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Abstract: Algorithms based on the process of natural evolution are widely used to solve
multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary
algorithm for multi-objective portfolio optimization. The proposed technique is compared
experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical
approach—the trend-following algorithm. During the experiments historical data from the Warsaw
Stock Exchange is used in order to assess the performance of the compared algorithms. Finally,
we draw some conclusions from these experiments, showing the strong and weak points of all
the techniques.
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1. Introduction

The portfolio optimization problem is very important for every investor willing to risk their money
in order to obtain potential benefits exceeding the average rate of profit of the capitalist economy.
Before the 1950s, investors relied on common sense, experience or even premonitions in order to
construct their portfolios. Then, some theories establishing the relation between the risk and the
potential return of the investment were formulated [1]. Finally, the investors had solid tools at hand to
ease the complex process of investing their money. Obviously, the proposed theories could not make
each of us a millionaire—they are merely used as a yet another source of analytic information that can
be taken into consideration.

In this paper we propose the agent-based co-evolutionary multi-objective algorithm for portfolio
optimization and we will compare the quality of its solutions to the those obtained with the use of
evolutionary, co-evolutionary and trend-following algorithms.

Two groups of experiments were carried out. In the first experiment, data from the year 2010—
a year of moderate stock market rises—was used. In the second experiment, data was used from
the year 2008, which was an extremely difficult time for investors—the Warsaw Stock Exchange
(WSE) WIG20 index (WIG20 is the capitalization-weighted stock market index of the twenty largest
companies on the Warsaw Stock Exchange) lost over 47% in value. The model of co-evolutionary
multi-agent system (CoEMAS), developed in our previous papers, allows for using many different
biologically and socially inspired computation and simulation techniques and algorithms within one
coherent agent-based system. Such techniques can be introduced in a very natural way because of the
decentralized character of the CoEMAS model. They can also be combined together on the basis of
the agent-based approach, eventually causing a synergistic effect and emergent phenomena to appear
during experiments.

Thanks to the possibilities of introducing the co-evolutionary interaction and sexual selection
mechanisms, we have techniques for maintaining population diversity, which are very important
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in the case of multi-modal optimization and multi-objective optimization problems. One such
mechanism, based on the co-evolution of sexes and the sexual selection, is proposed in this paper.
The multi-objective portfolio optimization problem is used as a testbed for assessing the agent-based
co-evolutionary multi-objective algorithm and the proposed technique for maintaining population
diversity. This is of course only a small fragment of much broader research aiming at the formulation
of a general model of agent-based systems for computing and simulation, utilizing biologically and
socially inspired techniques and algorithms.

The rest part of the paper is organized as follows. First, we will introduce basic concepts of
multi-objective optimization and agent-based evolutionary algorithms and we will present related
research on applications of the bio-inspired techniques to financial and economic problems. In the
next part of the paper the evolutionary algorithm, the co-evolutionary algorithm, and the proposed
agent-based co-evolutionary algorithm are presented. Also, the trend-following technique used as
a reference point in our experiments is described. The last part of the paper includes the results of two
types of experiments, discussion of the results, and conclusions.

1.1. Multi-Objective Optimization

The main goal of continuous optimization is to find the very best solution from a most likely
infinite set of possible solutions. The optimization procedure relies on finding and comparing feasible
solutions until no better solution can be found. Each solution can be classified as a good or a bad one
in terms of the specific objective we are interested in. For example, we could define an objectives in
terms of costs of fabrication, efficiency of a technological process, etc. In the case of multi-objective
optimization, as opposed to single-objective optimization, there is no clearly defined optimum. Instead,
we have to deal with a set of trade-off optimal solutions. They are generally known as Pareto-optimal
solutions [2].

The vast majority of the real-world problems involve more than one objective. That is why it is so
crucial to develop methods that can efficiently solve this type of optimization problem [2,3].

The multi-objective optimization problem (MOOP) deals with more than one objective function.
It turns out that the objectives are most likely contradictory, which makes the MOOP difficult to solve.
In fact, it is the most common situation we will ever encounter. Following [3], the formal definition of
the MOOP is as follows:

MOOP ≡


Minimize/Maximize fm(x̄), m = 1, 2, . . . , M

Subject to gj(x̄) ≥ 0, j = 1, 2, . . . , J

hk(x̄) = 0, k = 0, 1, . . . , K

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , N

(1)

The constraints and bounds (gj(x), and hk(x) are the constraint functions) constitute a decision
space (set D) [3]. Any solution that satisfies all the constraints and bounds is called the feasible
solution [3].

Because in the case of multi-objective problems there are many minimized/maximized criteria,
we have to somehow indicate which solution is better than the other one. In order to avoid converting
the minimization to maximization (or the maximization to minimization) problems, the additional
operator C has to be defined—notation fi(x̄1) C fi(x̄2) indicates that the solution x̄1 is better than
the solution x̄2 for the objective fi (regardless of whether the criterion fi is minimized or maximized).
Now, the dominance relation can be defined—it is said that the solution x̄A dominates the solution x̄B
(x̄A ≺ x̄B) if and only if [2]:

x̄A ≺ x̄B ⇔
{

f j(x̄A) 7 f j(x̄B) for j = 1, 2 . . . , M
∃i ∈ {1, 2, . . . , M} : fi(x̄A) C fi(x̄B)

(2)
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A solution is non-dominated when it is not dominated by any other solution of a given problem.
A solution in the Pareto sense of the multi-objective optimization problem is a set of all non-dominated
alternatives from the set D. The set of all non-dominated solutions (see Figure 1) can be then presented
to a human decision-maker who chooses one of them.

Figure 1. The example of the Pareto-optimal front of a portfolio optimization problem.

1.2. Evolutionary Multi-Objective Algorithms

During over 20 years of research on evolutionary algorithms (EAs) for multi-objective optimization
many techniques have been proposed [4–8]. Deb [3] provides the typology of the evolutionary
multi-objective algorithms (EMOAs). He distinguishes elitist and non-elitist techniques, although
his typology includes also so-called constrained EMOAs—the techniques that support constraint
handling [3]. Elitist EMOAs, among others, include Rudolph’s algorithm [9], the distance-based Pareto
genetic algorithm (GA) [10], strength Pareto EA (SPEA) [11] and SPEA2 [12], the Pareto-archived
evolution strategy [13], multi-objective messy GA [14] and multi-objective micro GA [15]. Non-elitist
EMOAs include the vector-optimized evolution strategy [16], random weighted GA [17], weight-based
GA [18], niched-pareto GA [19], non-dominated sorting GA (NSGA) [20] (in NSGA-II the elitism was
added), multiple objective GA [21], and distributed sharing GA [22].

The main difference between these two groups of techniques is the utilization of the so-called
elite-preserving operators. Thanks to the elite-preserving techniques the best individuals can be
directly transferred to the next generation, omitting the actual selection mechanism. Of course there
is a rotation within the elite set—if the algorithm finds a better solution then it replaces one of the
individuals from the elite.

1.3. Maintaining Population Diversity in Evolutionary Multi-Objective Algorithms

Maintaining population diversity and introducing speciation are two very important issues in
the case of evolutionary algorithms. Techniques used for obtaining these goals are called niching
(or speciation) mechanisms.

Maintaining population diversity and finding many different solutions through the use of niching
techniques are very important in the case of multi-modal optimization problems and of course also in
the case of multi-objective optimization problems, since we are interested in finding all non-dominated
solutions—the whole Pareto frontier should be evenly “covered” by the individuals.

The niching techniques allow for finding multiple solutions (forming sub-populations or species
of individuals) via the modification of the mechanism of selecting individuals for a new generation
(crowding model [23]), a modification of the parent selection mechanism (fitness sharing technique [24]
or sexual selection mechanism [25]). Other possibilities include limited application of the selection
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and/or the recombination mechanisms (by explicit grouping of individuals into sub-populations [26]
or by introducing the environment, in which the individuals are located and which restricts the
possibilities of recombination [27,28]). Some of the above techniques were used in the multi-objective
evolutionary algorithms. For example the fitness-sharing technique was used in Hajela and Lin genetic
algorithms for multi-objective optimization based on weighting method [29]. Fitness sharing was also
used by Fonseca and Fleming in their multi-objective genetic algorithm using a Pareto-based ranking
procedure [21]. In the niched Pareto genetic algorithm (NPGA) [19] the fitness-sharing mechanism
was used in the objective space during the tournament selection (when the mechanism based on the
domination relation failed to choose the winner). In the case of a non-dominated sorting genetic
algorithm (NSGA) [20] fitness sharing is used within each set of non-dominated individuals separately
in order to maintain the population diversity. In the strength Pareto evolutionary algorithm (SPEA) [2]
a special type of fitness sharing (based on the Pareto dominance) is used in order to maintain the
population diversity.

Co-evolutionary techniques for evolutionary algorithms are applicable in the cases where the
fitness function formulation is difficult (or even impossible), like in the problem of generating
strategies for computer games. However, co-evolutionary algorithms can also be used as techniques
for maintaining population diversity because they eventually lead to speciation and formation of
sub-populations.

Generally speaking, co-evolutionary techniques can be classified as competitive [30] or
co-operative [31]. In the case of competitive co-evolution two (or more) individuals coming from the
same or different sub-populations compete in a game and their “competitive fitness functions” are
calculated on the basis of their performance [32]. In the case of co-operative co-evolutionary algorithms
a problem is decomposed into sub-problems solved by different sub-populations [31].

In [33] the co-evolutionary algorithm with predator–prey model and spatial graph-like structure
for multi-objective optimization was proposed. Deb later modified this algorithm in such a way that
predators eliminated prey on the basis of the weighted sum of all criteria [3]. Additional modification
was introduced by Li [34]. In his algorithms prey could migrate within the environment. In [35] the
model of cooperative co-evolution was applied to multi-objective optimization.

Sexual selection results from the fact that the proportion of individuals from each sex within
a given species is almost 1:1 and the reproduction costs are much higher in the case of one of the
sexes (usually females). These facts lead to female–male co-evolution, in which the females evolve to
keep the reproduction at the optimal level and the males evolve to attract females. Sexual selection is
considered to be one of the mechanisms responsible for biodiversity and sympatric speciation [36,37].
The sexual selection mechanism was used in the multi-objective evolutionary algorithms as a tool for
maintaining the population diversity.

In [38] Allenson proposed the genetic algorithm with sexual selection for multi-objective
optimization. The number of sexes was the same as the number of criteria of the given problem
being solved. The sex of the child was determined randomly and the child replaced the poorest
individual from its sex in the population. The partner for reproduction was selected on the basis of
preferences encoded within the genotype of the given individual.

Lis and Eiben proposed the multi-sexual genetic algorithm (MSGA) for multi-objective
optimization [39]. One sex for each criterion was used. The recombination operator was used
randomly. The partners for reproduction were chosen from each sex separately with the use of
a ranking mechanism. The offspring was created with the use of a multi-parent crossover operator.
The sex of child was the same as the sex of the parent that provided most of the genes. The group of
Pareto-optimal individuals found so far was maintained during the run of the algorithm.

Bonissone and Subbu [40] further developed Lis and Eiben’s algorithm. Additional mechanisms
for determining the sex of the offspring were proposed. One of them was to determine the sex at
random and the second mechanism was based on the solution encoded within the individual—the sex
of the child was determined by the criterion for which it best fitted.
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Co-evolution of species and sexual selection are the biological mechanisms responsible for
sympatric speciation and the introduction of diversity of the population. However, these techniques
were not widely used as mechanisms for maintaining the population diversity and as speciation
mechanisms for classical evolutionary algorithms. It was probably caused by the centralized nature of
these algorithms and the problems with introducing some more advanced techniques based on the
ecological phenomena existing in nature. On the other hand, co-evolution and sexual selection can
be quite easily introduced into agent-based evolutionary algorithms because they quite well suit the
decentralized character of these algorithms. In fact in some of the previous papers we developed the
niching techniques for CoEMAS working on the basis of sexual selection and co-evolution [41].

1.4. Agent-Based Co-Evolutionary Algorithms

The idea of agent-based evolutionary algorithms was proposed in [42]. In this approach the
individuals are agents which “live” within an environment and act independently, making the decisions
about reproduction, migration and interactions with other agents. The selection mechanism is based on
resources, which are needed for performing every action, so when an agent runs out of the resources
it dies and is removed from the multi-agent system. The resources are also used to maintain the
functional integrity of the system [43].

The model of agent-based evolutionary algorithms was further developed in [44]. In this work
the model of co-evolutionary interactions between species and sexes was introduced—basically it
allowed for constructing the agent-based evolutionary algorithms utilizing many co-evolving species
and sexes. Co-evolutionary multi-agent systems (CoEMAS) were applied with success to multi-modal
optimization (for example see [41]) and multi-objective optimization (for example see [45–47]), in which
case it allowed for constructing novel and very effective mechanisms for maintaining the population
diversity [48]. The CoEMAS model was then generalized and the bio-inspired multi-agent system for
simulation and computations was proposed in [49]. This approach was applied to the modeling and
simulation of species formation processes based on the co-evolutionary interactions.

Our generalized model allows for use together the computation and simulation techniques within
one coherent system. It was possible due to the agent-based approach. Using agent-based simulation
algorithms together with biologically and socially inspired computation techniques opens up quite
new possibilities. We can simulate biological, social, economical and political systems, additionally
using the computation algorithms within agents for optimization and learning. Additionally, we can
simulate selected biological mechanisms and introduce them into social and economical simulations.
It is possible to observe emergent phenomena resulting from the interactions of the agents acting
within the system. Using the agent-based approach, it is quite natural and relatively easy to model and
simulate whole artificial societies, with different modes of production and social relations. It is possible
to simulate the effects of social stratification, social power, political systems etc. Hence, our model
is not just a tool for constructing computational systems but the more general approach allowing
for the agent-based simulations of biological and social systems, additionally allowing for using the
computational techniques within the agents. This opens quite new possibilities of introducing learning,
perception and reasoning components into the social, economical and biological simulations.

In this paper we focus on only one aspect of our research—agent-based computing systems.
We introduce the co-evolutionary multi-agent system with two co-evolving sexes for solving the
multi-objective portfolio optimization problem, which serves as a testbed for our algorithm and
techniques. We will compare the results of the proposed system with the results of genetic algorithm,
co-evolutionary algorithm and trend-following approach in order to asses the quality of the results
and the ability to maintain the population diversity.

2. Previous Research

The goal of the portfolio optimization is to decide in what proportions various assets should be
held in order to obtain the best portfolio according to some criterion. The foundation of all modern
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theories for building efficient portfolios is Harry Markowitz’ modern portfolio theory (MPT) proposed
in 1952 [50,51] and its extension consisting of introducing risk-free assets to the model proposed in
1958 by James Tobin [52]. These theories and models are the formal foundations of risk—rate of return
investment decision-making.

In recent years there has been a growing interest in research on bio-inspired artificial intelligence
algorithms for solving economic and financial problems [53–57]. Below, we present some selected
applications of the bio-inspired techniques in the investment decision support systems.

In [58] the authors presented a genetic algorithm used for investment decision support. The main
task of the algorithm was to choose (on the basis of historical data) the company to invest in. In the
system some logical operations were performed on the historical data and the task of the genetic
algorithm was to choose proper logical operators in the given situation.

The genetic algorithm for the automatic generation of trade models represented by financial
indicators was proposed in [59]. The goal of the proposed algorithm was to select the parameters for
indicators. The authors presented three algorithms: the genetic algorithm (which performed rather
poorly because it converged to local minima and was weak when it came to generalization); the genetic
algorithm with the fitness-sharing technique developed by X. Yin and N. Germay [60] (it generally
performed better than the genetic algorithm); and the genetic algorithm with the fitness-sharing
technique developed by the authors themselves (with the best capability for generalization).

The authors of [61] proposed a genetic algorithm for finding trading rules for the S&P 500 index.
The genetic algorithm was used to select the structures and parameters for rules composed of functions
organized into a tree and a returned value (which indicated whether the stocks should be bought or
sold at a given price). The authors used the following components of the rules: functions operating on
historical data, numerical or logical constants, and logical functions (used to build more complex rules).

In [62], genetic programming was used to predict bankruptcy. The authors used historical data to
build a function assessing whether the particular company was heading toward financial problems.
Approximately 75% of the test data was classified correctly.

Evolutionary algorithms were also used to design and optimize the artificial neural networks
designated to automate trading (trading is a process of buying and selling financial instruments).
An example of such a system was described in [63]—the authors pointed out that the trading rules
were unsophisticated but the systematic execution of them could lead to some substantial returns.

Very interesting modifications to the standard evolutionary approach—quantum-inspired
EAs—were used for option pricing model calibration in [64].

The evolutionary approach was compared with some simple investing strategies and the stock
market index in [65]. In some cases the proposed technique outperformed the basic version of the buy
and hold strategy as well as the market index.

The authors of [66] extended the classical mean-variance optimization problem with a third
objective—robustness. As a result, it was possible to group the sets of portfolios according to their
reliability and provide this additional information to a human decision-maker.

In [67] the authors used multi-objective genetic algorithm for portfolio optimization.
Two objectives based on the Markowitz model were used: the risk and the rate of return.
The authors of [68] used three higher moment models: mean-variance-skewness with three objectives,
mean-variance-skewness-kurtosis with four objectives, and mean-variance-skewness-kurtosis with
eight objectives. Three median models with two objectives were used: the median value at risk, median
conditional value at risk, and median mean absolute deviation. They constructed multi-objective
problems using these models and used the NSGA-II multi-objective evolutionary algorithm to solve
them. The real financial data coming from Egyptian Exchange (EGX) was used during the experiments.
Generally speaking, the authors concluded that the median models outperformed the higher moments
models during the experiments with real data coming from the emerging market.

The co-evolutionary multi-agent system using predator–prey interactions was presented in [69].
The system was run against well-known test problems as well as portfolio optimization problem.
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The results obtained from both groups of experiments proved that the CoEMAS approach is a robust
technique, providing more general solutions that can be used in many different market conditions.

The agent-based co-evolutionary genetic programming approach was also applied with success
to investment strategy generation [70,71]. During the experiments the agent-based approach was
compared to the evolutionary algorithm, a co-evolutionary algorithm, and the buy-and-hold strategy.
Also in this case the results of experiments confirmed that the agent-based approach led to obtaining
more general investment strategies.

The co-evolutionary multi-agent system with sexual selection was applied to multi-objective
optimization problems in [72]. This was the very first attempt to realize agent-based sexual selection in
the co-evolutionary system for multi-objective optimization. There were two sexes used but they were
not connected with any particular objectives of the problem being solved. The partner for reproduction
was chosen on the basis of the level of resources. This algorithm was compared experimentally
with SPEA and NSGA multi-objective evolutionary algorithms. The results showed that agent-based
approach maintains the population diversity much better than the “classic” algorithms.

In [73] another variant of the agent-based sexual selection was proposed. In this algorithm each
agent used vector of weights in order to choose the partner for reproduction. This algorithm was
compared experimentally with SPEA2 and NSGA-II multi-objective evolutionary algorithms. It was
found that each step of the “classical” algorithms is computationally much more complex than the
single step of the agent-based approach.

In this paper we propose the agent-based multi-objective co-evolutionary algorithm, which is
applied to portfolio optimization and compared to evolutionary and co-evolutionary algorithms.
The main contributions of this paper, as compared to the works presented above, are as follows:

1. The idea, design and realization of the agent-based multi-objective co-evolutionary algorithm
for portfolio optimization. As compared to our previous research, we propose here different
architectures, algorithms and a modified technique for maintaining population diversity.
The proposed algorithm utilizes two co-evolving sexes and the competition for limited resources
mechanism (dominating agents obtain resources from the dominated ones) in order to obtain high
quality solutions and maintain population diversity. The number of the sexes corresponds with
the number of objectives of the problem being solved. Each sub-population (sex) is optimized
with the use of different objectives. The agents choose partners for the reproduction from the
opposite sex and the decision is made on the basis of the quality of the solutions and also on the
basis of the resources possessed by the agents.

2. Design (including the adjustments needed for solving the multi-objective portfolio optimization
problem) and realization of a genetic algorithm and co-evolutionary algorithm (including
the fitness function, all genetic operators and the diversity maintaining mechanisms) for
multi-objective portfolio optimization.

3. Experimental comparison of evolutionary, co-evolutionary, proposed agent-based co-evolutionary
and trend-following algorithms with the use of historical data dating two years prior (2010 and
2008) with quite different stock market trends.

The research presented in this paper is the part of our more general research project aiming
at the development of a model, architectures, and algorithms for biologically and socially inspired
agent-based systems for use in simulation and computation. Our approach would unify many
different biologically and socially inspired techniques on the basis of the agent-based approach.
The agent-based approach provides a common architecture for designing and implementing
mechanisms and algorithms inspired by biological and social mechanisms in a very natural way
similar to reality-based techniques.
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3. Evolutionary, Co-Evolutionary and Agent-Based Algorithms for Portfolio Optimization

All of the algorithms mentioned in this chapter are implemented to calculate the best possible
portfolio throughout a specified time period, which forces an adjustment to the changing market’s
conditions and provides a trading strategy whereby we can follow the portfolio’s composition
adjustments made on a daily basis.

3.1. Genetic Algorithm

Genetic algorithms (GAs) [74] are well-known and popular techniques of dealing with
multi-objective optimization problems (MOOPs) [3].

Every time we try to use GA to solve a given problem we have to adjust it accordingly. In our
implementation each potential solution should be encoded inside a chromosome. Each chromosome
represents the portfolio composition (it is a normalized vector of double values representing the
percentage share of each stock)—the same representation is used in the co-evolutionary and the
agent-based co-evolutionary algorithms. Before the first round of computation, the entire population
is created from scratch using random values in chromosomes.

The following modified GA operations have been implemented:

• mutation—the mutation operator changes exactly one value, αi, representing the percentage share
of a specific stock i (each time the value i is chosen randomly) to α′i (α′i ∈ (0,1) is chosen randomly).
After that, we have to normalize the vector. Mutation_coefficient ∈ (0, 1) determines which part
of the population will be subjected to the mutation operator.

• selection—the breeding_coefficient ∈ (0, 1) determines which part of the population will be
subjected to crossover operator. Selection is based on the fitness function (only the fittest part of
the population will be selected);

• crossover—after selecting chromosomes eligible for the reproduction, each pair of chromosomes
is subjected to crossover operator. As a result, new chromosomes are created (each pair produces
two new chromosomes) and added to the population. Crossover chooses left and right points
(both are chosen randomly) which cut parents’ chromosomes in the way presented in the Figure 2a.
Children are created according to the process shown in the Figure 2b.

(a) (b)

Figure 2. The example of two (A and B) parents’ chromosomes split into three parts (a) and two
children’s chromosomes containing mixed genetic material of their parents (b).

Apart from that, an extinction mechanism has been implemented. At the end of each GA round
the part of the population that has the lowest fitness is exterminated. The extinction_coefficient
determines which part of the population will be subjected to extinction.
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3.1.1. Pseudo-code

The pseudo-code of the GA is presented in Algorithm 1. We start by evaluating each chromosome
using the fitness function (described in Section 3.1.2), which uses current stock prices. The fittest
individuals are allowed to reproduce (this is further controlled by the breeding_coefficient that
determines which part of the population will be subjected to crossover operator). New individuals
are merged with the existing population. After that, the mutation is applied to a part of the least fit
population to assure that population is diverse (in fact it is a way of implementing a reinitialization
method, mentioned in [2]) and we do not miss any potentially better solutions. Then, we destroy some
of the least fit individuals—in such a way we can control the overall population size and we get rid of
the individuals with chromosomes not likely to be successful in the future. Finally, we return the best
individual, which becomes our trading strategy for the next day (we adjust our current portfolio to the
fittest individual solution).

Algorithm 1: GA pseudo-code

1 initialize(population) ;
2 foreach day do
3 foreach individual ∈ population do
4 evaluate (individual);
5 end
6 parents← selectParents(population) ;
7 offspring← crossover(parents) ;
8 population← merge(offspring, population) ;
9 mutateLeastFitIndividuals(population) ;

10 foreach individual ∈ population do
11 evaluate (individual);
12 end
13 extinctLeastFitIndividuals(population) ;
14 return the fittest individual
15 end

3.1.2. Fitness Function

Fitness is calculated according to the following formula (for portfolio with N stocks):

γday =
N

∑
i=1

αi ∗
price(i, day)

price(i, day− 1)
(3)

where:

• γday is the value of the portfolio’s fitness calculated for specific day;
• αi is the percentage share of a specific stock i in the whole portfolio;
• price(i, day) returns the price of the stock i for the specific day.

Clearly, the fitness function favors portfolios which have the highest day-to-day increase in value.
Of course ,such methods of calculating fitness have many drawbacks, e.g., they completely omits the
aspect of risk associated with the investing in highly volatile stocks. However, it turns out that in spite
of this obvious flaw the algorithm performs quite well.

3.2. Co-Evolutionary System

Contrary to the genetic algorithm described in Section 3.1, in the co-evolutionary algorithm
(CEA) two sub-populations coexist side by side. Each individual represents a potential solution to the
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portfolio optimization problem. The risk-oriented sub-population tries to optimize the risk (the lower
risk value the better), whereas the return oriented sub-population tries to maximize expected return.
Usually the greater the expected return, the riskier the investment, so our solutions will involve
some trade-offs. However that should not startle us, as we have already predicted in Section 1.1 that
optimization under such circumstances is not an easy task.

As presented in Figure 3, the reproduction is allowed only between the members of different
sub-populations. Not every member of a particular sub-population is allowed to reproduce—
only the fittest ones (fitness of a particular individual depends on the sub-population it belongs to—
the fittest one in one sub-population would probably be considered as one of the weakest in another
one). Thanks to this approach, the offspring that are created are very diverse. In fact, it is an application
of restricted mating [2]. Some of the weakest members of both sub-populations are subjected to
extinction. Because of that, we do not end up with a too-large population full of useless solutions. In the
place of extinct members, the offspring of the fittest individuals are introduced to both sub-populations.

Figure 3. Overview of the co-evolutionary system.

Apart from that, some members of the sub-populations are subjected to mutations in order
to even further maintain the sub-population diversity. The migration mechanism has the same
purpose—it is applied in order to avoid local optima. It is also described in [2] as an isolation by
distance. The individuals for migration are selected at random with probability of 0.1. During the
migration, selected individuals are moved from one sub-population to another—this introduces new
chromosomes into the given sub-population and makes it more diverse.

The risk as well as the expected return are calculated according to capital asset pricing model
(described in [75]).

3.2.1. Maintaining Population Diversity

To sum up, several mechanisms have been implemented to keep both sub-populations diverse:

• crossover is allowed only between the fittest chromosomes from different sub-populations;
• mutations introduce random genetic change;
• migration allows chromosomes to travel to different nodes.
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3.2.2. Pseudo-Code

Contrary to the GA, we are dealing with two sub-populations (with different objectives) at once
(see Algorithm 2). Apart from that, the pseudo-code looks very similar. The reproduction is only
allowed between individuals from different sub-populations. To even further assure that populations
remain diverse, we mutate part of the least fit individuals. Migration of the individuals between the
nodes also helps maintaining the population diversity. Extinction helps to control population size and
get rid of useless individuals. A non-dominated solution (in Pareto sense) is returned as a result.

Algorithm 2: Co-evolutionary algorithm (CEA) pseudo-code

1 initialize(riskOrientedSubpopulation) ;
2 initialize(returnOrientedSubpopulation) ;
3 foreach day do
4 foreach individual ∈ population do
5 evaluate (individual);
6 end
7 parents← selectParents(riskOrientedSubpopulation, returnOrientedSubpopulation) ;
8 offspring← recombine(parents) ;
9 population← merge(offspring, riskOrientedSubpopulation, returnOrientedSubpopulation) ;

10 mutateLeastFitIndividuals(population) ;
11 foreach individual ∈ population do
12 evaluate (individual);
13 end
14 extinctLeastFitIndividuals(population) ;
15 foreach individual ∈ population do
16 decide whether to migrate (individual);
17 end
18 return non-dominated solution
19 end

3.3. The Co-Evolutionary Multi-Agent System

The co-evolutionary multi-agent system (CoEMAS) is the most sophisticated system that has
been implemented. CoEMAS model [44] is the result of merging co-evolutionary computations and
multi-agent systems paradigms.

Such systems need an environment as well as a set of autonomous agents interacting with each
other. A potential solution to the portfolio optimization problem is stored inside each agent—it is
encoded within its genotype. In the CoEMAS model the environment is usually a graph with vertices
(nodes) connected with the edges. Agents live within the environment, and can migrate from one node
to another (looking for better living conditions), reproduce, and interact with each other. The agents
need resources for every activity and these resources can be obtained from the environment or from
other agents. An agent dies when it runs out of resources. Each agent can reproduce when it has
enough resources—it usually selects a partner for reproduction and when it succeeds offspring are
created with the use of the recombination and mutation operators.

Contrary to the co-evolutionary system described in Section 3.2 there are no sub-populations.
Instead, we introduced individuals of two different sexes (see Figure 4). Each sex focuses on
a different task:

• sex1—tries to achieve the lowest risk possible;
• sex2—tries to achieve the highest expected return possible.

The risk as well as the expected return is calculated due to the capital asset pricing model (defined
in [75]).
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Figure 4. Overview of co-evolutionary multi-agent system (CoEMAS).

3.3.1. CoEMAS Model

A formal model of the co-evolutionary multi-agent system was proposed for the first time in [44]
and was further developed and generalized in [49]. Below, we will use the CoEMAS model for
describing in a more formal way the co-evolutionary multi-agent system used for multi-objective
portfolio optimization.

The multi-agent system with two co-evolving sexes is defined as follows:

CoEMAS(t) =
〈

EnvT(t) =
{

et
}

, Env(t) =
{

env
}

, ElT(t) =

VertT(t) ∪ObjT(t) ∪ AgT, ResT(t) =
{

rt
}

,

In f T(t) =
{

in f t1, in f t2
}

, Rel(t), Attr(t) =
{

genotype
}

,

Act(t)
〉 (4)

where:

• EnvT(t) is the set of environment types in the time t;
• Env(t) is the set of environments of the CoEMAS in the time t;
• ElT(t) is the set of types of elements that can exist within the system in time t;
• VertT(t) =

{
vt
}

is the set of vertice types that can exist within the system in time t;
• ObjT(t) = ∅ is the set of object (not an object in the sense of object-oriented programming but

an object as an element of the simulation model) types that may exist within the system in time t;
• AgT(t) =

{
sex1, sex2

}
is the set of agent types that may exist within the system in time t;

• ResT(t) is the set of resource types that exist in the system in time t; the amount of resource of
type rest(t) ∈ ResT(t) will be denoted by resrest(t);

• In f T(t) is the set of information types that exist in the system, the information of type
in f t(t) ∈ In f T(t) will be denoted by in f in f t(t);

• Rel(t) is the set of relations between sets of agents, objects, and vertices;
• Attr(t) is the set of attributes of agents, objects, and vertices; and
• Act(t) is the set of actions that can be performed by agents, objects, and vertices.
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The set of actions is defined as follows:

Act =
{

death, mig, rep, give, get, rec, mut, seek
}

(5)

The actions have the following meaning:

• death—if the amount of the resource that an agent possesses is lower than the threshold value,
the agent dies;

• mig—the agent is allowed to migrate but the probability of this action is low;
• rep—the agents from different sexes are allowed to reproduce provided that they both exceed the

minimum amount of resource allowing to reproduce;
• give/get—the agent can get a resource from other, dominated agents;
• rec—agents produce offspring by means of recombination;
• mut—a mutation introduces random change to the potential solution, and normalization of the

solution vector is then required;
• seek—agents appropriate to the rep as well as get operations can be found thanks to this action.

Environment type et is defined in the following way:

et =
〈

EnvTet = ∅, VertTet = VertT, ResTet = ResT, In f Tet =
{

in f t1, in f t2
}〉

(6)

EnvTet ⊆ EnvT is the set of environment types that may be connected with the et environment.
VertTet ⊆ VerT is the set of vertice types that may exist within the environment of type et.
ResTet ⊆ ResT is the set of resource types that may exist within the environment of type et.
In f Tet ⊆ In f T is the set of information types that may exist within the environment of type et.

Environment env of type et is defined as follows:

env =
〈

grenv, Envenv = ∅
〉

(7)

where grenv is directed graph grenv = 〈Vert, Arch, cost〉, Vert with the cost function defined is the set
of vertices, and Arch is the set of arches. The distance between two nodes is defined as the length of
the shortest path between them in graph grenv. Envenv ⊆ Env is the set of environments of types from
EnvT connected with the environment env (in our case it is an empty set).

Vertice type vt is defined in the following way:

vt =
〈

Attrvt = ∅, Actvt = ∅, ResTvt = ∅, In f Tvt =
{

in f t1, in f t2
}

,

VertTvt = VertT, ObjTvt = ∅, AgTvt = AgT
〉 (8)

where:

• Attrvt ⊆ Attr is the set of attributes of the vt vertice at the beginning of its existence;
• Actvt ⊆ Act is the set of actions which the vt vertice can perform at the beginning of its existence,

when asked for it;
• ResTvt ⊆ ResT is the set of resource types which can exist within the vt vertice at the beginning

of its existence;
• In f Tvt ⊆ In f T is the set of information types which can exist within the vt vertice at the beginning

of its existence;
• Vtvt is the set of types of vertices that can be connected with the vt vertice at the beginning of its

existence;
• ObjTvt ⊆ ObjT is the set of types of objects that can be located within the vt vertice at the

beginning of its existence; and
• AgTvt ⊆ AgT is the set of types of agents that can be located within the vt vertice at the beginning

of its existence.
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The element of the structure of the system’s environment (vertice) vert ∈ Vert of type
vt ∈ VertTenv is given by:

vert =
〈

Attrvert = ∅, Actvert = ∅, Resvert = ∅, In f vert =
{

in f in f t1, in f in f t2},

Vertvert, Objvert = ∅, Agvert〉 (9)

where:

• Attrvert ⊆ Attr is the set of attributes of vertice vert—it can change during its lifetime;
• Actvert ⊆ Act is the set of actions, which vertice vert can perform when asked for it—it can change

during its lifetime;
• Resvert is the set of resources of types from ResT that exist within the vert;
• In f vert is the set of information of types from In f T that exists within the vert—in f in f t1 is the

information about agents of sex1 that are located within the given vertice and in f in f t2 is the
information about the agents of sex2;

• Vertvert is the set of vertices of types from VertT connected with the vertice vert—in our case it is
the set of four vertices (see Figure 4);

• Objvert is the set of objects of types from ObjT that are located in the vertice vert;
• Agvert is the set of agents of types from AgT that are located within the vertice vert.

There are two types of agents (sexes) in the system: sex1 and sex2. The sex1 agent type is defined
in the following way:

sex1 =
〈

Glsex1 =
{

gl1, gl2, gl3
}

, Attrsex1 =
{

genotype
}

,

Actsex1 =
{

death, mig, rep, give, get, rec, mut, seek
}

,

ResTsex1 = ResT, In f Tsex1 =
{

in f t1, in f t2
}

, ObjTsex1 = ∅,

AgTsex1 = ∅
〉 (10)

where:

• Glsex1 is the set of goals of the sex1 agent at the beginning of its existence;
• Attrsex1 ⊆ Attr is the set of attributes of the sex1 agent at the beginning of its existence;
• Actsex1 ⊆ Act is the set of actions which the sex1 agent can perform at the beginning of

its existence;
• ResTsex1 ⊆ ResT is the set of resource types which can be used by the sex1 agent at the beginning

of its existence;
• In f Tsex1 ⊆ In f T is the set of information types which can be used by the sex1 agent at the

beginning of its existence;
• ObjTsex1 ⊆ ObjT is the set of types of objects that can be located within the sex1 agent at the

beginning of its existence; and
• AgTsex1 ⊆ AgT is the set of types of agents that can be located within the sex1 agent at the

beginning of its existence.

gl1 is the goal get resource—an agent can get the resources from a dominated agent that is located
within the same vertice, gl2 is the goal reproduce, and gl3 is the goal migrate to the other vertice.

The sex2 agent type is defined in the same way as sex1 agent—the only difference between these
two types of agents is that sex1 tries to achieve the lowest risk possible and sex2 tries to achieve the
highest expected return possible.
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Agent agsex1 (of type sex1) is defined in the following way:

agsex1 =
〈

Glag,sex1 = Glsex1, Attrag,sex1 = Attrsex1,

Actag,sex1 = Actsex1, Resag,sex1 =
{

rag,sex1},

In f ag,sex1 =
{

in f in f t1, in f in f t2}, Objag,sex1 = ∅,

Agag,sex1 = ∅
〉 (11)

where:

• Glsex1 is the set of goals, which agent agsex1 tries to realize—it can change during its lifetime;
• Attrsex1 ⊆ Attr is the set of attributes of agent agsex1—it can change during its lifetime;
• Actsex1 ⊆ Act is the set of actions which agent agsex1 can perform in order to realize its goals—

it can change during its lifetime;
• Ressex1 is the set of resources of types from ResT, which are used by agent agsex1;
• In f sex1 is the set of information of types from In f T which agent agsex1 can possess and use—

an agent uses information about the other agents located within the same vertice;
• Objsex1 is the set of objects of types from ObjT that are located within the agent agsex1;
• Agsex1 is the set of agents of types from AgT that are located within the agent agsex1.

Notation Glag,sex1 means “the set of goals of agent ag of type sex1”. rag,sex1 is the amount of
resource of type rt that is possessed by the agent agsex1.

Agent agsex2 (of type sex2) is defined in the same way as agent of type sex1.
The set of relations is defined as follows:

Rel =
{
{seek,get}−−−−−→
{give}

,
{seek,rep,rec,mut}−−−−−−−−−→
{rep,rec,mut}

}
(12)

The first relation is defined as follows:

{seek,get}−−−−−→
{give}

=

{〈
Ag{seek,get}, Ag{give}

〉}
(13)

Ag{seek,get} is the set of agents capable of performing actions seek, get. Ag{give} is the set of agents
capable of performing the action give. This relation represents competition for resources between
agents—dominated agents have to give some of its resources to dominating agents.

The second relation is defined as follows:

{seek,rep,rec,mut}−−−−−−−−−→
{rep,rec,mut}

=

{〈
Agsex1,{seek,rep,rec,mut}, Agsex2,{rep,rec,mut}

〉
,〈

Agsex2,{seek,rep,rec,mut}, Agsex1,{rep,rec,mut}
〉} (14)

Agsex1,{seek,rep,rec,mut} is the set of agents of type sex1 capable of performing actions seek, rep, rec,
mut. Agsex2,{rep,rec,mut} is the set of agents of type sex2 capable of performing action rep, rec, mut.
Agsex2,{seek,rep,rec,mut} is the set of agents of type sex2 capable of performing actions seek, rep, rec, mut.
Agsex1,{rep,rec,mut} is the set of agents of type sex1 capable of performing action rep, rec, mut.

This relation represents searching for reproduction partners and the process of reproduction.
It can be initiated by any agent that has enough resources. Reproducing partners come from the
opposite sex.

The interactions between the agents are implemented in the following way:

• co-evolution is implemented as a sequence of turns;
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• in each turn every agent performs its action (the action to perform at any particular turn is chosen
with a well defined probability, e.g., there is a 10% chance that the agent will try to find a partner
for reproduction, and a 60% chance that the agent will try to obtain some resources from the
dominated agent);

• after every agent performes some action the turn ends and the entire population of agents is
checked as to whether some of them should die (when not enough resources are left after other
agents take resource from them).

Each agent performs one of the above actions with some probability.

3.3.2. Pseudocode

The pseudocode of CoEMAS is presented in Algorithm 3. The actions are performed with the
following probabilities:

• 〈seek, get〉—with probability 0.6;
• 〈seek, rep, rec〉—with probability 0.2;
• 〈mut〉—with probability 0.1;
• 〈mig〉—with probability 0.1.

Algorithm 3: CoEMAS pseudocode

1 randomly INITIALIZE agents of two different sexes (risk oriented and return oriented);
2 foreach day do
3 for round← 1 to number_o f _rounds do
4 foreach agent ∈ population do
5 goal← chooseGoal();
6 if goal is get resource then
7 perform actions 〈seek, get〉 leading to the realization of goal get resource
8 end
9 if goal is reproduce then

10 perform actions 〈seek, rep, rec, mut〉 leading to the realization of goal reproduce
11 end
12 if goal is migrate then
13 perform action 〈mig〉 leading to the realization of goal migrate
14 end
15 end
16 end
17 end

Similarly to Section 3.2, the mutation is used as a mean of maintaining the population diversity.
The role of the environment composed of the computation nodes is to additionally help maintain

population diversity. When the agents are located within different nodes, each sub-population
evolves in a different direction, so the whole population can avoid local optima (it is the model of
speciation caused by the geographic separation of sub-populations). The agent can migrate between the
computation nodes when the level of the resource possessed is above the minimal level (the migration
costs some amount of the resource). The agent tries to migrate because it can not find asuitable partner
for reproduction within the current node or it can not find dominated agents to get resources from
them. The decision of migration is made with the probability 0.1.

4. Trend Following

The concept of price as the trading cue lays the foundations for trend following (TF). Contrary to
the other trading strategies based on fundamental analysis (which use the factors like overall state of
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the economy, interest rates, production, etc. to predict the stock price), TF uses only price as the key
trading variable.

Trend following basically does not try to predict when the trend will occur. Instead of that,
trend followers will react to the market’s movement and adapt accordingly (an example of how TF
works in practice is shown in Figure 5). This strategy simply analyses the stock prices and decides
whether the current situation is suitable for buying or selling a specific stock. Market breakouts are
a great buying opportunities, on the other hand when you recognize that you are wrong you exit
immediately in order to cut losses. A set of predefined rules decides whether to take any action
(they should recognize when the trend starts as well as when to exit) so the entire process can
be easily automated. Such rules are quite simple but disciplined execution of them could lead to
achieving spectacular returns year after year. It is all about cutting the losses and letting the profits
run. Many leading hedge funds successfully use strategies based on trend following to manage their
portfolios [76].

Figure 5. Simple example of how trend following works in practice [76].

Another advantage of this investing method is the fact that the investor does not have to know
much about what is being traded (it could be stocks, oil, gold, etc.) Normally, people tend to gather
some information about the company they are willing to invest in. They analyze its market situation,
competitors, financial performance, etc. which is time consuming, especially for someone who is
not a professional trader. With trend following we just have to focus on elaborating trading rules
that should reflect our trading strategy. After that, we can automate the decision-making process by
designing and implementing our own trading system.

4.1. Types of Trends

There are three main types of trends:

1. Short-term trend: any price movement that occurs over a few hours or days.
2. Intermediate-term trend: general movement in price data that lasts from three weeks to

six months.
3. Long-term trend: any price movement that occurs over a significant period of time, often over

one year or several years.
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4.2. Designing Trading System Based on Trend Following

Following [76], the core of each trading system based on a trend-following strategy is a set of
rules governing each buy/sell decision. More specifically, we have to devise the rules to answer the
following questions:

• how much money are we willing to put on a single trade;
• when to exit (what kind of losses are acceptable);
• when to enter (when the trend has started);
• which markets are we interested in and how to split the money between them (we would like to

have a diverse portfolio: stocks, gold, etc.).

These rules should reflect our investing style.
The simple moving sverage (SMA) is especially useful for highlighting the longer-term trends in

a set of data points [76].
SMA is formulated as the unweighted mean of the previous N data points [76]:

SMAtoday,N =
∑N

i=1 ptoday−i

N
(15)

where pj is the value of data on day j. In this case, data points will represent closing stock prices.
Entry points:

• Simple moving average (SMA) of the last N days is greater than SMA of last M days (N < M);
• Current stock price is maximal of the last N days (that is usually a good indicator of lucrative

opportunity on the market).

As soon as at least one of the above conditions is satisfied we go long (we buy a particular asset).
Exit points:

• Losses on a single trade are greater than 2% (this rule is used to quickly abandon an investment
where we were wrong about its trend direction; the amount of tolerable loss solely depends on
our strategy and does not have to be exactly 2%);

• The simple moving average (SMA) of the last N days is lesser than the SMA of last M days
(N < M).

As soon as the exit condition is satisfied we go short (we sell a particular asset).
Obviously the above rules are very simple and quite straightforward. Nonetheless, the system

based on them proves to be robust, as shown in Section 5.
By manipulating the value of N we can seek out different types of trends, as mentioned in

Section 4.1.

4.3. Pseudo-Code

The Algorithm 4 shows pseudo-code of the trend-following approach. It uses the
following functions:

• SMA(i,N) calculates the simple moving average for stock i, N last days are taken into account;
• go_short(i) sell stock i;
• go_long(i) buy stock i;
• get_current_stock_price(i, day) returns stock i price for specific day;
• get_most_recent_trade_price(i) returns the price we paid for stock i (we have stock i in our portfolio);
• max(i,N) returns the maximum price for stock i in the last N days;
• N, M, maximal_value_loss modifiable parameters.

The trend-following algorithm has been implemented as a standalone R script—it is not the part
of our multi-agent system.
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Algorithm 4: The trend-following pseudo-code
input : N, M

1 maximumValueLoss← 0.98 ;
2 for day← 1 to maxDays do
3 for i← 1 to numberOfStocks do

4 if getMostRecentTradePrice(i) < maximumValueLoss * getCurrentStockPrice(i,
day) then

5 goShort(i) ;
6 end
7 else if SMA(i, N) < SMA(i, M) then
8 goShort(i) ;
9 end

10 if SMA(i, N) > SMA(i, M) then
11 goLong(i) ;
12 end
13 else if getMaxStockPrice(i, N) <= getCurrentStockPrice(i, day) then
14 goLong(i) ;
15 end
16 end
17 end

5. Experimental Results

In this section selected results from the experiments with data coming from the Warsaw Stock
Exchange (WSE) are presented. The goal was to test the proposed and reference algorithms during
different periods of time on the real data and to compare the obtained results. In the first set of
experiments we used the data from the year 2010—a year of moderate stock market rises. In the
second set of experiments we used the data from the year 2008—a year which was extremely hard for
investors (the WIG20 lost over 47% in value). In this section we will try to answer the question as to
which of the used algorithms gives the best results and under what conditions.

5.1. First Set of Tests

The first set of tests uses historical data from the year 2010 (data of three different stocks have
been used). In spite of the short periods of downturns, 2010 was a year of stock market rises on the
Warsaw Stock Exchange (WSE). The upward trend started in the first quarter of 2009 was maintained.
The annual change of the stock exchange index (WIG) was +20.5%. The WIG reached its highest
value in two years on 15 December 2010 (47,892.91 points). The minimal value of WIG in 2010 was
37,038.90 points.

Portfolio contained three assets (they are one of the biggest companies present on WSE):

• KGHM Polska Miedź S.A. (KGHM)—mining sector company;
• Telekomunikacja Polska (TPSA)—telecommunication sector company;
• PKO Bank Polski (PKOBP)—finance and insurance sector company.

The multi-agent platform has been used to run algorithms. It was configured in the following way:

• using a simulation of the trading strategy throughout the entire year 2010;
• all investing decisions have been based solely on the results from the implemented algorithms;
• the migration mechanism between computing nodes has been enabled;
• two computing nodes (with the appropriate algorithms) have been used to obtain results.
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The trend-following algorithm has been tested without a multi-agent running platform as it is
a standalone R script. Apart from that, it is a completely deterministic algorithm so each time we run
it, we will get the same results.

5.1.1. Trend Following

5.1.1.1. Short-Term Trend Results

As described in Section 4, we can adjust our trading rules to seek out the short-term trends
(by changing the values of N and M in the Simple Moving Average method). With values N = 10,
M = 20 the SMA method focused on the short-term trends.

There are easily visible periods of time (Figure 6a) when the portfolio value is not changing. It is
a time when our portfolio does not contain any assets (but we still have the money). After a while,
the conditions change and the trend-following algorithm decides some assets should be bought.

5.1.1.2. Intermediate-Term Trend Results

In this particular test (with values: N = 20, M = 40), the trend-following algorithm has been
adjusted to focus on the intermediate-term trends. The results are presented in Figure 6b. It can be
seen that they are slightly better compared with the short-term trends approach.

(a) (b)

Figure 6. Portfolio value in time for trend following (TF) using the short-term (a) and intermediate-term
(b) trends.

It turned out that focusing on the short-term or intermediate-term trends leads to almost the same
results. The intermediate-term trend approach offers a slightly better return from investment. In both
cases we encountered periods of time when the portfolio contained no assets because the situation on
the market was not good enough to invest in any of the available stocks.

5.1.2. Genetic Algorithm

The best results that we were able to obtain with the use of genetic algorithm are presented in
Figure 7a. Apart from that, the average values of 5 runs are shown in Figure 7b. As can be easily
spotted, the algorithm performs reasonably well on the average.
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(a) (b)

Figure 7. Best (a) and average (b) portfolio values obtained for the genetic algorithm (GA).

The following configuration was used:

• reproduction_coeff was set to 0.2;
• population size was 512;
• mutation_coeff was set to 0.1;
• extinction_coeff was set to 0.3.

5.1.3. Co-Evolutionary Algorithm

Results for the CEA, presented in Figure 8, clearly show that the return of our investment is much
higher than any other algorithm could achieve. The analysis of Figure 9 explains why the results are
so good—the risk associated with our portfolio is substantially higher compared to other methods.
In this case the algorithm was tuned to prefer the non-dominated solutions from the return-oriented
sub-population—this explains why the results provide so much return and risk.

(a) (b)

Figure 8. Best (a) and average (b) portfolio values obtained for CEA.
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Figure 9. Average value of risk in time for CEA.

The following configuration was used:

• reproduction_coeff was set to 0.2;
• sub-population size in each computing node was set to 64;
• number of computing nodes was set to 2;
• mutation_coeff was set to 0.1;
• extinction_coeff was set to 0.3.

5.1.4. CoEMAS

Figure 10a presents the average portfolio value in time while Figure 10b presents the average risk
associated with our investments. Returns are not as spectacular as in CEA but on the other hand the
amount of risk we have to take is much lower.

(a) (b)

Figure 10. Average portfolio value (a) and average risk value (b) for CoEMAS.
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The following configuration was used:

• reproduction_coeff was set to 0.2;
• each sex was represented initially by 64 agents (in each computing node);
• number of computing nodes was set to 2;
• mutation_coeff was set to 0.1;
• extinction_coeff was set to 0.3.

5.1.5. Conclusions from the First Set of Tests

The first set of tests showed that all algorithms give reasonable results. It is very hard to pinpoint
one approach that is substantially better than the others. The co-evolutionary system (cf. Section 3.2)
outperformed other algorithms in the terms of return. Such good results can be explained by the fact
that the trading strategy proposed by this algorithm is much riskier than using CoEMAS.

On the other hand, CoEMAS offers a substantially lower return but it is much safer. As Figure 10b
shows, the risky moves are mixed with safe ones, resulting in a much more balanced strategy.

Trend following and the genetic algorithm can not give us any information about the risk we are
taking by investing according to the results they provide. On the other hand, we can specify the rules
(in the trend-following approach) that should reflect our attitude to risk-taking (cf. Section 4). With the
genetic algorithm (GA) we have no such option as our abilities to customize GA are quite limited.
Obviously we could test different values of coefficients responsible for simulating the evolution
process but it turns out that the fitness function that does not take risk into the account is the most
serious limitation.

5.2. Second Set of Tests

The second set of tests uses historical data from year 2008. The same three companies stocks as in
the previous set of tests have been selected to construct our portfolio. The year 2008 was extremely
hard for investors due to the crisis caused by the credit crunch back in 2007. During 2008, the WIG20
lost over 47% in value. Hence, it is tempting to run tests under such difficult circumstances in order
to assess each algorithm’s ability to minimize the losses. The best solutions obtained as well as the
average ones are included.

5.2.1. Trend Following

TF algorithm using the short-term trend is configured in the same way as in Section 5.1.1.1.
The results are presented in Figure 11a.

(a) (b)

Figure 11. Portfolio value in time for TF using short-term (a) and intermediate-term (b) trends.

TF algorithm using the intermediate-term trend is configured in the same manner as in
Section 5.1.1.2. The results are presented in Figure 11b.
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The intermediate-term trend seeking tends to give much better results than focusing on the
short-term trends. We managed to minimize the losses thanks to the fact that we completely ceased
trading during the worst time on the market.

5.2.2. Genetic Algorithm

The best results that we were able to obtain are presented in Figure 12a. Apart from that,
the average values of 5 runs are shown in Figure 12b. As can be easily spotted the algorithms perform
reasonably well on the average (especially compared with CEA).

The following configuration was used:

• reproduction_coeff was set to 0.2;
• population size was 512;
• mutation_coeff was set to 0.1;
• extinction_coeff was set to 0.3.

(a) (b)

Figure 12. Best (a) and average (b) portfolio value for the GA.

5.2.3. Co-Evolutionary Algorithm

The results presented in Figure 13a are very poor (and yet they are the best results obtained from
a series of tests). The average results are shown in Figure 13b.

We have lost almost all our money—approximately 70% of it. Average risk associated with our
portfolio is presented in Figure 15a. As we can observe the best obtained results are quite similar to the
average ones.

The following configuration was used:

• reproduction_coe f f was set to 0.2;
• sub-population size in each computing node was set to 64;
• number of computing nodes was set to 2;
• mutation_coe f f was set to 0.1;
• extinction_coe f f was set to 0.3.
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(a) (b)

Figure 13. Best (a) and average (b) portfolio value for CEA.

5.2.4. CoEMAS

Figure 14a presents the best returns that we managed to obtain with the use of CoEMAS,
while Figure 14b presents the average return. The average risk associated with our investments
is shown in the Figure 15b. Once again it turns out that the average values are pretty similar to the best
we managed to get. It turns out that CoEMAS performs much better in the difficult times than CEA.

The following configuration was used:

• reproduction_coe f f was set to 0.2;
• each sex was represented initially by 64 agents (in each computing node);
• number of computing nodes was set to 2;
• mutation_coe f f was set to 0.1;
• extinction_coe f f was set to 0.3.

(a) (b)

Figure 14. Best (a) and average (b) portfolio value for CoEMAS.
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(a) (b)

Figure 15. Average portfolio risk for CEA (a) and CoEMAS (b).

5.2.5. Conclusions from the Second Set of Tests

Clearly, the trend-following approach managed to save almost the entire capital. Losses that we
had to experience due to this algorithm seem almost negligible compared with the other methods.

In spite of the fact that fitness function used in the genetic algorithm completely ignores the
risk associated with the assets in portfolio, it actually performed better then the solution taking risk
into consideration.

The results of the co-evolutionary algorithm are particularly poor. Almost 70% of initial money is
lost. CoEMAS performs slightly better, but it is still worse than the simple genetic algorithm approach.

In summary, it appears that algorithms performing exceptionally well in a bull market can
potentially lead to catastrophic losses during difficult times. The trend following algorithm has one
major advantage among all discussed methods—it allows us to withdraw all our money during the
periods of time that are not investor-friendly.

6. Conclusions

In this paper we have proposed the agent-based co-evolutionary multi-objective algorithm and
we have applied it to the portfolio optimization problem. We have also described the proposed
algorithm with the use of formal model of co-evolutionary multi-agent system (CoEMAS) proposed
in our previous works. Also, the evolutionary algorithm and the co-evolutionary algorithm were
implemented within our framework in order to compare the results obtained during the experiments
carried out with the use of real world data coming from Warsaw Stock Exchange. Additionally,
the trend-following algorithm was implemented as a standalone R script and used during the
experiments as the reference point.

All implemented algorithms have been exhaustively tested using the historical data reflecting
two completely different situations on the market. Taking into consideration both good and bad times
leads to the conclusions that all approaches have advantages as well as disadvantages. That raises
a question as to which algorithm to use if we want to build our own portfolio.

The trend-following algorithm obtains good results for unstable times because it somehow
guarantees that the losses would be minimized according to our preferences. However, during stock
market rise it is outperformed by other algorithms.

The proposed agent-based multi-objective co-evolutionary algorithm gives quite good results.
It maintains a high level of population diversity and proposes sustainable strategies, where the risky
and safe moves are mixed together. Maintaining high level of the population diversity is especially
important in the times when there are rapid and frequent changes on the market. The proposed
algorithm can easily adapt to the changing conditions of the environment and escape from local
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optima. High population diversity also leads to more robust strategies, that can be applied with
success in many different conditions and situations.

Future work will include the application of our agent-based co-evolutionary approach in business
intelligence systems. It would be used not only as an investment strategies generation algorithm but
also as a data mining algorithm (with the use of neural and fuzzy classifiers) for market segmentation
and preparation of customized products/services and targeted adds. Also, we will integrate the
proposed algorithm within a framework (“virtual laboratory”) for reproducible research on artificial
intelligence techniques supporting financial and economical decision-making.
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73. Dreżewski, R.; Siwik, L. Agent-Based Multi-Objective Evolutionary Algorithm with Sexual Selection.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong, China,
1–6 June 2008; pp. 3679–3684.

74. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1996.
75. Fama, E.F. Risk, Return and Equilibrium: Some Clarifying Comments. J. Financ. 1968, 23, 29–40.
76. Covel, M.W. Trend Following (Updated Edition); FT Press: Upper Saddle River, NJ, USA, 2009.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Multi-Objective Optimization
	Evolutionary Multi-Objective Algorithms
	Maintaining Population Diversity in Evolutionary Multi-Objective Algorithms
	Agent-Based Co-Evolutionary Algorithms

	Previous Research
	Evolutionary, Co-Evolutionary and Agent-Based Algorithms for Portfolio Optimization
	Genetic Algorithm
	Pseudo-code
	Fitness Function

	Co-Evolutionary System
	Maintaining Population Diversity
	Pseudo-Code

	The Co-Evolutionary Multi-Agent System
	CoEMAS Model
	Pseudocode


	Trend Following
	Types of Trends
	Designing Trading System Based on Trend Following
	Pseudo-Code

	Experimental Results
	First Set of Tests
	Trend Following
	Genetic Algorithm
	Co-Evolutionary Algorithm
	CoEMAS
	Conclusions from the First Set of Tests

	Second Set of Tests
	Trend Following
	Genetic Algorithm
	Co-Evolutionary Algorithm
	CoEMAS
	Conclusions from the Second Set of Tests


	Conclusions

