm are
also presented in this section. Finally, Section 5 concludes the paper.

2. Convergence Analysis for the First-Order Method

In this section, we prove that the method defined by (5) is the first-order convergent and its
convergence is independent of the initial value.
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Assume a regular parametric surface s(u, v) = ( f1(u, v), f2(u, v), f3(u, v)), i.e., p = (p1, p2, p3) is
a test point. The first-order geometric iteration [29–31] to compute the footpoint q of the test point
p is the following. Projecting the test point p onto a tangent plane of the parametric surface s(u, v)
at (u, v) = (un, vn) yields a point q determined by s(un, vn) and the partial derivatives su(un, vn),
sv(un, vn). (see the following Formulas (2) and (3)). The footpoint can be approximatively expressed in
the following way

q = s(un, vn) + su(un, vn)∆u + sv(un, vn)∆v, (1)

where

su(un, vn) = (
∂ f1(un, vn)

∂u
,

∂ f2(un, vn)

∂u
,

∂ f3(un, vn)

∂u
)

= ( f1u(un, vn), f2u(un, vn), f3u(un, vn)),
(2)

sv(un, vn) = (
∂ f1(un, vn)

∂v
,

∂ f2(un, vn)

∂v
,

∂ f3(un, vn)

∂v
)

= ( f1v(un, vn), f2v(un, vn), f3v(un, vn)).
(3)

Multiplying with su(un, vn) and sv(un, vn), respectively, we obtain{
〈su(un, vn), su(un, vn)〉∆u + 〈su(un, vn), sv(un, vn)〉∆v = 〈q− s(un, vn), su(un, vn)〉 ,
〈su(un, vn), sv(un, vn)〉∆u + 〈sv(un, vn), sv(un, vn)〉∆v = 〈q− s(un, vn), sv(un, vn)〉 ,

(4)

where 〈x, y〉 denotes the scalar product of vectors x, y ∈ R3, and ‖x‖ denotes the norm of a vector x.
The corresponding solution of a regular system of linear Equation (4) is

∆u =
〈sv, sv〉

〈
sq, su

〉
− 〈su, sv〉

〈
sq, sv

〉
〈su, su〉 〈sv, sv〉 − 〈su, sv〉 〈su, sv〉

,

∆v = −
〈su, sv〉

〈
sq, su

〉
− 〈su, su〉

〈
sq, sv

〉
〈su, su〉 〈sv, sv〉 − 〈su, sv〉 〈su, sv〉

,
(5)

where 〈su, su〉 = 〈su(un, vn), su(un, vn)〉, 〈su, sv〉 = 〈su(un, vn), sv(un, vn)〉, 〈sv, sv〉 =

〈sv(un, vn), sv(un, vn)〉,
〈
sq, su

〉
= 〈q− s(un, vn), su(un, vn)〉,

〈
sq, sv

〉
= 〈q− s(un, vn), sv(un, vn)〉.

We update un, vn by adding ∆u, ∆v, and repeat the above procedure until |∆u| < ε and |∆v| < ε

where ε is a given tolerance. This is the first-order geometric iteration method in [29–31] (See Figure 1).
Furthermore, convergence of the First-Order method is independent of the initial value.

p

q

s (u,v)u

sv(u,v)

s(u,v)

t0

Figure 1. Graphic demonstration of the First-Order method.
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Theorem 1. The method defined by (5) is the first-order convergent. Convergence of the iterative Formula (5) is
independent of the initial value.

Proof. We firstly derive the expression of footpoint q. Assume that parameter (α, β) takes the
value so that the test point p = (p1, p2, p3) orthogonally projects onto the parametric surface
s(u, v) = ( f1(u, v), f2(u, v), f3(u, v)). It is not difficult to show that there is a relational expression

〈
p− h, ~V1

〉
= 0,〈

p− h, ~V2

〉
= 0,

(6)

where h = ( f1(α, β), f2(α, β), f3(α, β)) and tangent vector ~V1 = (
∂ f1(α, β)

∂u
,

∂ f2(α, β)

∂u
,

∂ f3(α, β)

∂u
) =( f1u(α, β), f2u(α, β), f3u(α, β)), ~V2 = (

∂ f1(α, β)

∂v
,

∂ f2(α, β)

∂v
,

∂ f3(α, β)

∂v
) =

( f1v(α, β), f2v(α, β), f3v(α, β)). The relationship can also be expressed in the following way,
〈

p− s(α, β),
∂s(α, β)

∂u

〉
= 0,〈

p− s(α, β),
∂s(α, β)

∂v

〉
= 0.

(7)

Because the footpoint q is the intersection of the tangent plane of the parametric surface s(u, v) at
(u, v) = (un, vn) and the perpendicular line determined by test point p, the equation of the tangent
plane of the parametric surface s(u, v) at (u, v) = (un, vn) is

x1 = f1(un, vn) + f1u(un, vn)u + f1v(un, vn)v,
y1 = f2(un, vn) + f2u(un, vn)u + f2v(un, vn)v,
z1 = f3(un, vn) + f3u(un, vn)u + f3v(un, vn)v.

(8)

At the same time, the vector of the line segment connected by the test point p and the point
s(un, vn) is

(x2, y2, z2) = (p1 − x1, p2 − y1, p3 − z1). (9)

Because the vector (9) and the tangent vectors su(un, vn) = ( f1u(un, vn), f2u(un, vn), f3u(un, vn)),
sv(un, vn) = ( f1v(un, vn), f2v(un, vn), f3v(un, vn)) are orthogonal to each other, respectively, we
naturally obtain a system of nonlinear equations of the parameters u, v,

( f1u(un, vn)u + f1v(un, vn)v + f1(un, vn)− p1) f1u(un, vn)

+( f2u(un, vn)u + f2v(un, vn)v + f2(un, vn)− p2) f2u(un, vn)

+( f3u(un, vn)u + f3v(un, vn)v + f3(un, vn)− p3) f3u(un, vn) = 0,
( f1u(un, vn)u + f1v(un, vn)v + f1(un, vn)− p1) f1v(un, vn)

+( f2u(un, vn)u + f2v(un, vn)v + f2(un, vn)− p2) f2v(un, vn)

+( f3u(un, vn)u + f3v(un, vn)v + f3(un, vn)− p3) f3v(un, vn) = 0.

(10)

So the corresponding solutions of parameters u, v of the Formula (10) are
u0 =

P1

P0
,

v0 =
P2

P0
,

(11)
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where

P0 = f 2
1u(un, vn) f 2

2v(un, vn) + f 2
1u(un, vn) f 2

3v(un, vn)− 2 f1u(un, vn) f1v(un, vn)

f2u(un, vn) f2v(un, vn)− 2 f1u(un, vn) f1v(un, vn) f3u(un, vn) f3v(un, vn)

+ f 2
1v(un, vn) f 2

2u(un, vn) + f 2
1v(un, vn) f 2

3u(un, vn) + f 2
3v(un, vn) f 2

2u(un, vn)

+ f 2
2v(un, vn) f 2

3u(un, vn)− 2 f2u(un, vn) f2v(un, vn) f3u(un, vn) f3v(un, vn),

P1 = −( f1(un, vn) f1u(un, vn) f 2
2v(un, vn) + f1(un, vn) f1u(un, vn) f 2

3v(un, vn)

− f1(un, vn) f1v(un, vn) f2u(un, vn) f2v(un, vn)− f2(un, vn) f1u(un, vn)

f1v(un, vn) f2v(un, vn)− f3(un, vn) f1u(un, vn) f1v(un, vn) f3v(un, vn)

−p1 f1u(un, vn) f 2
2v(un, vn)− p1 f1u(un, vn) f 2

3v(un, vn)− p2 f2u(un, vn) f 2
1v(un, vn)

+ f3(un, vn) f3u(un, vn) f 2
1v(un, vn) + p1 f2u(un, vn) f1v(un, vn) f2v(un, vn)

+ f2(un, vn) f2u(un, vn) f 2
3v(un, vn)− f3(un, vn) f2u(un, vn) f2v(un, vn) f3v(un, vn)

−p2 f2u(un, vn) f 2
3v(un, vn) + f3(un, vn) f3u(un, vn) f 2

2v(un, vn) + p2 f2v(un, vn)

f3u(un, vn) f3v(un, vn))− f1(un, vn) f1v(un, vn) f3u(un, vn) f3v(un, vn)

+p2 f1u(un, vn) f1v(un, vn) f2v(un, vn) + p3 f1u(un, vn) f1v(un, vn) f3v(un, vn)

+ f2(un, vn) f 2
1v(un, vn) f2u(un, vn)− p3 f3u(un, vn) f 2

2v(un, vn)

−p3 f3u(un, vn) f 2
1v(un, vn) + p1 f1v(un, vn) f3u(un, vn) f3v(un, vn)

+p3 f2u(un, vn) f2v(un, vn) f3v(un, vn)− f2(un, vn) f2v(un, vn) f3u(un, vn) f3v(un, vn),

P2 = f1(un, vn) f1u(un, vn) f2u(un, vn) f2v(un, vn)− f1(un, vn) f1v(un, vn) f 2
2u(un, vn)

− f1(un, vn) f1v(un, vn) f 2
3u(un, vn)− f2(un, vn) f2v(un, vn) f 2

1u(un, vn)

+p2 f2v(un, vn) f 2
1u(un, vn)− f3(un, vn) f3v(un, vn) f 2

1u(un, vn)

+p3 f3v(un, vn) f 2
1u(un, vn) + f2(un, vn) f1u(un, vn) f2u(un, vn) f1v(un, vn)

+ f3(un, vn) f1u(un, vn) f1v(un, vn) f3u(un, vn)− p1 f1u(un, vn) f2u(un, vn) f2v(un, vn)

+p1 f1v(un, vn) f 2
2u(un, vn) + p1 f1v(un, vn) f 2

3u(un, vn)

+ f2(un, vn) f2u(un, vn) f3u(un, vn) f3v(un, vn)− f3(un, vn) f3v(un, vn) f 2
2u(un, vn)

+p3 f3v(un, vn) f 2
2u(un, vn) + f3(un, vn) f2u(un, vn) f3u(un, vn) f2v(un, vn)

−p2 f2u(un, vn) f3u(un, vn) f3v(un, vn) + p2 f2v(un, vn) f 2
3u(un, vn)

+ f1(un, vn) f1u(un, vn) f3u(un, vn) f3v(un, vn)− p2 f1u(un, vn) f2u(un, vn) f1v(un, vn)

−p3 f1u(un, vn) f1v(un, vn) f3u(un, vn)− p1 f1u(un, vn) f3u(un, vn) f3v(un, vn)

− f2(un, vn) f2v(un, vn) f 2
3u(un, vn)− p3 f2u(un, vn) f3u(un, vn) f2v(un, vn).

Substituting (11) into (8), and simplifying, we have
q1 = f1(un, vn) + f1u(un, vn)u0 + f1v(un, vn)v0,
q2 = f2(un, vn) + f2u(un, vn)u0 + f2v(un, vn)v0,
q3 = f3(un, vn) + f3u(un, vn)u0 + f3v(un, vn)v0.

(12)

So the footpoint q = (q1, q2, q3) is the Formula (12). Substituting (12) into (5), and simplifying, we
obtain the relationship, 

∆u =
〈sv, sv〉

〈
sq, su

〉
− 〈su, sv〉

〈
sq, sv

〉
〈su, su〉 〈sv, sv〉 − 〈su, sv〉 〈su, sv〉

,

∆v = −
〈su, sv〉

〈
sq, su

〉
− 〈su, su〉

〈
sq, sv

〉
〈su, su〉 〈sv, sv〉 − 〈su, sv〉 〈su, sv〉

,
(13)
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where 〈su, su〉 = 〈su(un, vn), su(un, vn)〉, 〈su, sv〉 = 〈su(un, vn), sv(un, vn)〉, 〈sv, sv〉 =

〈sv(un, vn), sv(un, vn)〉,
〈
sq, su

〉
= 〈q− s(un, vn), su(un, vn)〉,

〈
sq, sv

〉
= 〈q− s(un, vn), sv(un, vn)〉.

Using Taylor’s expansion, we obtain
f1(un, vn) = f1(α, β) + C11e1n + C12e2n +

1
2 C13e2

1n + C14e1ne2n +
1
2 C15e2

2n + o(
∥∥e3

n
∥∥),

f2(un, vn) = f2(α, β) + C21e1n + C22e2n +
1
2 C23e2

1n + C24e1ne2n +
1
2 C25e2

2n + o(
∥∥e3

n
∥∥),

f3(un, vn) = f3(α, β) + C31e1n + C32e2n +
1
2 C33e2

1n + C34e1ne2n +
1
2 C35e2

2n + o(
∥∥e3

n
∥∥), (14)

where en =

(
e1n
e2n

)
=

(
un − α

vn − β

)
, Ci1 =

∂ fi(α, β)

∂u
,Ci2 =

∂ fi(α, β)

∂v
,Ci3 =

∂2 fi(α, β)

∂u2 ,

Ci4 =
∂2 fi(α, β)

∂u∂v
,Ci5 =

∂2 fi(α, β)

∂v2 .

Thus, we have 
f1u(un, vn) = C11 + C13e1n + C14e2n + o(

∥∥e2
n
∥∥),

f2u(un, vn) = C21 + C23e1n + C24e2n + o(
∥∥e2

n
∥∥),

f3u(un, vn) = C31 + C33e1n + C34e2n + o(
∥∥e2

n
∥∥), (15)

and 
f1v(un, vn) = C12 + C14e1n + C15e2n + o(

∥∥e2
n
∥∥),

f2v(un, vn) = C22 + C24e1n + C25e2n + o(
∥∥e2

n
∥∥),

f3v(un, vn) = C32 + C34e1n + C35e2n + o(
∥∥e2

n
∥∥). (16)

From (7) and (14), then we have{
(p1 − f1(α, β))C11 + (p2 − f2(α, β))C21 + (p3 − f3(α, β))C31 = 0,
(p1 − f1(α, β))C12 + (p2 − f2(α, β))C22 + (p3 − f3(α, β))C32 = 0.

(17)

By (14)–(16), and using Taylor’s expansion, Formula (13) can be transformed into the
following form, 

un+1 = un +
uA + uBe1n + uCe2n + o(

∥∥e2
n
∥∥)

uvA + uvBe1n + uvCe2n + o(‖e2
n‖)

,

vn+1 = vn −
vA + vBe1n + vCe2n + o(

∥∥e2
n
∥∥)

uvA + uvBe1n + uvCe2n + o(‖e2
n‖)

,
(18)
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where

uA = C11C12C22 f2(α, β)− p2C11C12C22 + C11C12C32 f3(α, β)− C11C12C32 p3

+C12C21C22 f1(α, β)− C12C21C22 p1 + C12C31C32 f1(α, β)− C12C31C32 p1

+C21C22C32 f3(α, β)− C21C22C32 p3 + C22C31C32 f2(α, β)− C22C31C32 p2

−C11C2
22 f1(α, β) + C11C2

22 p1 − C11C2
32 f1(α, β) + C11C2

32 p1

+C2
12C21 p2 − C2

12C31 f3(α, β) + C2
12C31 p3 − C21C2

32 f2(α, β) + C21C2
32 p2

−C2
22C31 f3(α, β) + C2

22C31 p3 − C2
12C21 f2(α, β),

uB = −C14C21C22 p1 + C12C31C34 p1 − C12C32C33 p1 − C14C31C32 p1

−C2
22C23 f2(α, β) + C2

22C23 p2 − C22C32C33 p2 − C24C31C32 p2

−C2
12C13 f1(α, β) + C2

12C13 p1 + C12C32C33 f1(α, β)

+2C11C12C21C22 + 2C11C12C31C32 + C11C12C14 f1(α, β)

−C2
12C33 f3(α, β)− C2

22C2
31 − C2

21C2
32 − C2

12C2
31 − C2

12C2
21 − C2

11C2
32

+C13C2
32 p1 + C13C2

22 p1 + C2
12C33 p3 + C2

12C23 p2 + C23C2
32 p2 + C2

22C33 p3

−C23C2
32 f2(α, β) + C14C21C22 f1(α, β)− C2

11C2
22 − C11C12C14 p1

+C11C12C24 f2(α, β) + C21C22C34 f3(α, β)− C12C31C34 f1(α, β)

+C22C32C33 f2(α, β) + C24C31C32 f2(α, β)− C21C22C24 p2

−C2
22C33 f3(α, β)− C2

12C23 f2(α, β)− C11C12C34 p3 + 2C21C22C31C32

−C13C2
22 f1(α, β)− C22C31C34 f2(α, β) + C21C22C24 f2(α, β)

+C22C31C34 p2 − C11C12C24 p2 + C14C31C32 f1(α, β)

+C11C12C34 f3(α, β)− C21C22C34 p3 − C13C2
32 f1(α, β),

uC = −C2
12C24 f2(α, β)− C2

12C34 f3(α, β)− C11C12C35 p3 − C22C32C34 p2

+C22C31C35 p2 − C15C21C22 p1 + C12C31C35 p1 − C12C32C34 p1

+C15C21C22 f1(α, β) + C22C32C34 f2(α, β) + C25C31C32 f2(α, β)

+C24C2
32 p2 − C24C2

32 f2(α, β) + C2
12C34 p3 + C2

12C24 p2 + C14C2
32 p1

−C14C2
22 f1(α, β)− C14C2

32 f1(α, β) + C11C12C35 f3(α, β)

−C22C31C35 f2(α, β) + C21C22C35 f3(α, β)− C21C22C35 p3

−C21C22C25 p2 + C11C12C15 f1(α, β)− C2
12C14 f1(α, β) + C2

12C14 p1

−C11C12C25 p2 + C15C31C32 f1(α, β) + C2
22C34 p3 + C14C2

22 p1

+C2
22C24 p2 + C21C22C25 f2(α, β)− C25C31C32 p2 − C15C31C32 p1

−C2
22C34 f3(α, β) + C11C12C25 f2(α, β)− C11C12C15 p1 − C2

22C24 f2(α, β)

−C12C31C35 f1(α, β) + C12C32C34 f1(α, β),
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vA = C2
11C22 f2(α, β)− C2

11C22 p2 + C2
11C32 f3(α, β)− C2

11C32 p3

−C11C12C31 f3(α, β) + C11C12C31 p3 − C11C21C22 f1(α, β) + C11C21C22 p1

+C12C2
21 f1(α, β)− C12C2

21 p1 + C12C2
31 f1(α, β)− C12C2

31 p1 + C2
21C32 f3(α, β)

−C21C22C31 f3(α, β) + C21C22C31 p3 − C21C31C32 f2(α, β) + C21C31C32 p2

+C11C31C32 p1 − C22C2
31 p2 + C11C12C21 p2 − C11C31C32 f1(α, β)− C2

21C32 p3

+C22C2
31 f2(α, β)− C11C12C21 f2(α, β),

vB = C11C12C13 p1 − C21C22C23 f2(α, β) + C21C22C23 p2 − C11C12C13 f1(α, β)

+C22C31C33 f2(α, β)− C11C12C33 f3(α, β) + C12C31C33 f1(α, β)

−C12C31C33 p1 + C23C31C32 p2 + C11C12C23 p2 + C11C12C33 p3

−C23C31C32 f2(α, β) + C21C22C33 p3 − C13C31C32 f1(α, β)

+C2
11C24 f2(α, β) + C2

21C34 f3(α, β) + C2
11C34 f3(α, β)− C2

11C24 p2

−C2
21C34 p3 − C24C2

31 p2 − C14C2
31 p1 + C24C2

31 f2(α, β)− C14C2
21 p1

−C2
11C34 p3 + C2

11C14 f1(α, β)− C21C31C34 f2(α, β) + C11C31C34 p1

+C13C21C22 p1 − C2
21C24 p2 + C2

21C24 f2(α, β)− C21C22C33 f3(α, β)

−C11C12C23 f2(α, β) + C21C31C34 p2 − C22C31C33 p2 + C13C31C32 p1

+C14C2
31 f1(α, β) + C14C2

21 f1(α, β)− C2
11C14 p1 − C11C31C34 f1(α, β)

−C13C21C22 f1(α, β),

vC = C12C31C34 f1(α, β)− C11C12C24 f2(α, β)− C11C12C34 f3(α, β)− C25C2
31 p2

−C2
11C25 p2 − C2

11C35 p3 − C15C2
31 p1 − C15C2

21 p1 + C15C2
31 f1ab− C2

21C35 p3

+C2
21C35 f3(α, β) + C15C2

21 f1(α, β) + C2
11C35 f3(α, β) + C14C31C32 p1

−C14C21C22 f1(α, β)− C12C31C34 p1 + C11C31C35 p1 + C11C12C34 p3

−2C11C12C21C22 + C11C12C24 p2 − 2C11C12C31C32 + C21C31C35 p2

−C24C31C32 f2(α, β)− 2C21C22C31C32 + C21C22C34 p3 − C21C31C35 f2(α, β)

+C11C12C14 p1 − C21C22C24 f2(α, β) + C21C22C24 p2 − C11C12C14 f1(α, β)

+C2
12C2

21 + C2
12C2

31 + C2
11C2

32 + C2
11C2

22 − C21C22C34 f3(α, β)

+C112C15 f1(α, β)− C2
11C15 p1 + C2

21C25 f2(α, β)− C2
21C25 p2

+C25C2
31 f2(α, β)− C14C31C32 f1(α, β) + C14C21C22 p1 + C24C31C32 p2

−C22C31C34 p2 − C11C31C35 f1(α, β) + C2
22C2

31 + C2
21C2

32 + C2
11C25 f2(α, β)

+C22C31C34 f2ab,
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uvA = C2
11C2

22 + C2
11C2

32 − 2C11C12C21C22 − 2C11C12C31C32 + C2
12C2

21

+C2
12C2

31 + C2
21C2

32 − 2C21C22C31C32 + C2
22C2

31,

uvB = 2C2
11C22C24 + 2C2

11C32C34 − 2C11C12C21C24 − 2C11C12C22C23

+2C11C13C2
32 − 2C11C14C21C22 − 2C11C14C31C32 + 2C2

12C21C23

+2C12C14C2
21 + 2C12C14C2

31 + 2C2
21C32C34 − 2C21C22C31C34

+2C2
22C31C33 − 2C22C23C31C32 + 2C22C24C2

31 + 2C11C13C2
22

−2C11C12C32C33 − 2C12C13C21C22 + 2C21C23C2
32 − 2C21C24C31C32

−2C11C12C31C34 + 2C2
12C31C33 − 2C21C22C32C33 − 2C12C13C31C32,

uvC = 2C2
11C22C25 + 2C2

11C32C35 − 2C11C12C21C25 − 2C11C12C22C24

+2C11C14C2
22 + 2C11C14C2

32 − 2C11C15C21C22 − 2C11C15C31C32

−2C12C14C21C22 − 2C12C14C31C32 + 2C12C15C2
21 + 2C12C15C2

31

−2C21C22C32C34 + 2C21C24C2
32 − 2C21C25C31C32 + 2C2

22C31C34

−2C11C12C32C34 + 2C2
12C31C34 − 2C21C22C31C35 + 2C22C25C2

31

−2C11C12C31C35 + 2C2
12C21C24 + 2C2

21C32C35 − 2C22C24C31C32.

From (17), we can obtain uA = 0 and vA = 0. So Formula (18) can be transformed into the
following form 

un+1 = un +
uBe1n + uCe2n + o(

∥∥e2
n
∥∥)

uvA + uvBe1n + uvCe2n + o(‖e2
n‖)

,

vn+1 = vn −
vBe1n + vCe2n + o(

∥∥e2
n
∥∥)

uvA + uvBe1n + uvCe2n + o(‖e2
n‖)

.
(19)

Using Taylor’s expansion by symbolic computation software Maple 18, and simplifying, we obtain{
e1(n+1) = uC1e1n + uC2e2n + o(

∥∥e2
n
∥∥),

e2(n+1) = vC1e1n + vC2e2n + o(
∥∥e2

n
∥∥), (20)

where e1(n+1) = un+1 − α, e2(n+1) = vn+1 − β,uC1 =
uB + uvA

uvA
, uC2 =

uC
uvA

, vC1 = − vB
uvA

, vC2 =

uvA− vC
uvA

. Formula (20) can be further simplified into the following form,

en+1 = C0en + o(
∥∥∥e2

n

∥∥∥), (21)

where C0 =

(
uC1 uC2

vC1 vC2

)
, en =

(
e1n
e2n

)
=

(
un − α

vn − β

)
.

The result of Formula (21) implies that the iterative Formula (5) is the first-order convergent.
In the following, we continue to illustrate that convergence of the iterative Formula (5) is independent
of the initial value(See Figure 2).
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s(u ,v )n n

(u ,v )n n

( , )α β

s( )α,β

s(u,v)

(u ,v )n+1 n+1

Figure 2. Graphic demonstration for convergence analysis.

Our proof method is analogous to those methods in references [32,33]. We project all points,
curves and the surface of Figure 1 onto the y− z plane, and this yields Figure 2. When the iterative
Formula (5) starts to iterate, according to the graphical demonstration, the corresponding parametric
value of the footpoint q is (un+1, vn+1). The middle point of point (un+1, vn+1) and point (un, vn) is

M where M = (
un+1 + un

2
,

vn+1 + vn

2
). From the graphic demonstration, there are two inequality

relationships un <
un+1 + un

2
< α and vn <

vn+1 + vn

2
< β. These results indicate two inequality

relationships
∣∣∣e1(n+1)

∣∣∣ < |e1n| and
∣∣∣e2(n+1)

∣∣∣ < |e2n|; namely, there is an iterative relational error

expression ‖en+1‖2 < ‖en‖2, where ‖en‖2 =
√
(e1n − α)2 + (e2n − β)2. To sum up, we can verify that

convergence of the iterative Formula (5) is independent of the initial value.

3. Numerical Examples

Example 1. There is a general parametric surface s(u, v) = ( f1(u, v), f2(u, v), f3(u, v)) =
(u + 2v,cos(u + v), sin(u + v)), u, v ∈ [−2.0, 2.0] with a test point p = (p1, p2, p3) = (0.3, 0.5, 1.0).
Using the First-Order method, the corresponding orthogonal projection parametric value is
(α, β) =(1.9142974355881810,−0.80714871779409050), the initial iterative values (u0, v0) are
(1,−2), (−2, 2), (−2,−2), (0, 0), (1, 1), and(−2,−1), respectively. Each initial iterative value repeatedly
iterates 10 times, respectively, yielding 10 different iteration times in the time unit of nanoseconds. In Table 1,
the mean running time of the first-order iterative method is 134,760, 141,798, 41,033, 140,051, 137,059, and
42,399 nanoseconds for six different initial iterative values, respectively. In the end, the overall average running
time in Table 1 is 106183.33 nanoseconds (≈0.10618 ms), while the overall average running time of Tables 1 and
2 in [18] is 0.3565 ms. So the First-Order method is faster than the algorithm in [18]. (See Figure 3).

Figure 3. Illustration of Example 1.
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Table 1. Running time (in nanoseconds) for different initial iterative values by the First-Order method.

(u0, v0) (1,−2) (−2,2) (−2,−2) (0,0) (1,1) (−2,−1)

1 142,941 132,544 39,857 135,606 133,859 40,180
2 132,044 155,592 38,792 133,112 160,154 45,392
3 133,380 132,947 38,952 181,563 132,472 46,018
4 132,869 140,089 43,009 132,702 133,377 40,517
5 134,137 134,045 40,559 134,416 125,638 39,725
6 136,875 140,145 43,830 146,907 132,289 41,029
7 133,808 133,415 39,890 132,827 133,388 40,389
8 132,753 148,692 41,072 133,869 135,500 44,930
9 132,332 153,146 38,907 1373,30 141,663 41,428
10 136,460 147,361 45,462 132,184 142,250 44,384

Average time 134,760 141,798 41,033 140,051 137,059 42,399

Example 2. There is a quasi-B-spline parametric surface s(u, v) = ( f1(u, v), f2(u, v), f3(u, v)) =

(u6 + u5v + v6 − u2v3 + uv4 − v5 + u4 + u3v + v4 + u3 − uv2 + v3 + uv + v2 + 1, u6 + 2u4v2 −
v6 + u5 + u2v3 + v5 + u4 − uv3 + u3 − 2uv2 + v3 + 4uv + 2v2 + 2u + 2v + 1, u6 + uv5 + u4v +

u2v3 + u3v + 2u2v2 + v4 + u3 + 2uv + u),u, v ∈ [0.0, 2.0] with a test point p = (p1, p2, p3) =

(15.0, 20.0, 25.0). Using the First-Order method, the corresponding orthogonal projection parametric
value is (α, β) =(1.0199334308624865, 1.3569112459785527), the initial iterative values (u0, v0) are
(1, 1), (2, 2), (2, 0), (1, 2), (2, 1), and(0, 2.0), respectively. Each initial iterative value repeatedly iterates 10
times, respectively, yielding 10 different iteration times in nanoseconds. In Table 2, the mean running time
of the First-Order method is 500,831, 440,815, 480,969, 445,755, 426,737, and 488,092 nanoseconds for
six different initial iterative values, respectively. In the end, the overall average running time is 463,866.50
nanoseconds (≈0.463865 ms), while the overall average running time of the Example 2 for the algorithm in
[18] is 1.705624977 ms under the same initial iteration condition. So the First-Order method is faster than the
algorithm in [18]. (See Figure 4).

Table 2. Running time for (in nanoseconds) for different initial iterative values by the First-Order method.

(u0, v0) (1,1) (2,2) (2,0) (1,2) (2,1) (0,2)

1 567,161 492,909 550,174 349,185 384,516 4,920,804
2 575,759 521,233 492,835 385,293 390,527 523,743
3 484,250 381,832 487,414 389,792 502,568 498,248
4 499,588 346,864 434,103 494,559 436,330 536,043
5 456,397 433,893 463,222 501,650 493,197 434,355
6 517,495 433,521 440,372 435,692 399,478 362,600
7 488,340 452,431 489,985 439,752 471,909 524,395
8 499,700 475,481 481,180 433,924 473,261 522,088
9 438,441 386,592 438,255 503,681 366,078 469,647

10 481,179 483,391 532,150 524,016 349,502 517,721
Average time 500,831 440,815 480,969 445,755 426,737 488,092
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Figure 4. Illustration of Example 2.

In Tables 1 and 2, the convergence tolerance required such that (un − un−1)
2 + (vn − vn−1)

2 <

1E− 17 is displayed. The approximate zero (α, β) found up to the 17th decimal place is displayed.
All computations were done under g++ in Fedora linux 8 environment using our personal computer
with T2080 1.73 GHz CPU and 2.5 GB memory. The overall average running time of 0.336222 ms in
Examples 1 and 2 for their algorithm [18] means the First-Order method is faster than the algorithm
in [18]. In [18], authors point out that their algorithm is faster than that in [8], which means the
First-Order method is faster than the one in [8]. At the same time, the overall average running time
of 61.81167 ms in three Examples for their algorithm [26] is obtained, then the First-Order method is
faster than the algorithm in [26]. However, in [26], the authors indicate that their algorithm is faster
than those in [1,15], which means the First-Order method is faster than the one in [1,15]. To sum up,
the First-Order method converges faster than the existing methods in [1,8,15,18,26]

4. The Improved Algorithm

4.1. Counterexamples

In Sections 2 and 3, convergence of the First-Order method is independent of the initial value
and some numerical examples illustrate that it converges faster than the existing methods. To show
some special cases where the First-Order method is not convergent, we create five counterexamples
as follows.

Counterexample 1. Suppose the parametric surface s(u, v) = (u, v, 1 + u2 + v2) with a test point
p = (0, 0, 0). It is clear that the uniquely corresponding orthogonal projection point and parametric value
of the test point p are (0, 0, 1) and (α, β) = (0, 0), respectively. For any initial iterative value, the First-Order
method could not converge to (0,0).

Counterexample 2. Suppose a parametric surface s(u, v) = (u, v, sin(u + v)), u, v ∈ [0, 2] with a test point
p = (3, 4, 5). It is not difficult to know that the uniquely corresponding orthogonal projection point and
parametric value of the test point p are (0.59213983546158970, 1.5921398354615897, 0.81764755470656153)
and (α, β) = (0.59213983546158970, 1.5921398354615897), respectively. Whatever initial iterative value
is given, the First-Order method could not converge to (0.59213983546158970, 1.5921398354615897). In
addition, for a parametric surface s(u, v) = (u, v, sin(au + bv)), a 6= 0, b 6= 0, for any test point p and any
initial iterative value, the First-Order method could not converge.

Counterexample 3. Suppose a parametric surface s(u, v) = (u, v, cos(u + v)), u, v ∈ [0, 2] with a test point
p = (4, 5, 6). It is easy to know that the uniquely corresponding orthogonal projection point and parametric value
of the test point p are (0.83182106378141485, 1.8318210637814148,−0.88793946367725301) and (α, β) =

(0.83182106378141485,1.8318210637814148), respectively. For any initial iterative value, the First-Order
iterative method could not converge to (0.83182106378141485, 1.8318210637814148). In addition, for a
parametric surface s(u, v) = (u, v, cos(au + bv)), a 6= 0, b 6= 0, for any test point p and any initial iterative
value, the First-Order method could not converge.
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Counterexample 4. Suppose a parametric surface s(u, v) = (u, v, sin(u2 + v2)), u, v ∈ [0, 2] with a test
point p = (4, 5, 6). It is known that the uniquely corresponding orthogonal projection point and parametric
value of the test point p are (0.86886081685860457, 1.0860760210732557, 0.93459272735858134) and (α, β)

= (0.86886081685860457, 1.0860760210732557), respectively. For any initial iterative value, the First-order
method could not converge to (0.86886081685860457, 1.0860760210732557). Furthermore, for a parametric
surface s(u, v) = (u, v, sin(u2n + v2n)), n = 1, 2, 3, ..., for any test point p and any initial iterative value, the
First-Order method could not converge.

Counterexample 5. Suppose a parametric surface s(u, v) = (u, v, cos(u2 + v2)), u, v ∈ [0, 2] with
a test point p = (4, 5, 6). It is known that the uniquely corresponding orthogonal projection point and
parametric value of the test point p are (1.0719814278710903,1.3399767848388629,-0.98067565161631654)
and (α, β) = (1.0719814278710903, 1.3399767848388629), respectively. For any initial iterative value, the
First-Order method could not converge to (1.0719814278710903, 1.3399767848388629). Furthermore, for a
parametric surface s(u, v) = (u, v, cos(u2n + v2n)), n = 1, 2, 3, ..., for any test point p and any initial iterative
value, the First-Order method could not converge.

4.2. The Improved Algorithm

Since the First-Order method is not convergent for some special cases, we present the improved
algorithm which will converge for any parametric surface, test point and initial iterative value.
For simplicity, we briefly write (u, v)T as t, namely, t = (u, v)T , tn = (un, vn)T . It is well known
that the classic iterative method to solve a system of nonlinear equations is Newton’s method, whose
iterative expression is

tn+1 = tn − [F′(tn)]−1F(tn),n ≥ 0, (22)

where the system F(t) = 0 is expressed as follows:
F1(t) =

〈
p− s(u, v),

∂s(u, v)
∂u

〉
= 0,

F2(t) =
〈

p− s(u, v),
∂s(u, v)

∂v

〉
= 0.

(23)

Then, the more specific expression of Newton’s iterative Formula (22) is the following,

tn+1 = G(tn) = tn − [F′(tn)]−1F(tn), (24)

where G(tn) =

(
G1(tn)
G2(tn)

)
=


un −

∂F2(tn)

∂v
F1(tn)−

∂F1(tn)

∂v
F2(tn)

F0

vn −
∂F1(tn)

∂u
F2(tn)−

∂F2(tn)

∂u
F1(tn)

F0

,

F0 =
∂F1(tn)

∂u
∂F2(tn)

∂v
− ∂F1(tn)

∂v
∂F2(tn)

∂u
. This method is quadratically convergent in a neighborhood

of the solution where the Jacobian matrix is non-singular. Its convergence rate is greater than that
of the First-Order method. However, a limitation of this method is that its convergence depends on
the choice of the initial value. Only if the convergence condition for Newton’s second-order iterative
method is satisfied, is the method effective. In order to improve the robustness of convergence, based
on the First-Order convergence method, we present Algorithm 1 (the hybrid second-order algorithm)
for orthogonal projection onto the parametric surface. The hybrid second-order algorithm essentially
combines the respective advantages of these two methods: if the iterative parametric value from the
First-Order geometric iteration method satisfies the convergence condition for Newton’s second-order
iterative method, we then turn to the method to accelerate the convergence process. If not, we continue
the First-Order geometric iteration method until its iterative parametric value satisfies the convergence
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condition for Newton’s second-order iterative method, and we then turn to it as above. Then comes
the end of the whole algorithm. The procedure that we proposed guarantees that the whole iterative
process is convergent, and its convergence is independent of the choice of the initial value. In addition,
the procedure can increase its rapidity. The hybrid second-order iterative algorithm for computing the
minimum distance between a point and a parametric surface can be realized as follows.

Algorithm 1: The hybrid second-order algorithm.
Input: Input the initial iterative parametric value t0, parametric surface s(u, v) and test point p.
Output: Output the final iterative parametric value.

Step 1. Input the initial iterative parametric value t0.
Step 2. Use the iterative Formula (5), compute the parametric incremental value ∆t,

and update t0 + ∆t to t0, namely, t0 = t0 + ∆t.
Step 3. Judge whether the norm of difference between the former t0 and the latter t0 is near

0(‖∆t‖ < ε). If so, end this algorithm.

Step 4. Substitute new t0 into
∣∣∣∣∂G1(t0)

∂u

∣∣∣∣ ,
∣∣∣∣∂G1(t0)

∂v

∣∣∣∣ ,
∣∣∣∣∂G2(t0)

∂u

∣∣∣∣ ,
∣∣∣∣∂G2(t0)

∂v

∣∣∣∣, respectively, judge if

(

∣∣∣∣∂G1(t0)
∂u

∣∣∣∣ < 1
2 and

∣∣∣∣∂G1(t0)
∂v

∣∣∣∣ < 1
2 and

∣∣∣∣∂G2(t0)
∂u

∣∣∣∣ < 1
2 and

∣∣∣∣∂G2(t0)
∂v

∣∣∣∣ < 1
2 ).

If (
∣∣∣∣∂G1(t0)

∂u

∣∣∣∣ < 1
2 and

∣∣∣∣∂G1(t0)
∂v

∣∣∣∣ < 1
2 and

∣∣∣∣∂G2(t0)
∂u

∣∣∣∣ < 1
2 and

∣∣∣∣∂G2(t0)
∂v

∣∣∣∣ < 1
2 )

{

Using Newton’s second-order iterative Formula (22), compute

t0 = t0 − [F′(t0)]−1F(t0) until the norm of difference between the former t0 and

the latter t0 is near 0(‖∆t‖ < ε), then end this algorithm.

}

Else {

go to Step 2.

}

Remark 1. We give a geometric interpretation of Newton’s iterative method with two variables in Figure 5,
where abscissa axis t represents the two-dimensional coordinate (u, v), the vertical coordinate z represents
function value F1(t) or F2(t). Curve F1(t) and F2(t) actually denote two surfaces in three-dimensional space,
which are determined by the first and the second Formula in Equation (23), respectively. γ is the intersection
point of two lines, the first of which is the intersection line of F1(t) and plane t, and the second of which is the
intersection line of F2(t) and plane t. In another way, γ is the solution to Equation (23). Through point t0,
draw a line perpendicular to the plane t, and then the perpendicular line intersects the surface F1(t) and F2(t),
respectively. The intersection points are designated as the first and the second intersection point, respectively.
Through the first and the second intersection point, we make two tangent planes, respectively. These two tangent
planes intersect with plane t and generate two intersection lines, which are designated as the first and the second
intersection lines. Two intersection lines intersect to obtain the point t1. Given the intersection point t1, we
repeat the procedure above to obtain the new first and the second intersection point, and then the new first and
the second intersection lines. Finally, we can obtain the new intersection point t2. Repeat the above steps until
the iterative value converges to γ=(α, β). Of course, it must satisfy the condition for the fixed point theorem of
Newton’s iterative method before Newton’s iterative method starts to work.
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Figure 5. Graphic demonstration for the hybrid second-order algorithm.

Remark 2. For some special cases, in Section 4, where the First-Order method is not convergent, our hybrid
second-order algorithm could converge. In addition, we find that the method is convergent for any initial iterative
value, any test point and parametric surface in many tested examples.

4.3. Convergence Analysis for the Improved Algorithm

Definition 1. In Reference [34] (Fixed Point), a function G from D ⊂ R2 into R2 has a fixed point at
p ∈ D if G(p) = p.

Theorem 2. In Reference [34] (Fixed Point Theorem), let D = {(x1, x2, ..., xn)T |ai ≤ xi ≤ bi , i =

1, 2, ..., n} for some collection of constants a1, a2, ..., an and b1, b2, ..., bn. Suppose G is a continuous function
from D ⊂ Rn into Rn with the property that G(x) ∈ D whenever x ∈ D. Then, G has a fixed point in D.
Moreover, suppose that all the component functions of G have continuous partial derivatives and a constant

0 < L < 1 exists with

∣∣∣∣∣∂gi(x)
∂xj

∣∣∣∣∣ ≤ L
n

, whenever x ∈ D, for each j = 1, 2, ..., n and each component function gi.

Then, these sequence {xk}∞
k=0 defined by an arbitrarily selected x0 in D and generated by

xk = G(xk−1), k ≥ 1. (25)

This converges to the unique fixed point p ∈ D and satisfies the iterative relationship

‖xk − p‖2 ≤
Lk

1− L
‖x1 − x0‖2 . (26)

In the following, we directly present the fixed point theorem for Newton’s iterative method.

Theorem 3. Let D = {t = (u, v)T |a1 ≤ u ≤ b1, a2 ≤ v ≤ b2} for some collection of constants a1, a2 and
b1, b2. Suppose G (see Equation (24)) is a continuous function from D ⊂ R2 into R2 with the property that
G(t) ∈ D whenever t ∈ D. Then, G has a fixed point in D. Moreover, suppose that all the component functions

of G have continuous partial derivatives and a constant 0 < L < 1 exists with
∣∣∣∣∂G1(t)

∂u

∣∣∣∣ < L
2 and

∣∣∣∣∂G1(t)
∂v

∣∣∣∣ <
L
2 and

∣∣∣∣∂G2(t)
∂u

∣∣∣∣ < L
2 and

∣∣∣∣∂G2(t)
∂v

∣∣∣∣ < L
2 , whenever t ∈ D, for each j = 1, 2 and each component function Gi.

Then, these sequence {tk}∞
k=0 defined by an arbitrarily selected t0 in D and generated by



Symmetry 2017, 9, 146 16 of 20

tk = G(tk−1), k ≥ 1. (27)

This converges to the unique fixed point p ∈ D and satisfies the iterative relationship

‖tk − p‖2 ≤
Lk

1− L
‖t1 − t0‖2 . (28)

Theorem 4. The convergence order of the hybrid second-order algorithm for orthogonal projection onto the
parametric surface is 2. Convergence of the hybrid second-order algorithm is independent of the initial value.

Proof. Let γ = (α, β)T be a root of system F(t) = 0, t = (u, v)T , where the system F(t) = 0 is expressed
by Formula (23). Define en = tn − γ and use Taylor’s expansion around γ, we have

F(tn) = F(γ) +
(tn − γ)

1!
∇F(γ) +

(tn − γ)2

2!
F′′(γ) +

(tn − γ)3

3!
F′′′(γ) + .... (29)

Since γ is a simple zero of the Formula (23), so F(γ) = 0. Then, we have

F(tn) = F′(γ)[en + b2e2
n + b3e3

n + o(
∥∥∥e4

n

∥∥∥ )], (30)

F′(tn) = F′(γ)[I + 2b2en + 3b3e2
n + o(

∥∥∥e3
n

∥∥∥ )], (31)

where bn =
[F′(γ)]−1F(n)(γ)

n!
, n = 2, 3, ....

Using (21), and (29)–(31), we obtain

yn = tn − [F′(tn)]−1F(tn) = γ + b2C2
0e2

n + o(
∥∥∥e3

n

∥∥∥ ). (32)

The result means that the hybrid algorithm is second-order convergent. According to the
procedure of the hybrid second-order algorithm, if the iterative parametric value satisfies the
convergence condition for Newton’s second-order iterative method, we then turn to Newton’s
second-order iterative method. If not, we continue the First-Order geometric iteration method until
its iterative parametric value satisfies the convergence condition of Newton’s second-order iterative
method. Then comes the end of the whole algorithm. When the hybrid second-order iterative algorithm
implements the First-Order iterative method, its independence of the initial value can be guaranteed
by Theorem 1. When the hybrid second-order iterative algorithm implements Newton’s second-order
iterative method, its independence of the initial value can be guaranteed by Theorem 3. To sum
up, convergence of the hybrid second-order iterative algorithm is independent of the initial value
throughout the whole algorithm operating process.

4.4. Numerical Experiments

Example 3. We replicate Example 1 using the hybrid second-order algorithm in Table 3 and compare it with
results in Table 1. In Table 3, the mean running time of the hybrid second-order algorithm is 303,210.7, 319,045.5,
92,325.2, 315,116.9, 308,383.9, and 95,399.5 nanoseconds for six different initial iterative values, respectively.
In the end, the overall average running time in Table 3 is 238,913.62 nanoseconds (≈0.2389 ms), while the
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overall average running time of Tables 1 and 2 in [18] is 0.3565 ms. So our hybrid second-order algorithm is
faster than the algorithm in [18]. On the other hand, from Table 3,

d = ‖p− s(α, β)‖

=
√
(p1 − f1(α, β))2 + (p2 − f2(α, β))2 + (p3 − f3(α, β))2

=

√
(0.3 - 0.3)2 + (0.5 - 0.4472135953)2 + (1.0 - 0.8944271911)2

= 0.1180339887.

Table 3. Running time (in nanoseconds) for different initial iterative values by the hybrid
second-order algorithm.

(u0, v0) (1,−2) (−2,2) (−2,−2) (0,0) (1,1) (−2,−1)

1 321,617 298,224 89,679 305,115 301,183 90,406
2 297,101 350,084 87,282 299,503 360,347 102,133
3 300,105 299,131 87,643 408,517 298,064 103,542
4 298,957 315,201 96,771 298,580 300,100 91,164
5 301,810 301,603 91,259 302,437 282,687 89,383
6 307,970 315,327 98,618 330,541 297,651 92,317
7 301,068 300,185 89,754 298,861 300,125 90,876
8 298,695 334,557 92,413 301,206 304,875 101,094
9 297,748 344,580 87,542 308,994 318,743 93,215
10 307,036 331,563 102,291 297,415 320,064 99,865

Average time 303,210.7 319,045.5 92,325.2 315,116.9 308,383.9 95,399.5

Example 4. We replicate Example 2 using the hybrid second-order algorithm in Table 4 and compare it with
results in Table 2. In Table 4, the mean running time of the hybrid second-order algorithm is 1,126,871, 991,834.4,
1,082,181, 1,002,949, 960,158.4, and 1,098,208 nanoseconds for six different initial iterative values, respectively.
In the end, the overall average running time is 1,043,700 nanoseconds(≈1.0437 ms), while the overall average
running time of the Example 2 for the algorithm in [18] is 1.705624977 ms under the same initial iteration
condition. So the hybrid second-order algorithm is faster than the algorithm proposed in [18]. On the other hand,
from Table 4,

d = ‖p− s(α, β)‖ =
√
(p1 − f1(α, β))2 + (p2 − f2(α, β))2 + (p3 − f3(α, β))2

=
√
(15.0− 16.9423279997)2 + (20.0− 20.4810001317)2 + (25.0− 23.3940081767)2

= 2.5657764754.

In Tables 3 and 4, the convergence tolerance, the decimal place of approximate zero and the
computation environment are set as those in Tables 1 and 2. The overall average running time of
0.336222 ms in Examples 3 and 4 for the algorithm in [18] implies that our hybrid second-order
algorithm is faster than the algorithm in [18] . In [18], the authors point out that their algorithm is
faster than the algorithm in [8], which means the hybrid second-order algorithm is faster than the
one in [8]. At the same time, the overall average running time of 61.81167 ms in three Examples for
their algorithm implies that our hybrid second-order algorithm is faster than the algorithm in [26].
However, in [26], the authors indicate that their algorithm is faster than the ones in [1,15], which means
our hybrid second-order algorithm is faster than the ones in [1,15]. To sum up, with the exception of
the First-Order method, our hybrid second-order algorithm converges faster than the existing methods
in [1,8,15,18,26]. In Tables 3 and 4, the unit of time is nanoseconds.
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Remark 3. The hybrid second-order algorithm presented can be applied for one projection point case for
orthogonal projection of a test point onto a parametric surface s(u, v). For the multiple orthogonal projection
points situation, the basic idea of our approach is as follows:

(1) Divide a parametric region [a, b]× [c, d] of a parametric surface s(u, v) into M2 sub-regions [ai, ai+1]×

[cj, cj+1], i, j = 0, 1, 2, ..., M - 1, where a = a0, ai+1 − ai =
b− a

M
, b = aM, c = c0, cj+1 − cj =

d− c
M

, d = cM.

(2) Randomly select an initial iterative parametric value in each sub-region.
(3) For each initial iterative parametric value, holding other initial iterative parametric values fixed, use the

hybrid second-order iterative algorithm and iterate until it converges. Let us assume that the converged
iterative parametric values are (αi, β j), i, j = 0, 1, 2, ..., M - 1, respectively.

(4) Compute the local minimum distances dij, i, j = 0, 1, 2, ..., M -1, where dij =
∥∥p− s(αi, β j)

∥∥.
(5) Compute the global minimum distance d = ‖p− s(α, β)‖ = min

{
dij
}

, i, j = 0, 1, 2, ..., M -1. If we try to
find all solutions as soon as possible, divide a parametric region [a, b]× [c, d] of parametric surface s(u, v)

into M2 sub-regions [ai, ai+1]× [cj, cj+1], i, j = 0, 1, 2, ..., M - 1, where a = a0, ai+1 − ai =
b− a

M
, b =

aM, c = c0, cj+1 − cj =
d− c

M
, d = cM such that M is very large.

Table 4. Running time (in nanoseconds) for different initial iterative values using the hybrid
second-order algorithm.

(u0, v0) (1,1) (2,2) (2,0) (1,2) (2,1) (0,2)

1 1,276,113 1,109,047 1,237,892 785,668 865,161 1,107,181
2 1,295,460 1,172,776 1,108,880 866,911 878,687 1,178,422
3 1,089,563 859,122 1,096,683 877,034 1,130,779 1,121,060
4 1,124,075 780,446 976,732 1,112,759 981,744 1,206,097
5 1,026,895 976,261 1,042,251 1,128,713 1,109,694 977,300
6 1,164,364 975,423 990,837 980,309 898,827 815,852
7 1,098,765 1,017,971 1,102,468 989,442 1,061,796 1,179,891
8 1,124,327 1,069,834 1,082,657 976,331 1,064,839 1,174,699
9 986,493 869,833 986,075 1,133,284 823,676 1,056,707

10 1,082,654 1,087,631 1,197,338 1,179,038 786,381 1,164,873
Average time 1,126,871 991,834.4 1,082,181 1,002,949 960,158.4 1,098,208

Remark 4. In addition to two test examples, we have also tested many other examples. According to these test
results, for different initial iterative values, it can converge to the corresponding orthogonal projection point
by using the hybrid second-order algorithm. Namely, if the initial iterative value is (u0, v0) ∈ [a, b]× [c, d],
which belongs to the parametric region of a parametric surface s(u, v), the corresponding orthogonal projection
parametric value for the test point p = (p1, p2, p3) is (α, β), and then the test point p and its corresponding
orthogonal projection parametric value (α, β) satisfy two inequality relationships

〈
p− s(α, β),

∂s(α, β)

∂u

〉
< 1E− 16,〈

p− s(α, β),
∂s(α, β)

∂v

〉
< 1E− 16.

(33)

This indicates that these two inequality relationships satisfy Formula (6) or (7). Thus, it illustrates
that convergence of the hybrid second-order algorithm is independent of the initial value. Furthermore,
the hybrid second-order algorithm is robust and efficient as shown by the previous two of ten
challenges proposed by [35].
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5. Conclusions

This paper investigates the problem related to a point projection onto a parametric surface.
To compute the minimum distance between a point and a parametric surface, three well-known
first-order algorithms have been proposed by [29–31] (hereafter, the First-Order method). In this paper,
we prove the method’s first-order convergence and its independence of the initial value. We also give
some numerical examples to illustrate its faster convergence than the existing ones. For some special
cases where the First-Order method does not converge, we combine it with Newton’s second-order
iterative method to present the hybrid second-order algorithm. Our method essentially exploits hybrid
iteration, thus it performs very well with a second-order convergence, it is faster than the existing
methods and it is independent of the initial value. Some numerical examples confirm our conclusion.
An area for future research is to develop a method for computing the minimum distance between a
point and a higher-dimensional parametric surface.
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