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Abstract: Gas generation and migration are important processes that must be considered in a safety
case for a deep geological repository (DGR) for the long-term containment of radioactive waste.
Expansive soils, such as bentonite-based materials, are widely considered as sealing materials.
Understanding their long-term performance as barriers to mitigate gas migration is vital in the design
and long-term safety assessment of a DGR. Development and the application of numerical models are
key to understanding the processes involved in gas migration. This study builds upon the authors’
previous work for developing a hydro-mechanical mathematical model for migration of gas through
a low-permeable geomaterial based on the theoretical framework of poromechanics through the
contribution of model verification. The study first derives analytical solutions for a 1D steady-state
gas flow and 1D transient gas flow problem. Using the finite element method, the model is used to
simulate 1D flow through a confined cylindrical sample of near-saturated low-permeable soil under a
constant volume boundary stress condition. Verification of the numerical model is performed by
comparing the pore-gas pressure evolution and stress evolution to that of the results of the analytical
solution. The results of the numerical model closely matched those of the analytical solutions. Future
studies will attempt to improve upon the model complexity and investigate processes and material
characteristics that can enhance gas migration in a nearly saturated swelling geomaterial.

Keywords: THMC modelling; model verification; multi-phase flow; gas migration; nuclear waste
disposal; bentonite; expansive soils; swelling soils; swelling geomaterials

1. Introduction

The primary purpose of a deep geological repository (DGR) for the long-term management
of radioactive waste is to contain and isolate wastes to minimize impact to the environment and
radiological exposure to people. In developing a safety case for a DGR, which provides the supportive
arguments that the long-term solution for the management of radioactive waste will be protective of
human health and the environment over the long term, relevant features, events, and processes (FEPs),
must be evaluated [1,2]. One such process with the potential means for radiological exposure to the
biosphere is the generation of radioactive gas which may migrate to the surface [3].

Gas could be generated through a number of processes including the degradation of organic matter,
radioactive decay of the waste, corrosion of metals producing hydrogen gas (H2), and the radiolysis of
water producing H2 [3–5]. If production exceeds the containment capacity of the engineered barriers
or host rock, these gases could migrate through the engineered barriers and/or the host rock [6,7].
The preferential migration pathway of these radioactive gases, to potentially expose people and the
environment to radioactivity, might be through the access and ventilation shafts, as these components
are typically part of the repository design.
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In recent years, a number of international projects have focused on the topics of gas generation
and migration, with a focus on the impact of gas build-up and migration through an engineered
barrier system (EBS) [3,8]. Expansive or swelling soils, such as bentonite-based materials, are currently
the preferred choice of seal materials used for an EBS. Understanding the long-term performance of
these seals as barriers against gas migration is an important factor in the design and long-term safety
assessment of a DGR.

A wealth of laboratory and field-scale experimental studies have investigated gas transport
processes through natural (host rock) and engineered barriers. These studies provide a wealth of
evidence that suggest that at gas pressures above a critical level, there is formation of pressure-induced
preferential flow pathways and dilation of the clay, resulting in increased gas flow. In addition, a number
of mathematical models have been developed to simulate the gas transport processes observed through
these laboratory and field-scale studies with some success [9–12]. However, no studies to date have been
able to determine the exact mechanisms which control gas entry, flow, and pathway sealing [4,6,8,13–17].
Development and use of numerical models are of key importance in understanding the processes
involved and their use in long-term safety assessments.

Dagher et al. [9] developed a fully coupled hydro-mechanical (HM) linear-elastic mathematical
model for advective-diffusive visco-capillary controlled two-phase flow through geomaterials in order
to model the first two transport mechanisms proposed by Marschall et al. [18]. Results from a constant
volume 1-D flow experiment was used to validate the model. A number of parametric studies were
investigated to assess the contribution of advection of poregas, diffusion of dissolved gas in porewater,
advection of dissolved gas in porewater, and inclusion of mechanical deformation (linear elasticity)
on flow behaviour with increasing gas pressures over time. Additionally, sensitivity analyses were
conducted to gain an understanding of the influence of a number of soil properties on flow behaviour,
such as the effect of modifying the air-entry value (AEV), intrinsic permeability, and initial porosity of
the soil specimen. Finally, the study investigated the use of a linear elastic damage model to better
represent the experimental results. Although the model results reproduced some of the general features
noted in the experimental results, the model was unable to simulate dilatancy-controlled gas flow.

In this paper, the authors build upon previous published work by first performing a verification
study of the linear poro-elastic hydro-mechanical model proposed in Dagher et al. [9]. Analytical
solutions for a simplified 1D steady-state and 1D transient single-phase flow through a low permeability
geomaterial problem are presented. Verification of the numerical model presented in Dagher et al. [9]
is then performed by comparing the results obtained by the numerical model to the results of the
analytical solutions. The model is then used to investigate the effects on gas flow of different processes
and phenomena, including: (i) heterogeneity within the geomaterial, (ii) the Klinkenberg “slip flow”
effect on gas permeability, and (iii) swelling and dessication of the geomaterial. The results of the
simulation of the above factors are presented in the companion paper to this one.

This research continues to be, in part, a contribution to Task A of the current project phase of the
international working group for the DEvelopment of COupled models and their VALidation against
EXperiments (DECOVALEX-2019). This task, led by the British Geological Survey (BGS), further
attempts to identify the physical HM mechanisms required to adequately model dilatancy-controlled
gas migration.

2. Mathematical Model

2.1. Study Overview

This study expands upon the work performed by Dagher et al. [9] on the development of a
mathematical model for gas migration (two-phase flow) through a low-permeable swelling geomaterial.
Using the theoretical framework of poromechanics, a verification study is performed through the
following:
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i. derivation of analytical solutions for 1D steady-state and 1D transient single-phase gas flow
(i.e., assuming immobile liquid phase) through a low-permeable geomaterial problem based on
the linear poro-elastic hydromechanical mathematical model proposed in Dagher et al. [9].

ii. verification of the numerical model by comparing the results of the numerical simulations
performed in COMSOL® Multiphysics® finite element method (FEM) software (Version
5.4a, COMSOL AB, Boston, MA, USA) to the results of the analytical steady-state and
transient solutions.

The mathematical model follows the general formulation by Dagher et al. [9]. The applicable
constitutive relations and governing equations for conservation of momentum, water mass and gas
mass are presented below.

2.2. Assumptions for Poromechanical Behaviour

This paper adopts the following assumptions for the mechanical behaviour of the porous medium
as presented in Dagher et al. [9]:

Bishop’s modified effective stress, with a χ parameter generalized from the work of Khalili and
Khabbaz [19], linear poro-elasticity following the general framework of poromechanics.

2.2.1. Bishop’s Modified Effective Stress Principle

The general form for the equation of poro-mechanics can be expressed by,

σij = σ′ij + δijp (1)

where σij is total normal stress tensor acting on the soil element (Pa)

σ′ij is the effective stress tensor (Pa)

δij is the Kronecker delta (identity tensor) (adimensional) and
p is the porefluid pressure (Pa)

Many effective stress equations have been proposed to characterize the stress-state of an
unsaturated soil or porous media [20]. This paper proposes the use of Bishop’s effective stress
principle, which is dependent on both net normal stress and matric suction, and may be more suitable
for expansive clays, and is described by Equation (2).

σ′ij =
(
σij − pg

)
+ χδij

(
pg − pw

)
(2)

where

pg is the poregas pressure (Pa)

pw is the porewater pressure (Pa)(
σij − pg

)
is the net normal stress (Pa)(

pg − pw

)
is the matric suction (Pa)

χ is a parameter related to the degree of saturation of the soil (unitless)

Expanding and rearranging for σ,

σij = σ′ij + δij
(
(1− χ)pg + χpw

)
(3)

The porefluid pressure can be defined as,

p = (1− χ)pg + χpw (4)
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Khalili and Khabbaz [19], proposed the following unique relationship for the determination of χ
based on the ratio of suction over the air entry value, also termed the suction ratio,

χ =


[ (

pg−pw

)(
pg−pw

)
b

]−0.55

, if
(
pg − pw

)
>

(
pg − pw

)
b

1, otherwise

(5)

where
(
pg − pw

)
b

is the air-entry value (AEV) of the soil and only applies when the matric suction
>AEV [19].

2.2.2. Poro-Elastic Stress-Strain Relation

The increment of the effective stress tensor, dσ′ij is related to the increment of the total strain by
the constitutive relation:

dσ′ij = Cijkldεkl (6)

where Cijkl is the stiffness tensor (Pa).
εkl is the total strain tensor (adimensional).
Assuming small deformations, the total strain is related to the components of the displacement

tensor as:

εij =
1
2

(
ui,j + uj,i

)
=

1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(7)

εkk = uk,k =
∂uk

∂xk
(8)

where εkk
(
= uk,k = trεij = εvol

)
is the volumetric strain (adimensional).

ui,j =
∂ui
∂x j

is the spatial derivative of the displacement vector (m).

2.3. Constitutive Relations for the Hydraulic Behaviour

This paper adopts the following constitutive relations for the hydraulic behaviour as presented in
Dagher et al. [9]:

• van Genuchten equation for the soil-water characteristic curve [9].
• Huang et al. [21] equation depicting the relationship between the AEV and void ratio.
• Darcy’s law for two-phase flow.
• Equation for the effective diffusivity for gas dissolved in water through porous media, utilizing

the Millington and Quirk model to define the tortuosity as a function of the degree of saturation,
Sw and the porosity, n [22].

• Pall and Moshenin et al. [23] modification to the Kozeny–Carman equation [24] for the relationship
between the intrinsic permeability of water and the porosity of the soil.

• Mualem’s model for the relative permeabilities of gas and water [9,20].

2.4. Governing Equations for Two-Phase Flow through a Linear Elastic Geomaterial

The governing equations as derived by Dagher et al. [9] and Nguyen and Le [20] for describing
advective-diffusive visco-capillary controlled two-phase flow for a linear-elastic geomaterials are
presented below.
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2.4.1. Conservation of Water Mass

The governing equation for the conservation of water mass can be expressed by Equation (9),

∂
∂xi

(
ρw

kijkr,w

µw

(
∂pw

∂xj
+ ρwgj

))
= −
∂(ρwnSw)

∂t
(9)

and solving the right-hand side, this simplifies to Equation (10),

∂
∂xi

(
ρw

kijkr,w

µw

(
∂pw

∂xj
+ ρwgj

))
= −ρw

[
n
(dSw

ds

)
∂s
∂t

+ n
Sw

Kw

∂pw

∂t
+ Sw

∂
∂t

(
∂uk

∂xk

)]
(10)

where

ρw density of water phase (kg m−3)
pw is the porewater pressure (Pa)
kij intrinsic permeability tensor of the porous medium (m2)
kr,w relative permeability of the water phase (unitless)
µw dynamic viscosity of the water phase (Pa s or kg m−1 s−1)
g is the acceleration due to gravity (m s−2)
n porosity (m3 voids ·m−3 total)
Sw is the degree of saturation of water

s is the matric suction
(
pg − pw

)
(Pa)

Kw is the bulk modulus of the water phase (Pa s or kg m−1 s−1)
∂uk
∂xk

= εvol is the volumetric strain (unitless)

u is the displacement (m)
t is time (s).

Note that in this study, the permeability is assumed to be isotropic, therefore kij = k, however we
keep the tensorial notation in the governing equation for the sake of generalization.

2.4.2. Conservation of Gas Mass

The governing equation for the conservation of gas mass can be expressed by Equation (11),

∂

(
ρg

(
kijkr,g
µg

(
∂pg
∂xj

+ρgg
)
+H

kijkr,w
µw

(
∂pw
∂xj

+ρwg
)))

∂xi
+ ∂
∂xi

(
−De

∂
∂xk

(
ρgn(HSw)

))
= −

∂(ρgn(1−Sw+HSw))
∂t

(11)

and solving the right-hand side, this simplifies to Equation (12),

∂

(
ρg

(
kijkr,g
µg

(
∂pg
∂xj

+ρgg
)
+H

kijkr,w
µw

(
∂pw
∂xj

+ρwg
)))

∂xi
+ ∂
∂xi

(
−De

∂
∂xk

(
ρgn(HSw)

))
= −ρg

[
n(H− 1)

(
dSw
ds

)
∂s
∂t +

n(1−Sw+HSw)
Kg

∂pg
∂t

+(1− Sw + HSw)
∂
∂t

(
∂uk
∂xk

)] (12)

where

ρg density of the gas phase (kg m−3)

pg is the poregas pressure (Pa)

kr,g relative permeability of the gas phase (unitless)
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µg dynamic viscosity of the gas phase (Pa s or kg m−1 s−1)

H is Henry’s coefficient (kg species A m−3 in aqueous phase kg−1 species A m3 in gas phase)
De is the effective diffusivity of gas dissolved in water through porous media (m2 s−1)
Kg is the bulk modulus of the gas phase (Pa)

It should be noted that Equation (12) does not require the assumption that the gas behaves as
an ideal gas. In the derivation of the expression of gas density and bulk modulus one might need to
invoke the ideal gas law or other laws that more accurately predict the gas density and compressibility
at different pressures and thermal conditions.

2.4.3. Conservation of Momentum (Quasi-Static Equilibrium)

For a soil specimen in quasi-static equilibrium the total equilibrium equation for a cubical soil
element can be expressed in tensor notation by Equation (18).

∂σij

∂xj
+ Fv,i = 0 (13)

where,

σij is the stress tensor (Pa)
Fv,i is the volumetric body force tensor (kg m−2 s−2)
∂σij
∂xj

represents the change in normal and shear stresses across the soil element (kg m−2 s−2)

Substituting Equation (3) into Equation (13), the governing equation for the conservation of
momentum for a porous geomaterial can be expressed by Equation (14),

∂σ′ij

∂xj
+ (1− χ)

∂pg

∂xj
+ χ
∂pw

∂xj
+ Fv,i = 0 (14)

For a linear poro-elastic geomaterial, applying the constitutive relations described by Equations
(6) through (8), the governing equation for the conservation of momentum can be expressed by
Equation (15),

G
∂2ui

∂xj∂xj
+ (G + λ)

∂2uj

∂xj∂xi
+ (1− χ)

∂pg

∂xi
+ χ
∂pw

∂xi
+ Fv,i = 0 (15)

where G is the shear modulus (Pa), λ is the Lamé constant (Pa).

3. Verification Study Analysis

3.1. Analysis Overview

Verification of the proposed mathematical model was performed by deriving analytical solutions for
the 1D steady-state and 1D transient gas flow problem depicted in Figure 1, through the simplification of
the governing equations described by Equations (1) and (3). In the above problem, flow and deformation
can occur only in the longitudinal direction x. A three-dimensional (3D) hydro-mechanical (HM)
coupled multiphysics numerical model was built using the commercially available code COMSOL®

Multiphysics® (COMSOL®) to solve the simplified governing equations and constitutive relations
described below numerically. The analytical solution was then used to verify the numerical model in
COMSOL® by comparing the numerical results to the results of the analytical solutions.
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The following assumptions were made for the simplification of the mathematical model:

• immobile liquid phase
• no dissolution of gas into and no diffusion gas through the porewater
• constant gas permeability
• constant gas density
• constant fluid viscosity
• constant degree of saturation of water
• role of suction ignored
• role of gravity ignored
• isothermal process
• constant volume boundary condition

It should be noted that these assumptions, as well as the downstream boundary condition set
to atmospheric pressure (Figure 1) was done for simplification of the verification analysis. In a
bentonite-based shaft seal design, this may be a reasonable assumption when one end of the shaft
seal is exposed to surface. However, if applied to bentonite buffer surrounding the waste canister,
the boundary pressure conditions would be different and would affect the fluid properties at the higher
temperatures and pressures of a DGR environment.

3.2. Analytical Solutions for Two-Phase Flow through a Linear Poro-Elastic Geomaterial

3.2.1. One-Dimensional (1D) Steady-State Gas Flow Problem

Based on the above assumptions, the governing equation for the conservation of gas mass for 1D
steady-state flow through a linear elastic porous medium expressed by Equation (11) simplifies to the
following expression,

d
dx

ρg
kg

µg

dpg

dx

 = 0 (16)

where, kg is the gas permeability (m2)
Assuming an immobile water phase and ignoring the effects of gravity, the governing equation

for the conservation of momentum expressed by Equation (14), simplifies to the following equation for
a 1D gas flow problem,

dσ′

dx
+ (1− χ)

dpg

dx
= 0 (17)
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Solving Equation (16), the analytical solution for the pore-gas pressure and displacement as a
function of distance can be expressed by,

pg(x) = Pinj +
Patm − Pinj

L
x (18)

where Pinj is the gas injection pressure (Pa)

Patm is atmospheric pressure (Pa)
L is the length of the soil specimen (m)

The displacement field along the longitudinal x-direction is given by:

u(x) = −

[
1−

(
2ν2

1−ν

)]
E

(1− χ)

(
Patm − Pinj

)
2

(
x2

L
− x

)
(19)

where ν is the Poisson ratio (unitless)
E is Young’s Modulus (Pa)
The corresponding strain and stress can be calculated by the following expressions,

εxx(x) =
du
dx

=

[
1−

(
2ν2

1−ν

)]
E

(1− χ)
(
Patm − Pinj

)( x
L
−

1
2

)
(20)

σ′xx(x) = (1− χ)
(
Patm − Pinj

)( x
L
−

1
2

)
(21)

σ′yy = σ′zz =
(
ν

1− ν

)
σ′xx (22)

Detailed derivation of the analytical solution for the 1D steady-state gas flow problem is provided
in Appendix A.

3.2.2. 1D Transient Gas Flow Problem

Based on the assumptions, the governing equation for the conservation of gas mass for 1D transient
gas flow through a linear elastic porous medium expressed by Equation (11) simplifies to the following,

d
dx

ρg
kg

µg

dpg

dx

 = −d
(
ρgn(1− Sw)

)
dt

(23)

By assuming the gas density and degree of saturation remains constant in both time and space,
the governing equation for the conservation of momentum expressed by Equation (19) simplifies to
the following,

ρg
kg

µg

d
dx

dpg

dx

 = −ρg(1− Sw)
dn
dt

(24)

Solving for dn, this simplifies further to,

kg

µg

d2pg

dx2 = −(1− Sw)
dεvol

dt
(25)

Since strain is nil in the y and z directions, it can be shown from Hooke’s Law that

εvol = εxx =
du
dx

=

[
1−

(
2ν2

1−ν

)]
E

σ′xx =
1

K1D
σ′xx (26)
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where K1D = E[
1−

(
2ν2
1−ν

)] is the Bulk Modulus (Pa).

Substituting into Equation (25) and re-arranging,

−
kg

µg

K1D

(1− Sw)

d2pg

dx2 =
dσ′xx

dt
(27)

Integrating both sides of the governing equation for the conservation of momentum expressed by
Equation (17), and re-arranging for σ′xx,

σ′xx = −(1− χ)pg + C1 (28)

Substituting σ′xx into Equation (27)

kg

µg

K1D

(1− Sw)(1− χ)

d2pg

dx2 =
dpg

dt
(29)

As Equation (29) is analogous to the equation for transient diffusion in a plane sheet, the analytical
solution as expressed by J. Crank [25] for constant surface concentrations and constant initial conditions
is expressed by the following equation,

pg(x, t) = Pinj +
(
Patm − Pinj

)
x
L + 2

π

∞∑
n=1

Patm cos nπ−Pinj
n sin nπx

L exp
(
−

Dn2π2t
L2

)
+ 4P0

π

∞∑
m=0

1
2m+1 sin (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

) (30)

where D =
kg
µg

K1D
(1−Sw)(1−χ) (m2 s−1)

Substituting pg(x,t) from Equation (30) into Equation (28) and then substituting Equation (28)
into Equation (26) and integrating both sides, the analytical solution for the displacement can be
expressed by,

u = 1
K1D

(1− χ)
(Patm−Pinj)

2

[
x− x2

L

]
+ 1

K1D

(1− χ) 2
π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
−L
nπ

)(
1− x

L + x
L cos nπ− cos nπx

L

)
+ 1

K1D
(1− χ) 4P0

π

∞∑
m=0

exp
(
−

D(2m+1)2
π2t

L2

)(
−L

(2m+1)2
π

)(
1− x

L

+ x
L cos(2m + 1)π− cos (2m+1)πx

L

)
(31)

The strain and stress can now be calculated analytically by the following expressions,

εvol =
du
dx = 1

K1D
(1− χ)

(
Patm − Pinj

)(
1
2 −

x
L

)
+ 1

K1D
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
1

nπ −
1

nπ cos nπ− sin nπx
L

)
+ 1

K1D
(1− χ) 4P0

π

∞∑
m=0

1
2m+1 exp

(
−

D(2m+1)2
π2t

L2

)(
1

(2m+1)π

−
1

(2m+1)π cos(2m + 1)π− sin (2m+1)πx
L

) (32)

Detailed derivation of the analytical solution for the 1D transient gas flow problem is provided in
Appendix A.
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3.2.3. Mean Stress and Deviatoric Stress

The mean stress can be calculated by the following expression,

p′ =
σ′11 + σ

′

22 + σ
′

33

3
(33)

The deviatoric stress can be calculated by the following expression,

q′ =
√

3J2 (34)

where,

J2 =
1
2

[(
σ′11 − p′

)2
+

(
σ′22 − p′

)2
+

(
σ′33 − p′

)2
+ 2σ

′2
12 + 2σ

′2
13 + 2σ

′2
23

]
(35)

q′ =

√
3
2

[(
σ′11 − p′

)2
+

(
σ′22 − p′

)2
+

(
σ′33 − p′

)2
+ 2σ′212 + 2σ′213 + 2σ′223

]
(36)

3.3. Numerical Model Description

Model Geometry and Mesh

For the numerical model, the geometry and mesh are presented in Figure 2. The numerical model
consists of approximately 11,000 elements and has 162,000 degrees of freedom.
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Figure 2. Verification study–numerical model (a) geometry and (b) mesh.

3.4. Results and Discussion

Verification of the numerical model results against the analytical solution for a 1D steady-state
gas flow problem and a 1D transient gas flow problem are presented below. Table 1 provides the
material properties, initial conditions, and boundary conditions that were used in both the numerical
model and analytical solution. The material properties correspond to those obtained experimentally
from Daniels and Harrington [26] or calculated using the constitutive relations derived by Dagher et
al. [9]. The initial and boundary conditions were selected based on the experimental setup of Daniels
and Harrington [26], with the injection poregas pressure corresponding to the peak injection pressure
observed in that experiment.
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Table 1. Verification study parameters.

Parameter Name Symbol Value Units

Length L 0.12 m
Injection poregas pressure boundary condition Pinj 1.30 × 107 Pa
Atmospheric gas pressure boundary condition Patm 1.01 × 105 Pa

Initial uniform pore-gas pressure (for transient gas flow problem) P0 6.55 × 106 Pa
Density of bentonite ρb 1526 kg m−3

Young’s Modulus E 3.07 × 108 Pa
Poisson’s ratio (nu) ν 0.4 -

Porosity n 0.44 -
Intrinsic permeability kij 3.40 × 10−21 m2

Dynamic viscosity µg 2.00 × 10−5 Pa s
Degree of saturation Sw 0.9 -

Air-entry value AEV 1 × 107 Pa
Constant porewater pressure 1 pw 1.0 × 106 Pa

Relative gas permeability 1 krg 0.03 -
Chi factor 1 χ 0.9 -

1 Calculated based on a degree of saturation of 0.9 and gas pressure of 1.3 × 107 Pa.

3.4.1. Steady-State Solution

For the 1D steady-state gas flow problem, the poregas pressure and displacement in the
x-direction were calculated using analytical solution presented by Equations (18) and (19), respectively.
The numerical and analytical results for poregas pressure and displacement over the length of the
specimen is provided in Figures 3 and 4, respectively. The results show a perfect match between the
simulation results of the numerical model performed in COMSOL® and the analytical solution.
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Figure 4. Verification study—1D steady-state solution results for displacement over the length of
the specimen.

Similarly, the mean effective stress, p′, and deviatoric effective stress, q′, were calculated by first
calculating the strain and resulting principal stresses described by Equations (20) to (22), and then
Equations (33) and (36). The numerical and analytical results for mean effective stress, and deviatoric
effective stress over the length of the specimen are provided in Figures 5 and 6, respectively. The results,
also show a perfect match between the numerical results performed in COMSOL® and the analytical
solution, thereby demonstrating verification of the numerical model being used in COMSOL®.
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3.4.2. Transient Solution

For the 1D transient gas flow problem, the poregas pressure and displacement were calculated
using the analytical solution presented by Equations (30) and (31). The numerical and analytical results
for poregas pressure and displacement over the length of the specimen for various times are provided
in Figures 7 and 8, respectively. The results show a perfect match between the simulation results of
the numerical model performed in COMSOL® and the analytical solution. For the poregas pressure,
there is an initial response at t = 0 s, corresponding to the sudden change in boundary conditions.
Over time, the system tends towards the steady-state solution. Concurrently, as the poregas pressure
increases along the column, there is a resulting increase in displacement, until steady-state is reached.
Steady-state was achieved at about 5000 s, and matches the solutions provided in Section 3.4.1.

It should be noted that oscillations occurred in results obtained from both the analytical solution
and numerical model at time t = 0 s, and this was expected. For the analytical solution, these oscillations
are due to truncation of the infinite series at n = 70 and m = 40. As these parameters tend towards infinity,
if higher truncation limits were used, the oscillations would effectively dissipate. For the numerical
analysis, these oscillations are an artefact of mesh size, time step, and error tolerance. Increasing mesh
size, and reducing the time-step and tolerance, would help to reduce the numerical oscillations.

Similarly, the mean effective stress, p′, and deviatoric effective stress, q′, were calculated by first
calculating the strain described by Equation (32) and resulting principal stresses described by Equations
(26) and (22), and then by Equations (33) and (36). The numerical and analytical results for mean
effective stress, and deviatoric effective stress over the length of the specimen are provided in Figures 9
and 10, respectively. The results, also show a perfect match between the numerical results performed
in COMSOL® and the analytical solution, thereby demonstrating verification of the numerical model
being used in COMSOL®.
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Additionally, an analysis of the p-q stress path at five different points along the specimen over
time was conducted and the results are presented in Figure 11. Again, the numerical model results
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and results of the analytical solution show a close match. The analysis shows that at the center of the
specimen, there is no change in stresses as expected. The analysis also shows that at the two ends,
there is also no change in stresses as described by the analytical solution, however, the numerical
model does show a small change in stress from 0 s to t > 0 s. Again, this can likely be attributed to the
truncation of the infinite series. At distances 0.03 m and 0.09 m, the effective deviatoric stress increases
linearly as a function of the effective mean stress until steady-state is reached. This is expected as a
linear elastic mechanical model was adopted. It should be noted that at the injection pressure side,
the mean effective stress is in tension, while at the atmospheric pressure side, the mean effective stress
is in compression.
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4. Conclusions

An important component in the design and long-term safety assessment of a DGR is the long-term
performance of bentonite seals as barriers against gas migration. As gas generates from the degradation
of organic waste and/or corrosion of metals, at some critical gas pressure, dilation of the bentonite could
occur resulting in the creation of preferential flow pathways and a source of radionuclide exposure to
people and the environment. Development and use of numerical models are of key importance in the
understanding of processes involved and in their use in long-term safety assessments.

In the authors’ previous work, a fully-coupled hydro-mechanical (HM) linear-elastic mathematical
model for advective-diffusive visco-capillary controlled two-phase flow through a geomaterial was
derived [9]. This study expands upon that work through the contribution of model verification. As part
of this study, analytical solutions for a 1D steady-state gas flow and a 1D transient gas flow problem were
derived using the framework of poromechanics. Using the finite element method, the numerical model
was used to simulate 1D flow through a confined cylindrical sample of near-saturated low-permeable
soil under a constant volume boundary stress condition. Verification of the numerical model was
performed by comparing the pore-gas pressure evolution and stress evolution to that of the results
of the analytical solutions. For both the steady-state and transient problems, the poregas pressure,
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displacement, mean effective stress, deviatoric effective stress, and p’-q’ stress path results obtained
from the numerical model were compared to those of the analytical solutions. For each parameter,
the results of the numerical model closely matched those of the analytical solutions, providing added
confidence that the proposed mathematical model is being correctly implemented in the COMSOL®

FEM software version 5.4.
Future studies will attempt to improve upon the model complexity and investigate enhanced

mechanisms for two-phase flow. In the companion paper, a process simulation and enhanced two-phase
flow analysis study will be conducted, whereby three enhanced mechanisms for two-phase flow will be
introduced into the model. Specifically, the companion paper will look at heterogeneity, the Klinkenberg
“slip flow” effect, and the effect of swelling and dessication. An analysis of the contribution of each to
flow behaviour and the potential for the formation of gas fingers will be conducted.
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data curation, E.E.D., T.S.N. and J.Á.I.S.; writing—original draft preparation, E.E.D.; writing—review and editing,
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Appendix A. Analytical Solutions for 1-Dimensional Gas Flow in a Linear Elastic Porous Media

A.1. Problem Statement

Derive the steady-state and transient solutions for 1D gas flow through a linear elastic porous
media of length L, fixed at both ends, u(0,t) and u(L,t) = 0, with an initial uniform poregas pressure,
pg(x,0) = p0, and with both maintained at different constant gas pressures, pg(0,t) = pinj and pg(L,t) =

patm,
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The following assumptions were made for the simplification of the mathematical model:
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• immobile liquid phase
• no dissolution of gas into and no diffusion gas through the porewater
• constant gas permeability
• constant gas density
• constant degree of saturation of water
• role of suction ignored
• role of gravity ignored
• isothermal process
• constant volume boundary condition

A.2. Steady-State Solution

A.2.1. Governing Equations

The governing equation for the conservation of gas mass for steady-state flow through a linear
elastic porous medium can be expressed by Equation (A1),

d
dx

ρg
kg

µg

dpg

dx

 = 0 (A1)

The governing equation for the conservation of momentum (quasi-static equilibrium) for
steady-state gas-flow through a linear elastic porous media can be expressed by Equation (A2),

dσ
dx

=
dσ′

dx
+ (1− χ)

dpg

dx
+ χ

dpw

dx
= 0 (A2)

Assuming an immobile water phase, this simplifies to Equation (A3),

dσ′

dx
+ (1− χ)

dpg

dx
= 0 (A3)

A.2.2. Formulation of the Analytical Solution to the Conservation of Mass Equation

Re-arranging Equation (A1) and solving the double integral for pg,

ρg
kg

µg

∫ d2pg

dx2 =

∫
0→

dpg

dx
= C1 (A4)

∫ dpg

dx
=

∫
C1 → pg = C1x + C1

′ (A5)

From our known boundary conditions, at x = 0, pg(0) = Pinj and we can solve for C1
′

Pinj = C1(0) + C′1 → C′1 = Pinj (A6)

Substituting (A6) back into (A5) and from our known BCs at x = L, pg(L) = Patm, we can solve
for C1

Patm = C1(L) + Pinj → C1 =
Patm − Pinj

L
(A7)

Substituting Equations (A6) and (A7) into Equation (A5), the analytical solution for the governing
equation for the conservation of momentum can be expressed by Equation (A8)

pg(x) = Pinj +
Patm − Pinj

L
x (A8)
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A.2.3. Formulation of the Analytical Solution to the Conservation of Momentum Equation

From Hooke’s Law the normal principal strains and shear strains are provided in Equations (A9)
to (A11), and Equations (A12) to (A14) respectively,

εxx =
du
dx

=
1
E

(
σ′xx − νσ

′
yy − νσ

′
zz

)
(A9)

εyy =
dv
dy

=
1
E

(
σ′yy − νσ

′
zz − νσ

′
xx

)
(A10)

εzz =
dw
dz

=
1
E

(
σ′zz − νσ

′
xx − νσ

′
yy

)
(A11)

εxy =
1
2

(
∂u
∂y

+
∂v
∂x

)
=
σxy

2G
(A12)

εyz =
1
2

(
∂v
∂z

+
∂w
∂y

)
=
σyz

2G
(A13)

εzx =
1
2

(
∂w
∂x

+
∂u
∂z

)
=
σxz

2G
(A14)

For the 1D flow problem, εyy and εzz = 0; v and w = 0; and du
dy = 0 and du

dz = 0, these equations
reduce to the following,

εxx =
du
dx

=
1
E

(
σ′xx − νσ

′
yy − νσ

′
zz

)
(A15)

1
E

(
σ′yy − νσ

′
zz − νσ

′
xx

)
= 0 (A16)

1
E

(
σ′zz − νσ

′
xx − νσ

′
yy

)
= 0 (A17)

εxy = 0 (A18)

εyz = 0 (A19)

εzx = 0 (A20)

Re-arranging Equations (A16) and (A17),

σ′xx =
1
ν
σ′yy − σ

′
zz (A21)

σ′xx =
1
ν
σ′zz − σ

′
yy (A22)

Equating Equation (A21) and Equation (A22),

1
ν
σ′yy − σ

′
zz =

1
ν
σ′zz − σ

′
yy (A23)

1
ν
σ′yy + σ

′
yy =

1
ν
σ′zz + σ

′
zz (A24)(

1 +
1
ν

)
σ′yy =

(
1 +

1
ν

)
σ′zz (A25)

σ′yy = σ′zz (A26)

Substituting Equation (A26) into Equation (A21) and re-arranging for σyy as a function of σxx,

σ′yy =
(
ν

1− ν

)
σ′xx (A27)



Minerals 2020, 10, 30 20 of 26

Substituting (A27) and (A26) into Equation (A15), we can solve for εxx,

εxx =
du
dx

=
1
E

(
σxx − 2νσyy

)
(A28)

εxx =
du
dx

=
1
E

(
σxx − 2ν

(
ν

1− ν

)
σxx

)
(A29)

εxx =
du
dx

=
1
E

[
1−

(
2ν2

1− ν

)]
σ′xx (A30)

Re-arranging in terms of σxx,

σ′xx =
E[

1−
(

2ν2

1−ν

)] du
dx

(A31)

where for a 1D flow problem, it can be shown from Hooke’s Law that

εvol = εxx =
du
dx

=

[
1−

(
2ν2

1−ν

)]
E

σ′xx =
1

K1D
σ′xx =

E[
1−

(
2ν2

1−ν

)] du
dx

(A32)

and the Bulk modulus for 1D flow problem, K1D, can be expressed as,

K1D =
E[

1−
(

2ν2

1−ν

)] (A33)

Substituting (A4) and (A31) into (A3) yields,

K1D
d2u

dx2 + (1− χ)
(Patm − Pinj

L

)
= 0 (A34)

Re-arranging,
d2u

dx2 =
(1− χ)
K1DL

(
Patm − Pinj

)
(A35)

Solving the double integral,∫
d2u

dx2 =

∫
(1− χ)
K1DL

(
Patm − Pinj

)
→

du
dx

=

(
(1− χ)
K1DL

(
Patm − Pinj

)
x + C2

)
(A36)

∫
du
dx

=

∫ (
(1− χ)
K1DL

(
Patm − Pinj

)
x + C2

)
→ u =

(1− χ)
2K1DL

(
Patm − Pinj

)
x2 + C2x + C2

′ (A37)

From our known BCs, at x = 0, u(0) = 0 and we can solve for C2
′

0 =
(1− χ)
2K1DL

(
Patm − Pinj

)
(0)2 + C2(0) + C2

′
→ C2

′ = 0 (A38)

From our known BCs, x = L, u(L) = 0 and we can solve for C2

0 =
(1− χ)
2K1DL

(
Patm − Pinj

)
(L)2 + C2(L)→ C2 = −

(1− χ)
2K1D

(
Patm − Pinj

)
(A39)
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Substituting Equations (A38) and (A39) into Equation (A37), the analytical solution for the
governing equation for the conservation of momentum can be expressed by Equation (A40) and
simplified further to Equation (A41)

u(x) =
(1− χ)
2K1D

(
Patm − Pinj

)x2

L
−
(1− χ)
2K1D

(
Patm − Pinj

)
x = −

(1− χ)
K1D

(
Patm − Pinj

)
2

(
x2

L
− x

)
(A40)

u(x) =
1

K1D
(1− χ)

(
Patm − Pinj

)
2

(
x−

x2

L

)
(A41)

A.2.4. Final Analytical Solution

The final analytical solution for 1D steady-state gas flow through a linear elastic porous media
can be expressed by Equations (A42) and (A43),

pg(x) = Pinj +
Patm − Pinj

L
x (A42)

u(x) =
1

K1D
(1− χ)

(
Patm − Pinj

)
2

(
x−

x2

L

)
(A43)

The strain and stress can now be calculated analytically by the following expressions,

εxx = du
dx =

(1−χ)
K1D

(
Patm − Pinj

)
x
L −

1
K1D

(1− χ)
(Patm−Pinj)

2 = 1
K1D

(1− χ)
(
Patm − Pinj

)(
x
L −

1
2

)
(A44)

σ′xx = K1D

(
1

K1D
(1− χ)

(
Patm − Pinj

)
x
L −

1
K1D

(1− χ)
(Patm−Pinj)

2

)
= (1− χ)

(
Patm − Pinj

)(
x
L −

1
2

)
(A45)

σ′yy = σ′zz =
(
ν

1− ν

)
σxx (A46)

A.3. Analytical Solution for 1-Dimensional Transient Gas Flow in a Linear Elastic Porous Media

A.3.1 Governing Equations

The governing equation for the conservation of gas mass for transient (i.e., time-dependent) flow
through a linear elastic porous medium can be expressed by Equation (A47),

d
dx

ρg
kg

µg

dpg

dx

 = −d
(
ρgn(1− Sw)

)
dt

(A47)

By assuming the gas density and degree of saturation remains constant Equation (A47) simplifies
to Equation (A48),

ρg
kg

µg

d
dx

dpg

dx

 = −ρg(1− Sw)
dn
dt

(A48)

and solving for dn, this simplifies further to,

kg

µg

d2pg

dx2 = −(1− Sw)(1− n)
dεvol

dt
(A49)

−
kg

µg

1
(1− Sw)(1− n)

d2pg

dx2 =
dεvol

dt
(A50)
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Substituting Equation (A32) into Equation (A50), yields

−
kg

µg

1
(1− Sw)(1− n)

d2pg

dx2 =
1

K1D

dσ′xx

dt
(A51)

The governing equation for the conservation of momentum (quasi-static equilibrium) for
steady-state gas-flow through a linear elastic porous media assuming an immobile water phase
was previously described by Equation (A52) as,

d
(
σ ′ + (1− χ)pg

)
dx

= 0 (A52)

Integrating both sides and re-arranging for σ ′,

∫ d
(
σ ′ + (1− χ)pg

)
dx

=

∫
0→ σ ′ = −(1− χ)pg + C1 (A53)

Substituting Equation (A53) back into Equation (A51)

−
kg

µg

KD

(1− Sw)(1− n)

d2pg

dx2 =
d
(
C1 − (1− χ)pg

)
dt

(A54)

kg

µg

KD

(1− Sw)(1− n)(1− χ)

d2pg

dx2 =
dpg

dt
(A55)

where

D =
kg

µg

KD

(1− Sw)(1− n)(1− χ)
(A56)

A.3.2 Formulation of the Analytical Solution to the Conservation of Mass Equation

The form of Equation (A53) is analogous to that of non-steady state diffusion in a plane sheet
presented in Crank [25]. The analytical solution for non-steady state diffusion in a plane sheet as
derived by Crank [25] for constant surface concentrations and constant initial conditions is expressed
by the following equation,

C(x, t) = C1 + (C2 −C1)
x
L + 2

π

∞∑
n=1

C2 cos nπ−C1
n sin nπx

L exp
(
−

Dn2π2t
L2

)
+ 4C0

π

∞∑
m=0

1
2m+1 sin (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

) (A57)

where C(x, t) is the concentration at a given distance, x, and time, t, along the plane sheet

C1 is the concentration at boundary x = 0
C2 is the concentration at boundary x = L
C0 is the initial uniform concentration

Considering our boundary and initial conditions provided in the problem statement.

pg(x, t) = Pinj +
(
Patm − Pinj

)
x
L + 2

π

∞∑
n=1

Patm cos nπ−Pinj
n sin nπx

L exp
(
−

Dn2π2t
L2

)
+ 4P0

π

∞∑
m=0

1
2m+1 sin (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

) (A58)
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A.3.3 Formulation of the Analytical Solution to the Conservation of Momentum Equation

Substituting Equation (A55) into Equation (A32), the volumetric strain can be expressed as,

εvol =
du
dx

= C1 −
1

KD
(1− χ)pg (A59)

Integrating both sides yields,∫
du
dx =

∫ [
C1 −

1
KD

(1− χ)
(
Pinj +

(
Patm − Pinj

)
x
L

+ 2
π

∞∑
n=1

Patm cos nπ−Pinj
n sin nπx

L exp
(
−

Dn2π2t
L2

)
+ 4P0

π

∞∑
m=0

1
2m+1 sin (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

))] (A60)

∫
du
dx =

∫ [
C1 −

1
KD

(1− χ)Pinj −
1

KD
(1− χ)

(
Patm − Pinj

)
x
L

−
1

KD
(1− χ) 2

π

∞∑
n=1

Patm cos nπ−Pinj
n sin nπx

L exp
(
−

Dn2π2t
L2

)
−

1
KD

(1− χ) 4P0
π

∞∑
m=0

1
2m+1 sin (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

)] (A61)

u = C1x− 1
KD

(1− χ)Pinjx− 1
KD

(1− χ)
(
Patm − Pinj

)
x2

2L

−
1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
cos nπx

L exp
(
−

Dn2π2t
L2

)
−

1
KD

(1− χ) 4P0
π

∞∑
m=0

−L
(2m+1)2

π
cos (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

)
+ C′1

(A62)

From our boundary conditions u(0, t) = 0

0 = C1(0) − 1
KD

(1− χ)Pinj(0) − 1
KD

(1− χ)
(
Patm − Pinj

)
(0)2

2L

−
1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
cos nπ(0)

L exp
(
−

Dn2π2t
L2

)
−

1
KD

(1− χ) 4P0
π

∞∑
m=0

−L
(2m+1)2

π
cos (2m+1)π(0)

L exp
(
−

D(2m+1)2
π2t

L2

)
+C′1

(A63)

C′1 = 1
KD

(1− χ) 2
π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
exp

(
−

Dn2π2t
L2

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

−L
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

) (A64)

Substituting back into Equation (A62), yields,

u = C1x− 1
KD

(1− χ)Pinjx− 1
KD

(1− χ)
(
Patm − Pinj

)
x2

2L

−
1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
cos nπx

L exp
(
−

Dn2π2t
L2

)
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
exp

(
−

Dn2π2t
L2

)
−

1
KD

(1− χ) 4P0
π

∞∑
m=0

−L
(2m+1)2

π
cos (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

−L
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)
(A65)
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u = C1x− 1
KD

(1− χ)
[
Pinjx +

(
Patm − Pinj

)
x2

2L

]
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
exp

(
−

Dn2π2t
L2

)
(1 − cos nπx

L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

−L
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)(
1− cos (2m+1)πx

L

) (A66)

From our boundary conditions u(L, t) = 0

0 = C1L− 1
KD

(1− χ)
[
PinjL +

(
Patm − Pinj

)
L
2

]
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
exp

(
−

Dn2π2t
L2

)(
1− cos nπ(L)

L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

−L
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)(
1− cos (2m+1)π(L)

L

) (A67)

C1 = 1
KD

(1− χ)
[
Pinj +

(Patm−Pinj)
2

]
−

1
KD

(1− χ) 2
π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−1
nπ

)
exp

(
−

Dn2π2t
L2

)
(1− cos nπ)

−
1

KD
(1− χ) 4P0

π

∞∑
m=0

−1
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)
(1− cos(2m + 1)π)

(A68)

Substituting back into Equation (A62)

u = 1
KD

(1− χ)
[
Pinj +

(Patm−Pinj)
2

−
2
π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−1
nπ

)
exp

(
−

Dn2π2t
L2

)
(1− cos nπ)

−
4P0
π

∞∑
m=0

−1
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)
(1 − cos(2m + 1)π]x− 1

KD
(1− χ)

[
Pinjx +

(
Patm − Pinj

)
x2

2L

]
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
exp

(
−

Dn2π2t
L2

)(
1− cos nπx

L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

−L
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)(
1− cos (2m+1)πx

L

)
(A69)

u = 1
KD

(1− χ)
(Patm−Pinj)

2 x

−
1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−1
nπ

)
exp

(
−

Dn2π2t
L2

)
(1− cos nπ)x

−
1

KD
(1− χ) 4P0

π

∞∑
m=0

−1
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)
(1− cos(2m + 1)π)x− 1

KD
(1− χ)

(
Patm − Pinj

)
x2

2L

+ 1
KD

(1− χ) 2
π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)(
−L
nπ

)
exp

(
−

Dn2π2t
L2

)(
1− cos nπx

L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

−L
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)(
1− cos (2m+1)πx

L

)
(A70)

u = 1
KD

(1− χ)
(Patm−Pinj)

2

[
x− x2

L

]
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
1

nπ

)(
x−x cos nπ+ L cos nπx

L − L
)

+ 1
KD

(1− χ) 4P0
π

∞∑
m=0

1
(2m+1)2

π
exp

(
−

D(2m+1)2
π2t

L2

)(
x−x cos(2m + 1)π+ L cos (2m+1)πx

L − L
) (A71)

u = 1
KD

(1− χ)
(Patm−Pinj)

2

[
x− x2

L

]
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
−L
nπ

)(
1− x

L + x
L cos nπ− cos nπx

L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

exp
(
−

D(2m+1)2
π2t

L2

)(
−L

(2m+1)2
π

)(
1− x

L + x
L cos(2m + 1)π− cos (2m+1)πx

L

) (A72)
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A.3.4. Final Analytical Solution

The final analytical solution for 1D transient gas flow through a linear elastic porous media can be
expressed by Equations (A73) and (A74),

pg(x, t) = Pinj +
(
Patm − Pinj

)
x
L + 2

π

∞∑
n=1

Patm cos nπ−Pinj
n sin nπx

L exp
(
−

Dn2π2t
L2

)
+ 4P0

π

∞∑
m=0

1
2m+1 sin (2m+1)πx

L exp
(
−

D(2m+1)2
π2t

L2

) (A73)

u = 1
KD

(1− χ)
(Patm−Pinj)

2

[
x− x2

L

]
+ 1

KD
(1− χ) 2

π

∞∑
n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
−L
nπ

)(
1− x

L + x
L cos nπ− cos nπx

L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

exp
(
−

D(2m+1)2
π2t

L2

)(
−L

(2m+1)2
π

)(
1− x

L + x
L cos(2m + 1)π− cos (2m+1)πx

L

) (A74)

The strain and stress can now be calculated analytically by the following expressions,

εvol =
du
dx = 1

KD
(1− χ)

(
Patm − Pinj

)(
1
2 −

x
L

)
+ 1

KD
(1− χ) 2

π
∞∑

n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
1

nπ −
1

nπ cos nπ− sin nπx
L

)
+ 1

KD
(1− χ) 4P0

π

∞∑
m=0

1
2m+1 exp

(
−

D(2m+1)2
π2t

L2

)(
1

(2m+1)π −
1

(2m+1)π cos(2m + 1)π− sin (2m+1)πx
L

) (A75)

εvol =
du
dx = 1

KD
(1− χ)

(
Patm − Pinj

)(
1
2 −

x
L

)
+ 1

KD
(1− χ) 2

π
∞∑

n=1

(
Patm cos nπ−Pinj

n

)
exp

(
−

Dn2π2t
L2

)(
1

nπ cos nπ− 1
nπ + sin nπx

L

)
+ 1

KD

(1− χ) 4P0
π

∞∑
m=0

1
2m+1 exp

(
−

D(2m+1)2
π2t

L2

)(
1

(2m+1)π

cos(2m + 1)π− 1
(2m+1)π + sin (2m+1)πx

L

) (A76)
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