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Abstract: Schrödinger equations with non-Hermitian, but PT -symmetric quantum potentials V(x)
found, recently, a new field of applicability in classical optics. The potential acquired there a new
physical role of an “anomalous” refraction index. This turned attention to the nonlinear Schrödinger
equations in which the interaction term becomes state-dependent, V(x) → W(ψ(x), x). Here,
the state-dependence in W(ψ(x), x) is assumed logarithmic, and some of the necessary mathematical
assumptions, as well as some of the potential phenomenological consequences of this choice are
described. Firstly, an elementary single-channel version of the nonlinear logarithmic model is outlined
in which the complex self-interaction W(ψ(x), x) is regularized via a deformation of the real line of
x into a self-consistently constructed complex contour C. The new role played by PT -symmetry is
revealed. Secondly, the regularization is sought for a multiplet of equations, coupled via the same
nonlinear self-interaction coupling of channels. The resulting mathematical structures are shown to
extend the existing range of physics covered by the logarithmic Schrödinger equations.

Keywords: PT symmetry; nonlinear Schrödinger equations; logarithmic nonlinearities; coupled-channel
systems; regularizations

1. Introduction

During the early days of quantum theory, the typical model-building recipe started from the
description of dynamics in classical mechanics. Subsequently, the model was “quantized”, i.e., basically,
the scalar quantities were replaced by operators, etc. [1]. At present, the most successful model-building
strategies are almost entirely opposite: the mathematically much more complicated quantum models
are considered primary, while the theoretical verification of their acceptability is based on the analysis
of their classical limit (cf., e.g., [2]).

It is not too surprising that the inversion of the recipe proves productive. Pars pro toto, let us
mention the recent success of PT -symmetric quantum models in which one defines a quantum
system first [3]. Thus, in the pioneering letter [4], the authors initiated the study of bona fide quantum
Hamiltonian operators H = −d2/dx2 + ix3 and H = −d2/dx2 + x2(ix)δ, δ > 0, with the analysis of
the related classical limits only performed several years later [5].

One of the main physical messages delivered by the latter studies (see also the recent reviews [6,7])
may be seen in an encouragement of the building of quantum models with anomalous properties
ranging from the unusual forms of supersymmetry [8–11] up to the mathematically-consistent
incorporation of the relativistic kinematics in quantum mechanics [12]. In our present paper, we
intend to point out and demonstrate that one of the truly promising next steps might be also seen in a
move beyond the linear PT -symmetric quantum mechanics.
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2. Effective Hamiltonians

2.1. The Concept of Open Quantum Systems

The general linear quantum evolution equation:

i
d
dt
|Ψ(t)〉 = H(t) |Ψ(t)〉 (1)

(called, usually, the “time-dependent Schrödinger equation”) prescribes the evolution of a ket-vector
|Ψ(t)〉 ∈ H(T). Thus, pure states of a quantum system S are represented in a convenient “textbook”
Hilbert spaceH(T) [1]. During any measurement (performed, presumably, at a suitable positive time
t = t f in > 0), our knowledge of the solution |Ψ(t f in)〉 of Equation (1) enables us to consider any
(self-adjoint) operator Q(t) of an observable quantity and to predict the probability distribution of
its measured values in terms of matrix elements 〈Ψ(t f in)|Q(t f in)|Ψ(t f in)〉. In the applications of such
a theory, one has to keep in mind the conventional tacit assumptions, e.g.,

{A.1} about the pure-state nature of the initial conditions. This must be guaranteed by the preparation
of the system at t = tini = 0;

{A.2} about the unitarity of the evolution requiring, due to the Stone theorem [13], the self-adjointness
of the Hamiltonian inH(T), H(t) = H†(t);

{A.3} about the absence of any “external” forces and/or interactions that would couple S (called “open
quantum system”) to a dynamically uncontrolled “environment” S ′ [14,15].

The validity of all of these assumptions must be carefully checked in applications. In fact, it is
rather easy to weaken Assumption {A.1} and to move to quantum statistics working with mixed
states. Recently, it has been also shown that it is not so prohibitively complicated to weaken also the
self-adjointness Assumption {A.2} while still staying inside the linear quantum theory of textbooks
(cf., e.g., the set of review chapters in the recent book [7]). In contrast, the numerous theoretical and
mathematical (pars pro toto, let us mention [2]), as well as the more straightforward and pragmatic (cf.
[16–18]) analyses of the role of Assumption {A.3} seem to lead to the necessity of a reconsideration of
the very foundations and consistent formulations of the linear quantum theory itself.

We believe that it is necessary to pay more attention to the simultaneous weakening of the two
apparently separate traditional postulates {A.2} and {A.3} concerning the self-adjointness and linearity
of the quantum observable quantities, respectively. In this sense, our present study may be perceived
as originating from the recent brief account of the recent history of quantum theory [19] in which the
possible respective weakening of Postulates {A.2} and {A.3} was still presented as strictly independent.

This independence was emphasized by the notation. Thus, in the former setting of Postulate
{A.2}, the self-adjoint nature of the Hamiltonian in the conventional Schrödinger Equation (1) was
emphasized, whenever needed, by the replacement of the ambiguous symbol H(t) by its lower-case
version h(t) (cf., e.g., Equation (1.5.1) in [19]). Then, a transition was considered to certain generalized,
non-self-adjoint Hamiltonian-resembling operators G(t) controlling the evolution of wave kets (for the
rigorous definitions and for further details, the readers may consult also review [20]).

2.2. The Feshbach’s Concept of Model Space

In the alternative, more conventional context of the weakening of Postulate {A.3}, let us recall
Feshbach’s projection-operator method [21]. In it, one partitions the identity operator of the textbook
Hilbert spaceH(T) into a pair of projectors, I = R + Q. According to the traditional philosophy, one
interprets projectors R and Q as corresponding to the “almost decoupled” quantum systems S and
S ′, respectively. This enables us to partition the Hamiltonian eigenvalue problem in the complete
spaceH(T),

(R + Q) H (R + Q) |Ψn〉 = En (R + Q) |Ψn〉 .
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In the subsequent step, one replaces this eigenvalue problem by its strictly equivalent nonlinear
alternative defined in the smaller, R-projected and S-representing open-system subspace alias model
space (cf. Equation (1.1.1) in [19]),

He f f (En) |Φn〉 = En |Φn〉 , |Φn〉 = R |Ψn〉 . (2)

Naturally, the price to pay for the full preservation of the physical contents of the theory is that
the effective model-space Hamiltonian:

He f f (E) = R H R + R H Q [E I −Q H Q]−1 Q H R (3)

becomes state-dependent. This is a nonlinearity feature that leads, also, to the necessity of a
re-evaluation of the unitarity {A.2} of the evolution (cf. also [22] for a few related interesting
technical details).

3. Antilinear Versus Nonlinear Interactions

3.1. Quantum PT -Symmetric Schrödinger Equations

In 2015, Jorge Cham [23] classified the “parity-time alias PT symmetry in optics” as the research
subject, which belongs among the top ten physics discoveries of the decade. During the same period
of time, the subject also (re-)attracted the attention of mathematicians [7]. Still, one should not forget
about the decisive role played, especially during the early stages of these developments, by quantum
physicists. For the reasons as summarized, e.g., in the reviews [3,6,19], the current quick growth of
interest in this brand new branch of classical physics and experimental optics would not probably
emerge without its deep theoretical motivation provided by the numerous quantum PT symmetric
models.

In the context of classical physics the most interesting and specific role has been played by the
models in which one dealt with certain nonlinear parts of the interactions. These efforts may be found
preceded by one of the oldest published papers on the quantum field version of PT symmetry [24].
In this paper the authors found and proved, constructively, that the expectation value of the field
does not vanish in a broad class of the D-dimensional scalar quantum field cases. In the language
of mathematics, their interaction Lagrangian was chosen nonlinear and non-Hermitian, but PT
symmetric,

Lint ∼ φ2(iφ)δ = φ2 + δφ2 ln(iφ) + δ2φ2[ln(iφ)]2 + . . . . (4)

In this formula, the (presumably, small) parameter δ played the role of a measure of the
nonlinearity of the interaction. Due to the immediate emergence of certain mathematical difficulties
and/or serious open questions [7], the attention has been, subsequently, limited to the linear PT
symmetric quantum models, which remained compatible with the textbook quantum mechanics (see,
e.g., the early papers [4,25] or the thorough review [6]).

3.2. The Turn of Attention to Classical Optics

Around the year 2006, many Schrödinger equations describing the quantum-mechanical models
were revealed to be mathematically-equivalent to Maxwell equations in media [26,27], see also
more recent works [28,29]. This opened a way towards a natural, phenomenologically-motivated
introduction of nonlinear interaction terms and, in particular, towards the nonlinear Schrödinger
equations.

In our present paper, we decided to start the more specific considerations from one of the simplest
special forms of the latter family of equations, viz., from the nonlinear logarithmic Schrödinger
equations (LSE),

i∂tψ(~x, t) = (−∆ + VLSE)ψ(x, t) , VLSE = −b ln |ψ(x, t)|2 (5)
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containing the d-dimensional Laplacian ∆ and a constant real-valued parameter b.
The motivation of such a choice was three-fold. First of all, we took into consideration that the

models with logarithmic nonlinearities are exceptional in admitting the existence of spatial solitons and
bullets [30,31]. This makes certain nonlinear media well described by these models, especially when
the singularity of the logarithm is assumed suitably regularized. In some cases, even the closed-form
solitonic solutions can be obtained [31].

Secondly, we felt inspired by the possibility of transition from a single-channel model (5)
to its various possible coupled-channel generalizations. In more detail, this motivation will be
explained in Section 3.3 below. Our third source of interest in the applicability of the nonlinear
and non-Hermitian, but PT -symmetric models preceded the above-cited note [23], which emphasized
the role of PT -symmetry in classical optics.

The discovery of this role originated in fact in quantum mechanics [4,26]. In the language of
mathematics, the paradox and challenge lied in the reality of the spectra generated by the manifestly
non-Hermitian quantum Hamiltonians. What proved worth the generalization was the possibility of
a move from the real line of the “coordinate” x ∈ R in Equation (5) to its more general, complex-contour
alternative x ∈ C ⊂ C (cf. Section 4 below).

In between the two (viz., real-x and complex-x) extremes, one can find the models in which
the coordinates x are discrete (cf., e.g., [32], with further references). This might make the contact
with experiments in optics even closer. In a broader context of applications of PT -symmetry to the
other areas in mathematics and physics, the readers are recommended to consult the recent review
paper [33].

3.3. The Turn of Attention to the Coupling of Channels

The phenomenological success of the linear Schrödinger equations of the single-channel, as well
as multiple-channel forms (for example, in quantum chemistry) was based on the computer-supported
success of various sophisticated constructive and variational methods. Among them, we felt
particularly addressed by the efficiency of the so-called exp S alias coupled-cluster method (CCM) [34].
The search for the wave function ψ(~x, t) has been found facilitated there, plus in multiple non-chemical
applications [35–37], via a pre-multiplication ansatz:

ψ = Âψ0. (6)

A trivial (plus, usually, time-independent) Slater-determinant reference function ψ0 is multiplied
here by an ad hoc operator written in an exponential-function form, Â = exp Ŝ. In the language
of numerical mathematics, the latter ansatz is called a “preconditioning” of the wave function [38]).
The essence of the CCM construction of a specific physical state ψ may be then seen in the successful
re-construction of the “operator logarithm” Ŝ. This is achieved in the form of its infinite-series
expansion, usually in a suitable basis of the standard creation and annihilation operators.

4. Nonlinear Schrödinger Equations on Complex-Plane Contours of the “Coordinate”

The appeal of the single-channel nonlinear Schrödinger equations:

i∂tψ(x, t) = −∆ ψ(x, t) + g F[ψ(x, t)]ψ(x, t) (7)

is not only mathematical, but also phenomenological (as we already mentioned, these equations find
applications ranging from classical optics [39,40] to the advanced studies of complicated quantum
systems [41]). In all of these contexts, the choice of the nonlinearity is desirable, but in practice,
mostly restricted to its local-probability-density-like quadratic special case:

F(quadratic)[ψ(x, t)] = $(x, t) = ψ∗(x, t)ψ(x, t) .
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The study of the more general and non-polynomial versions of the theory is more difficult and,
hence, perceivably less popular. As we already indicated, a special role is played by the logarithmic
choice of:

F(logarithmic)[ψ(x, t)] = ln [ψ∗(x, t)ψ(x, t)] .

From the purely formal point of view, the conventional admissibility of the complex values of the
wave functions ψ(x, t) may cause serious technical problems in the latter case because the negativity
of $(x, t) would imply that one has to treat F(logarithmic)[ψ(x, t)] as a multi-sheeted analytic function
with essential singularity in the origin.

4.1. Linear Equations on the Complex Contours

One of the possible ways of circumventing the latter technical obstacle has been recently outlined,
in a broader framework of PT -symmetric quantum theory, by the authors of [42]. These authors
started from the deep knowledge of the underlying formalism (cf., e.g., its detailed description in
[3]). First of all, they emphasized that once the self-interaction in the (linear or nonlinear) Schrödinger
equation acquires the form of a multi-sheeted analytic function, one has to keep in mind that the
integration contours of x need not be kept real. Without any change in the measurable predictions,
they may be, inside the domains of the analyticity of ψ(x), deformed.

Once we admit that x may move along a complex line or contour (say, C), it becomes very
natural to introduce the concept of a nonlocal quantum probability density σ(z) = ψ∗(−z, t)ψ(z, t),
which would be defined in the whole complex plane of the “coordinate” z (let us note that the latter
variable z need not necessarily lie on the “admissible” contour C; that is why we changed the symbol).
In this context, it is now easy to imagine that once we admit that the choice of the contour C is at our
disposal, we may control its choice, and we may guarantee that the conventional positivity of the
local probability density $(x, t) = ψ∗(x, t)ψ(x, t) (for which we had x ∈ R) may find its complex-plane
nonlocal (and, for the sake of simplicity, stationary) generalization σ(z) = ψ∗(−z, t)ψ(z, t).

The authors of [42] developed this idea in an impressive study of some of its purely technical
aspects. Upon their hypothetical nonlocal probability density σ(z) = ψ∗(−z, t)ψ(z, t), they imposed
the strict direction-dependent reality requirement:

Im σ(z)dz = 0 (8)

and complemented it by the second, direction-dependent “strict positivity” requirement:

Re σ(z)dz > 0 . (9)

This study proved truly inspiring. In the context of nonlinear Schrodinger equations living on
the real line, such a possibility, without the use of the complex direction-determining constraints (8)
and (9), was considered by Ablowitz and Musslimani in [43,44].

4.2. Nonlinear Equations on the Complex Contours

The authors of [42] postulated that ψ∗(−z, t) = ψ(z, t). This requirement may be called “unbroken
PT -symmetry”, implying that in the linear quantum models:

• the latter two equations may be solved to determine the “correct” contour C,
• in a technically highly nontrivial manner, one can also guarantee that for one of the resulting

contours, the “candidate for the anomalous quantum probability density” σ(z) can be globally
normalized to one,

∫
C σ(z)dz = 1.

In the context of our present paper, we imagined that the goal achieved in [42] may prove also
useful in the nonlinear-equation setting. We may claim that the demonstration of the existence of the
contours C and of the practical feasibility of their reconstruction from the pair of constraints (8) and (9)
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may find its immediate application also in the development of the new class of the nonlinear
Schrödinger Equation (7) in which one would set:

F(logarithmic PT −symmetric)[ψ(x, t)] = ln [ψ∗(−x, t)ψ(x, t)] . (10)

In other words, interactions − log σ(z) will possess the nice properties of having the
self-interaction term real and, hence, easily interpreted in the spirit of standard textbooks. It is
important that the construction circumvents the necessity of the analysis of the influence of the
essential singularity upon the very definition of the (nonlinear) Hamiltonian operator [45].

It is worth adding that the “optimal” complex contour C depends on the wave functions.
This means that it varies with time in general. For this reason, even the authors of the pioneering
paper [42] had to accept the adiabatic approximation, set, for simplicity, ψ(z, t) = exp(iEnt)ψn(z), and
treat the contour C as time independent, having postponed “consideration of time-dependent contours
to a future paper”. Still, their results, incomplete as they are at present, proved important and close to
our present interests, especially in emphasizing that although the “mathematics needed to analyze
these contours is subtle and involves the use of asymptotics beyond all orders”, one should point out
that “ the existence of such contours is the essential element in establishing the correspondence between
complex quantum and classical mechanics . . . in the high-quantum-number limit” [42]. We may just
add here that the same mathematics also lies in the grounds of the possible extension of these results
to the logarithmically nonlinear complex quantum/classical mechanics.

5. Effective Nonlinearities

Initially, our considerations were restricted to the standard linear quantum theory in which we
found several sources of motivation (cf. Section 6 below). Then, we turned attention to the potentially
useful phenomenological (cf. Section 7) and mathematical (cf. Section 8) aspects of various nonlinear
extensions of the conventional linear models.

We came to the conclusion that at least some of the nonlinear Schrödinger equations deserve a
deeper study and, perhaps, an extension to matrix models. The preliminary illustration of such an
expectation has been found via the study of several special cases and analytical solutions; cf. Section 9
and the discussion in Section 10.

5.1. Coupled Cluster Wave-Function Ansatz

There exist several reasons for the (a priori, not quite expected) practical success of the CCM
approach in which one replaces the construction of the Hilbert-space vector ψ by the construction of
the Hilbert-space operator (i.e., of the M×M matrix Â with M = ∞). Among them, let us mention
here just the fast a posteriori convergence of the results obtained, within the framework of quantum
chemistry, via truncations (i.e., via finite-dimensional approximations using M < ∞).

We feel impressed and inspired by the practical success of applications of the CCM idea.
Its assumptions of the stationarity of the system and of the constancy of ψ0 lead to the reduction
of Equation (13) to the time-independent eigenvalue problem. It can be rewritten in the specific,
user-friendly CCM linear equation: (

Ĥ − E
)

exp Ŝ = 0 . (11)

The equation is to be satisfied by the eligible preconditioning operators Ŝ = ln Â (cf., e.g., review
papers [46] and/or [47] for more details). In this context, the most natural matrix, channel-coupling
realistic upgrade of Equation (5) would be the following coupled set of M2 logarithmic Schrödinger
equations:

i∂tA+ ∆A−V(NL)A = 0 , V(NL) = −b ln(A†A) . (12)

They may be expected to contain the manifestly A-dependent interaction term, generating the
time-evolution of the M2-plet of the time-dependent matrix elements of A = A(~x, t). We intend to pay
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attention to a few consequences of the scalar-to-matrix generalizations of the nonlinear interactions in
their specific logarithmic-nonlinearity sampling.

5.2. Broader Context in Physics

One of the key motivations of the efforts aimed at a suitable nonlinear reformulation of quantum
theory may be seen in the lack of any consistent formal bridge between linear theory and general
relativity [48]. Typically, the role of the environment S ′ would be played there by the self-gravity of
the particles themselves. Thus, in the language of the Newton–Schrödinger equation, the Hamiltonian
in Equation (1) (or, at least, its “effective potential” part Ve f f ) would vary with the wave function in
a way controlled, say, by an independent (say, Poisson) equation [2,31].

For the sake of the feasibility of calculations, the structure of Ve f f is often postulated in advance.
One of the best known examples is provided by [16,17] in which the toy models are considered in
the form of the nonlinear logarithmic Schrödinger Equation (5) with the wave-function solutions
ψ ∈ L2(<d) studied in an interval of time t ∈ (t0, t1). This equation, along with its relativistic analogue,
finds multiple applications in the physics of quantum fields and particles [49–55], extensions of
quantum mechanics [16,56], optics and transport or diffusion phenomena [57–60], nuclear physics [61,
62], the theory of dissipative systems and quantum information [63–68], the theory of superfluidity [69–
72] and the effective models of the physical vacuum and classical and quantum gravity [73–76], where
one can utilize the well-known fluid/gravity analogy between inviscid fluids and pseudo-Riemannian
manifolds [77–81]. The relativistic analogue of Equation (5) is obtained by replacing the derivative
part with the d’Alembert operator and is not considered here.

Naturally, in the general nonlinear context, the physical meaning of the solutions ψ, as well as the
proper interpretation of their evolution depend on the phenomenological background of the application
one has in mind. The strict coincidence of the physical predictions between the standard linear quantum
model and its effective nonlinear alternative will decrease with the growth of the uncertainty, i.e., of the
size of the space eliminated, say, by Feshbach’s partitioning in Equation (3). The simplification may
enhance the errors. Still, the merits of Equation (5) and, in particular, of the logarithmic form of
the nonlinearity are shared by many concrete physical applications. The close limiting-transition
correspondence between the nonlinear and linear models may be preserved, in principle at least.

6. Roots in Linear Theory

The evolution of quantum systems is commonly described in the Schrödinger picture [1], by the
Schrödinger equation:

i∂tψ(~x, t) = Ĥψ(~x, t) , Ĥ = −∆ + V(~x), (13)

which is linear. Besides, in this equation the choice of a form of the potential V(~x) is usually dictated
by a combination of pragmatic and theoretical considerations. In this section, we give some arguments
for how the effective nonlinearities can arise in quantum theory despite the linearity of the “global”
Schrödinger equations themselves.

6.1. Pilot-Wave Approach

For the purposes of illustration, one can select, as a starting point, the context of (linear) quantum
mechanics. In its de-Broglie and Bohm formulation [82] (often called “pilot-wave” formulation [83]),
one uses the Madelung representation of a conventional wave function, in which the latter factorizes
into the product:

ψ(~x, t) = R(~x, t) exp[iS(~x, t)] (14)

where both of the auxiliary functions R(~x, t) and S(~x, t) are real-valued (see also [84,85] for more
commentaries). Such an assumption becomes particularly relevant in the subsequent step of
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a nonlinearization of the theory in which one inserts ansatz (14) in Equation (5). One reveals that the
nonlinear interaction term:

VLSE ∼ ln |ψ(~x, t)|2 = 2 ln R(~x, t) (15)

becomes perceivably simplified and entirely independent of the phase S(~x, t), so one feels encouraged
to analyze the consequences.

The scalar, single-component nature of the real functions ψ(~x, t), R(~x, t) and S(~x, t) may be
perceived as an artificial restriction. Indeed, the simplifying role of the polar decomposition (14) could
have been easily extended to matrices. This is one of the guiding ideas of our present work. Indeed,
as long as there exists a very natural polar decomposition for matrices, we decided to pay attention to
the replacement of the complex scalar quantity ψ(~x, t) in Equation (5) by an (say, invertible) M by M
complex matrix A(~x, t).

6.2. Solvable and Partially-Solvable Models

The relevance of both of the latter aspects of the choice of V(x) may be exemplified by
the tremendous popularity of the exactly solvable (ES) harmonic oscillator V(HO)(~x) ∼ |~x|2,
which combines the non-numerical, analytic (or algebraic) nature of Equation (13) with the appeal of
the equidistant, purely vibrational spectrum of the low-lying bound-state energies E(HO) and of the
localized closed-form wave functions:

ψ(HO)(~x, t) ∼ exp(−iE(HO)t) exp
(
−|~x|2/2 +O(ln |~x|)

)
, (16)

which may be recalled an explicit illustration of the polar decomposition (14).
The other choices of the phenomenologically useful interactions may emphasize either the formal

friendliness of V(~x) 6= V(HO)(~x) (e.g., the closed-form tractability of the ES Schrödinger equations [86–
88]) or its capability of providing an insight into the variability of the dynamics (thus, one may add
perturbations to V(HO)(~x)), etc.

Furthermore, coexistence between mathematics and phenomenology has been also achieved via
the so-called quasi-exactly solvable (QES) models [89–91]. In this setting, one starts from a qualified
guess of a few suitable input wave-function candidates. The idea proves particularly productive when
the logarithmic corrections in (16) are replaced by an explicit ansatz. In the case of an `-th partial wave
and for an n-th radial excitation, for example, the formula [92,93]:

ψ
(QES)
n,` (r, t) ∼ exp(−iEnt) exp(−r2/2)

N

∑
k=0

a(n)k rk+`+1, (17)

where r = |~x|, can be recalled as providing one of the analytically-solvable illustrations (the readers
may consult, e.g., [94–98] for multiple extensions of such an approach to quantum model building).

In both of the ES and QES studies, an interest in the formal questions prevails (see, e.g., the most
recent review [99]). We intend to pursue here a slightly different implementation of the ansatz idea.
The emphasis will be shifted from the detailed study of correction terms O(ln |~x|) in Equation (16) to
the generic large−|~x| behavior of the time-independent modulus of the asymptotically harmonic wave
functions as prescribed by Formula (16),

ψ∗(HO)(~x, t)ψ(HO)(~x, t) ∼ exp(−|~x|2 +O(ln |~x|)) . (18)

Such an asymptotic estimate of wave functions may be perceived as related to a certain
equivalence-class property of potentials,

V(initial)(~x) = |~x|2 +O(ln |~x|) ∼ − ln[ψ∗(~x, t)ψ(~x, t)] = V(generalized)(~x) . (19)
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Virtually the same relationship could have been also deduced from our QES toy model (17):

V(generalized)(r) = −b ln[ψ∗(QES)(r, t)ψ(QES)(r, t)] ∼ r2 +O(ln r) = V(initial)(r), (20)

if one imposes b = 2.
Notice that the correction term O(ln |~x|) is only negligible in the asymptotic domain. Our

illustrative example (17) demonstrates that the non-exponential, power-law components of the wave
function become dominant near the origin. In this domain of coordinates, Equation (18) becomes
replaced by an alternative estimate,

ψ∗(~x, t)ψ(~x, t) ∼ O(|~x|const) (21)

so that, in full analogy with the standard M = 1 nonlinear logarithmic Schrödinger Equation (5),
one encounters one of the natural limitations of the parallels with linear models.

In light of all of these formulae, it is not too surprising that the special, logarithmically-nonlinear
Schrödinger Equation (5) was proposed as an eligible generalization of its linear predecessor in
quantum theory [16].

7. Roots in Phenomenology

An important formal support for the turn of attention to the matrix nonlinear wave-equation
model (12) may be found again in the non-commutative matrix version:

A(~x, t) = U(~x, t)P(~x, t) (22)

of the polar decomposition formula in which the auxiliary M × M matrix U(~x, t) is required to
be unitary, while the second M × M matrix factor P(~x, t) is demanded to be positive definite and
Hermitian, P = P† > 0. Thus, for any given (and, say, invertible) M × M matrix A, a full formal
analogy between fundamental Formulae (14) and (22) is established. The existence and uniqueness of
the latter formula form a mathematical core of our present message.

Naturally, at the nontrivial matrix dimensions M > 1, the attempted (and, say, logarithmic)
nonlinearization of the theory encounters several challenges on the conceptual level. Nevertheless,
the underlying mathematical idea of factorization (22) preserves the closest analogy with its
conventional scalar M = 1 special case (14).

In this sense, also the choice of the matrix interaction term in its logarithmic form:

V(NL) = −b ln(A†A) = −2 b ln P(~x, t) (23)

seems optimal. It is worth emphasizing that even the first nontrivial case with M = 2 and with:

A =

(
ψ11(x, t) ψ12(x, t)
ψ21(x, t) ψ22(x, t)

)
(24)

may be perceived as a dynamical evolution model of four (in general, of M2) complex-valued
functions ψab(x, t).

As we already emphasized, our interest in the matrix model of the evolution (12), (23) is
mainly motivated, among all of its eligible physical backgrounds, by the conventional (linear)
quantum mechanics. In such a framework, one often employs the point-particle interpretation of the
single-channel wave functions ψj and moves to the coupled-channel scenario in which the dynamics is
still linear and controlled by a suitable matrix potential [100].

Apparently, a nonlinear generalization of the coupled-channel evolution equation might seem
natural and straightforward, but one has to avoid several technical, as well as conceptual obstacles.
Firstly, although the experimental tests as performed for conserved systems in atomic physics
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excluded any quantitatively predictive implementation of the “effective nonlinearity” hypothesis
of the logarithmic type, the reality-mimicking situation appeared perceivably more encouraging in
nuclear-physics phenomenology where the spatial separation of the individual fermions may be
expected to be reduced [61,62], as well as in a theory of superfluidity, where many-body interactions
become strongly nonlinear with an increase of density [69–72]. The appealing possibility of making
quantum theory slightly nonlinear survived as a challenging theoretical option.

In this spirit, keeping the mathematical structure of equations sufficiently close to the
quantum-lattice-like picture of interacting harmonic oscillators, the resulting effective, nonlinear
forms of quantum mechanics could also shorten its distance from the formalism of relativistic quantum
field theory [101], in principle at least.

In the opposite direction, let us finally contemplate the transition from scalar quantities ψ to
matrices A in a way aimed at a mathematical parallelism between the non-scalar M×M nonlinear
theory and its linear, quantum-mechanical predecessors in which there emerges the direct concept of
the coupling of channels. What comes immediately in mind are (linear) Schrödinger equations in which
the single wave function ψ(~x, t) (describing, say, the motion of a single particle or quasiparticle) is
replaced by a K-plet ~ψ(~x, t) = ψ1(~x, t), ψ2(~x, t) , . . . , ψK(~x, t) of independent wave functions describing,
in the language of physics, separate “channels”. In this sense, the replacement of ψ by A can be
perceived as just one of the special choices.

The resulting picture may be given a slightly modified interpretation in which the individual
single-channel wave functions become treated as infinite, N-dimensional bra-vectors with
N = ∞. Once the coordinates may be discretized, one obtains an N-dimensional column-vector
ψ(xi, t), i = 1, 2, . . . , N representing the single-channel wave function. A K-plet of these functions
might be then perceived as a non-square, N × K matrix A.

Although we do not intend to follow the latter, alternative line of consideration in what follows,
the study of the latter possibility should still be kept in mind (we are skipping this idea here mainly
because we would have to work with non-square matrices, losing the polar decomposition (22) and
having to replace the usual Laplacian ∆ by its discrete alternative). Still, having matrices A = A(~x, t)
defined as the K-plets of wave-function components ψj(~x, t) with j = 1, 2, . . . , K, the underlying
quantum theory could be also made nonlinear along very similar lines.

8. Constructions Strategies

Let us now formulate some general remarks about the scenario in which matrix A has rank M.
The transition from scalars ψ to matricesA opens several technical problems related to the generic

non-commutativity between A and its Hermitian conjugate A†. One of the most natural technical
tools of simplification of the general M×M problem may be seen in various reparametrizations of
these matrices.

As we already emphasized, the most promising sample of such a reparametrization is provided
by the polar decomposition (22). Unfortunately, in spite of its feasibility at the sufficiently small matrix
dimensions M, such a reparametrization becomes complicated if we encounter some special forms of
A at larger M. One sample of such a sparse-matrix assumption and scenario will be provided below.

One can expect that our choice of the forms of the (not necessarily Hermitian) matrix A will be
dictated by its algebraic (i.e., Lie-algebraic) characteristics. In such a setting, one of the promising
(and, at the same time, not necessarily perturbative) technical ingredients may be seen in the use of the
Baker–Campbell–Hausdorff identity [102]:

ln(exp A exp B) = A + B +
1
2
[A, B] +

1
12

([A, [A, B]] + [B, [B, A]])−

− 1
4!

[B, [A, [A, B]]]− 1
6!

([A, [A, [A, [A, B]]]] + [B, [B, [B, [B, A]]]]) + . . . . (25)
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Indeed, once we reparametrize A = exp B and A† = exp A, we may try to require, tentatively,
that starting from a certain level of nesting, the nested commutators between matrices A and B would
vanish. Then, the series (25) will be truncated.

Let us now describe one of the preliminary possibilities of a consistent bridging of the gap.
We shall restrict our attention just to the most elementary possibility in which one perceives the
quantum (and, perhaps, free or just weakly self-interacting) field as a set of harmonic oscillators. In
such a perception, one could very naturally assign nonlinear generalizations (5) to every one of these
oscillators. Next, we may mimic the field dynamics by a suitable weak (i.e., say, nearest-neighbor)
mutual interaction between these oscillators.

On this background, we analyze the possibility in which the coupling between the individual
oscillators (i.e., between the initially decoupled linear Schrödinger Equation (13)) gets mediated by
a tentative, model-forming replacement of a vector ψ by a (say, very weakly non-diagonal) matrix A.

Once one accepts the effective theory interpretation of the single nonlinear Equation (5) and
once one re-writes it in the equivalent form (12) for a single scalar function A = ψ(~x, t) = ψ1(~x, t),
one gets immediately interested in a transition to an M-plet of such equations, which are only coupled
by the logarithmic interaction term. For such a purpose it is sufficient to re-interpret symbol A, say,
as a weighted diagonal matrix,

A =



g1 ψ1(~x, t) 0 . . . 0

0 g2 ψ2(~x, t)
. . .

...

...
. . . . . . 0

0 . . . 0 gM ψM(~x, t)


. (26)

One of the most natural tentative physical interpretations of such a generalization should proceed
strictly along the lines as discussed in Section 9 below.

In between the two extremes of a diagonal and of a fully-general matrix form of A, there exists
a natural intermediate structure in which one stays as close to the most elementary diagonal extreme
as possible, but in which one recalls the nearest-neighbor coupling idea as used most often in linear
Schrödinger equations. This leads to the ansatz:

A =



g1 ψ1(~x, t) h1 χ1(~x, t) 0 . . . 0

f2 λ2(~x, t) g2 ψ2(~x, t) h2 χ2(~x, t)
. . .

...

0
. . . . . . . . . 0

...
. . . fM−1 λM−1(~x, t) gM−1 ψM−1(~x, t) hM−1 χM−1(~x, t)

0 . . . 0 fM λM(~x, t) gM ψM(~x, t)


. (27)

In its full generality, such an ansatz looks fairly complicated. At the same time, the flexibility
of an interplay between the linear and nonlinear channel-coupling mechanisms seems
phenomenologically highly promising.

The way out of the dilemma leads via a return to the M = 2 models of preceding sections. At the
same time, the growth of M still keeps the matrix (27) tractable as factorized into the product of an
upper-triangular and lower-triangular matrix. Thus, whenever the coupling constants hj and fk remain
sufficiently small, this opens a way towards the tractability of similar systems at arbitrarily large
dimensions M.
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9. Analytical Solutions

In this section, we pay attention to the possible simulations of the interaction between a system and
its environment, which would be based on the logarithmic type of the interaction’s nonlinearity. Let us,
therefore, start from the choice of the first nontrivial case and consider solutions of the matrix LSE of
the form (12) with A being a 2× 2 matrix (24). For the sake of simplicity, let us also limit our attention
to the case of the single spatial dimension replacing vector ~x by scalar x. Then, Equation (12) becomes:

i∂tA+ ∂xxA+ b ln(A†A)A = 0, (28)

and we also impose that:
x1∫

x0

tr(A†A)dx = N , (29)

assuming that the system is confined to the interval of x ∈ [x0, x1]. The latter formula comes from
the normalization condition:

∫
d~x tr(A†A) ≡ 〈A|A〉 = N , where integration is taken over a spatial

volume taken by the system, N being a constant usually interpreted as a number of particles inside
such a volume, while tr here is the standard matrix-trace operation.

Furthermore, below, we consider the cases when we managed to obtain exact analytical solutions
of Equation (28).

9.1. Diagonal Case

We shall start our analysis from the simple, yet nontrivial case of the two coupled LSEs, written
in the form of (12), (24), A being a diagonal matrix:

A =

(
ψ1(x, t) 0

0 ψ2(x, t)

)
, (30)

where ψa(x, t) are complex-valued functions. In this model, the auxiliary cross-coupling terms are
neglected. Considering this case enables us to contemplate, more easily, a pair of uncoupled logarithmic
Schrödinger equations in a way that would emphasize also certain parallelism with the concept of the
coupled channels in the linear theory setting. Moreover, in the language of phenomenology, any pair
of similar individual equations, linear or nonlinear, may be perceived as mimicking a fully-separated
evolution of an isolated system S1 (of our immediate interest) and of its remote and irrelevant,
“switched-off” environment S2.

In the more realistic situations, one can only rarely neglect the possible cross-interaction between
subsystems S1 and S2 completely. Still, the most immediate reward of the study of such a mutual
interaction usually comes when one assumes that the resulting “perturbation” of the relevant
subsystem S1 remains weak.

The ground-state solution of Equation (28) can be found exactly. In a rest frame, it has the form of
the gausson, i.e., by the Gaussian packet modulated by the de Broglie plane wave,

ψa(x, t) = Ca exp
(
−1

2
b x2 + νax− iEat

)
, (31)

where a = 1, 2 and where:
Ea = b(1− ln C2

a)− ν2
a (32)

is the energy of a wave in the a-th channel. Quantities Ca and νa are integration constants related,
together with b, to the mean and variance of the Gaussian packet.
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If one imposes also the normalization condition (29), then one obtains an additional constraint for
the integration constants:

F1(x0)− F1(x1) + F2(x0)− F2(x1) = 2

√
b
π
N , (33)

where we denoted Fa(x) = C2
a exp

(
ν2

a
b

)
erf
(

νa−bx√
b

)
. For instance, when x1 and x0 are set to plus and

minus infinity, then this constraint takes a simple form:
2
∑

a=1
C2

a exp
(

ν2
a
b

)
=
√

b
πN .

Note that due to the Galilean symmetry of LSE, from the solution (31), one can always obtain
gausson solutions whose center of mass propagates with velocity va, independently for each channel.
For instance, one can check that the following function:

ψa(x, t) = Ca exp
[
−1

2
(x− vat) (b(x− vat)− 2νa − iva)

]
, (34)

is also a solution of Equations (28) and (31), provided:

(va/2)2 + ν2
a = b(1− ln C2

a), (35)

va being another real-valued integration constant.
Finally, one can check that the solution (30) naturally satisfies the commutativity condition:[

A†, A
]
= 0, (36)

which eliminates the question of ordering inside the logarithmic term. This condition can be also
considered as a requirement that one works with two observables described by A† and A and having
common eigenvectors, i.e., being measurable simultaneously.

9.2. Off-Diagonal Case

Contrary to the previous case, let us assume that it is the channel-coupling terms that are
dominating now. Therefore, one can assume A to be an off-diagonal matrix:

A =

(
0 ψ̄1(x, t)

ψ̄2(x, t) 0

)
, (37)

where ψ̄a(x, t) are complex-valued functions.
Still, the ground-state solution of Equation (28) can be found exactly. In a rest frame, it also has

the form of the Gaussian packet modulated by the de Broglie plane wave,

ψ̄a(x, t) = Ca exp
(
−1

2
b x2 + νax− iĒat

)
, (38)

where a = 1, 2, and:
Ēa = ν2

a − b(1− ln C2
a) (39)

is the energy of a wave, while Ca and νa are the integration constants related, together with b, to the
mean and variance of the Gaussian packet. If one imposes also the normalization condition (29), then
one obtains an additional constraint for the integration constants, which is identical to Equation (33).

Comparing the solution (38) with its diagonal analogue (31), one can see an interesting feature:
two solutions can be transformed from one another by a simple time inversion:

ψa(x, t) = ψ̄a(x,−t), Ea = −Ēa, (40)
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which can indicate that the diagonal and off-diagonal terms of the matrix A (24) describe the
processes happening in opposite directions of time or, alternatively, having opposite signs of their
energy eigenvalues.

Finally, one can also check that, unlike the diagonal case, the commutator
[
A†, A

]
does not vanish:

[
A†, A

]
= e−b x2

(
C2

2e2ν2x − C2
1e2ν1x

)( 1 0
0 −1

)
, (41)

unless C2
1 = C2

2 and ν1 = ν2; some features of the case with a vanishing commutator were discussed
after Equation (36) above.

10. Discussion

Based on the motivations coming from different areas of quantum mechanics, such as the
coupled-channel systems, the logarithmically nonlinear quantum wave equation of the matrix type
was introduced. In the realm of the effective nonlinear quantum theories (i.e., say, for open quantum
systems or in the theory of superfluidity or Bose–Einstein condensates [69]), the matrix logarithmic
model might be expected to keep resemblance with its “single-channel” predecessor, sharing with
it also some of the more advanced applications. Beyond that realm, the model is capable of playing
several other roles ranging from one of the specific nonlinear generalizations of the classical wave
equation up to some of their non-classical, perturbative or non-perturbative extensions.

Besides, the matrix model could offer new inspiration to the current experimental studies in
quantum optics (cf. [57]) or to the methodical considerations in information theory (cf. [63–68]).
One of the particularly encouraging recent mathematical results obtained by Babin and Figotin [103]
indicates that in the semi-classical range, the combination of the logarithmic nonlinearities with
the coupled-equation structures may prove unexpectedly productive. In the quantum limit of their
formalism, remarkably enough, the energy levels of the hydrogen atom get close to their quantum
textbook values. At the same time, a contact between the classical and quantum phenomenology
is achieved via an innovative physical reinterpretation of wave functions A treated as charges;
not possessing the usual quantum probabilistic interpretation, but degenerating, correctly, to the
trajectories of classical point-particles in appropriate limits.

Some special cases and analytical solutions, for the case of 2× 2 matrices, seem to have a general
feature of possessing a Gaussian wave packet shape modulated by the de Broglie plane waves.
The diagonal and off-diagonal components of the matrix turn out to be describing the waves with
opposite signs of energy or, alternatively, moving in opposite directions of time. Other types of matrix
solutions can be the subject of future studies.

11. Conclusions

With the motivation originating in several different areas of physics, a new, logarithmically
nonlinear form of wave equations was proposed and studied. A key motivation of our generalizations
of the logarithmic nonlinearity to complex functions and/or to matrices was found in quantum physics.
In both of the particular contexts of the quantum mechanics of PT -symmetric and/or coupled-channel
systems, the respective complex and/or scalar matrix generalizations appeared surprisingly natural.
Exact analytic solutions of our equation were also obtained. For some of the most elementary special
cases, the solutions coincide with the matrix versions of the gaussons (i.e., of the Gaussian packets
modulated by de Broglie plane waves). The individual components of our toy model solution matrices
describe the waves that move in opposite directions so that the model intertwines the incoming and
outgoing waves via an innovative version of their nonlinear self-interaction.
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