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Abstract: An integrated zircon geochronological, elemental geochemical, and Sr–Nd–Hf isotopic
investigation was carried out on a suite of dioritic–granitic rocks at Zalute in the southern Great
Xing’an Range (SGXR), NE China, in order to probe the source and petrogenesis of these granitoid
rocks and further constrain the geodynamical setting of early Early Cretaceous magmatism. The results
of Sensitive High-Resolution Ion Micro Probe (SHRIMP) zircon U–Pb dating reveal that the Zalute
dioritic–granitic rocks have a consistent crystallization age of ca. 137–136 Ma, consisting of quartz
diorite (136± 1.4 Ma), monzogranite (136± 0.8 Ma), and granite porphyry (137± 1.3 Ma), which record
an early Early Cretaceous magmatic intrusion. Geochemically, the quartz diorites, monzogranites,
and granite porphyries are mostly high-K calc-alkaline and show features of typical I-type affinity.
They possess uniform and depleted Sr–Nd–Hf isotopic compositions (e.g., initial 87Sr/86Sr ratios of
0.7035 to 0.7049, εNd(t) of −0.02 to +2.61, and εHf(t) of +6.8 to +9.6), reflecting a common source,
whose parental magma is best explained as resulting from the partial melting of juvenile source
rocks in the lower crust produced by underplating of mantle-derived mafic magma, with minor
involvement of ancient crustal components. Evidence from their close spatio–temporal relationship,
common source, and the compositional trend is consistent with a magmatic differentiation model of
the intermediate-felsic intrusive suite, with continued fractional crystallization from quartz diorites,
towards monzogranites, then to granite porphyries. Combined with previously published data in the
SGXR, our new results indicate that the Zalute intermediate-felsic intrusive suite was formed during
the post-collisional extension related to the closure of the Mongol–Okhotsk Ocean and subsequent
slab break-off.
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1. Introduction

Granitoid rocks are widely considered to be one of the most important components of the
continental crust, which are mainly generated by a massive transfer of heat and/or mantle materials
to the crust in the various geodynamical settings [1–5]. An understanding of petrogenesis and
geodynamical setting of granitoids are important for the interpretation of the crustal evolution and
crust–mantle interaction [6–12].

The southern Great Xing’an Range (SGXR), situated in the southeastern Central Asian Orogenic
Belt, is well-known for Late Mesozoic granitoid rocks [4,5,13]. There have been important advances
in the research of Late Mesozoic granitoid magmatism in recent years. It is widely accepted
that these granitoids were mainly formed in the Early Cretaceous, with subordinates in the
Late Jurassic [14–16], which were mainly derived from partial melting of juvenile materials with
near-zero to positive Hf–Nd isotopic characteristics [17–19] and mantle-like δ18O compositions [16].
The large-scale Early Cretaceous granitoid magmatism is thought to be linked with the intracontinental
extension [9,14]. Nevertheless, the magma genesis and geodynamic process of the Early Cretaceous
giant granitoid-forming event are still not fully understood.

Several models have been proposed to decipher the origin and geodynamics of the Early Cretaceous
granitoids in the SGXR, including (1) the “extreme fractional crystallization model of mantle-derived
magma” which emphasizes evolved mantle-derived basaltic magma associated with the continental
rifting [4]; (2) the “slab window model” advocates partial melting of subducting oceanic crust near the
Mongol–Okhotsk ridge, accompanied with extension in the overlying lithosphere [20]; (3) the “mixing
model” stresses on crust–mantle magma mixing, which is related to a post-collisional extensional
setting [13,21,22]; (4) the “delamination model” proposes the gravitational collapse of thickened
continental crust related to closure of the Mongol–Okhotsk Ocean [5,11,23,24] or subduction of the
Paleo-Pacific Plate [25,26]; and (5) the “underplating model” argues for partial melting of underplated
lower crust related to closure of the Mongol–Okhotsk Ocean [5,16] or superimposed by a far-field effect
of western subduction of the Paleo-Pacific plate [14,15].

When compared to the northern part of the Great Xing’an Range, relatively few comprehensive
studies have concentrated on the Early Cretaceous granitoids of the SGXR [13,27], which has hindered
our understanding of Early Cretaceous tectonic-magmatism evolution in the SGXR [1].

In this work, we report new Sensitive High-Resolution Ion Micro Probe (SHRIMP) U–Pb zircon
ages, major and trace elements, zircon Hf isotopic and whole-rock Sr–Nd isotopic data for quartz
diorite, monzogranite, and granite porphyry at Zalute in the SGXR. The purpose of this study is
to (1) constrain the magma source; (2) shed light on the petrogenesis of the dioritic–granitic rocks;
and (3) provide insights into the tectonic setting that controlled the formation of the Early Cretaceous
intermediate-felsic intrusive suite at Zalute.

2. Regional Geology

The Great Xing’an Range (GXR), located in the eastern part of Central Asian Orogenic Belt
(Figure 1a), is sandwiched between the Siberia Craton to the north and North China Craton to the
south [4,28–34]. It experienced a remarkable geological amalgamation as a result of continental collision
events during the Phanerozoic [34], which were related to the subduction of the Paleo-Asian Ocean,
Mongol–Okhotsk Ocean, and Paleo-Pacific Ocean during Paleozoic [35,36]. The Mongol–Okhotsk
Suture to the northwest of the GXR (Figure 1b) is widely accepted as representing the final closure of
the Paleo-Asian Ocean [15,37–39]. The subduction of the Paleo-Pacific oceanic plate is suggested to
start in the Early Jurassic [40].

The SGXR lies at the southern segment of the GXR, bound to the north by the Erlian–Hegenshan
fault, to the south by the Xar Moron fault, and to the northeast by the Nenjiang fault (Figure 1c) [36,41,42].
The Xilinhot Complex is mainly composed of Paleozoic mica schist, paragneiss, and biotite-bearing
granitic gneiss, representing the oldest strata exposed in the SGXR [43]. Late Paleozoic to Mesozoic
magmatic rocks widely intruded into the Permian metamorphic volcano-sedimentary associations,
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limestones, and clastic rocks [44]. Late Mesozoic volcanic rocks in the SGXR have a wide range in the
composition, which are dominantly composed of basaltic to rhyolitic rocks [20,35,44].

Late Paleozoic and Mesozoic intrusions consist mainly of quartz diorite, granodiorite,
monzogranite, syenogranite, granite porphyry, quartz porphyry, and alkali granite, which are
associated with the subduction and the closure of the Paleo-Asian and Mongol–Okhotsk oceanic slabs,
subduction of the Paleo-Pacific oceanic slab, and subsequent lithospheric extension [14,45]. Among them,
the large-scale Early Cretaceous granitoid magmatism occurs far from plate boundaries, which were
associated with continental convergence and intracontinental orogenesis in East Asia [14,16,46].
Pre-Mesozoic faults are thought to be the major structure in the SGXR. The spatial distribution of the
Early Cretaceous granitoid rocks is mainly controlled by NE-, NW-, and near E–W-striking normal
faults (Figure 1c) [14].
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Figure 1. (a) Schematic map of the Central Asian Orogenic Belt (after Shen et al. [28]) showing
the location of NE China; (b) Simplified geotectonic division of NE China (after Zhang et al. [37]),
showing the location of the SGXR; and (c) Geologic sketch map of the southern Great Xing’an Range
(SGXR) (modified after Ouyang et al. [14] and Guo et al. [41]).

The Zalute area is situated in the east part of the SGXR (Figure 1c). The lower Permian strata in
the region is a volcanic rocks suite of neritic facies, interlayered with clastic rocks, mainly including
meta-andesite, meta-dacitic tuff, and meta-sandstone. The Upper Permian strata are dominated
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by a suite of clastic rocks of lacustrine facies, consisting of meta-siltstone, mudstone, felsic slate,
and marlstone [27]. The Jurassic strata are mainly felsic volcanic rocks and clastic rocks of lacustrine
facies, comprising andesite, volcanic breccia, volcanic tuff, conglomerate, sandstone, and shale.
The Cretaceous strata consist of andesitic breccia, pyroclastic rock, tuff, limestone, and sandstone.
The volcanic rocks exposed in this region involve the Late Jurassic Manketou’ebo Formation,
and the Early Cretaceous Baiyingaolao, Manitu, and Meiletu Formations (Figure 2) [24]. The Late
Jurassic Manketou’ebo Formation is characterized by rhyolite and tuff, whereas the Early Cretaceous
Baiyingaolao, Manitu, and Meiletu Formations are comprised of andesite, basaltic andesite, dacite,
rhyolite, tuff, and pyroclastic rock [24,44,47]. The Ealy Permian, Early Triassic, Late Jurassic, and Early
Cretaceous intrusive rocks exposed in this region (Figure 2) are mainly composed of quartz diorite,
quartz monzonite, monzogranite, granite porphyry, alkaline granite, and albite granite. These Early
Permian to Early Cretaceous granitoid rocks commonly intruded in the form of batholiths, stocks,
and dikes [18]. Major faults in the region are dominated by NW- and NE-striking faults, with subordinate
E–W-striking faults.
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Figure 2. Simplified geological map of the Zalute area in the SGXR.

3. Sampling and Analytical Methods

3.1. Sample Descriptions

The granitoid samples collected from Zalute area include quartz diorite (Figure 3a,b),
monzogranite (Figure 3c,d), and granite porphyry (Figure 3e,f). Sample locations are shown in
Figure 2 and given in Supplementary Table S1.

Quartz diorites are characterized by a fine-grained, holocrystalline texture (Figure 3a),
which mainly consists of plagioclase, quartz, biotite, and amphibole (Figure 3b) with accessory zircon,
apatite, and titanite. Occasionally, amphibole and biotite grains occur as inclusions in plagioclase.
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Plagioclase grains exhibit euhedral to subhedral with sizes spanning from 0.2 to 1.0 mm. Quartz grains
mainly show anhedral with sizes varying from 0.1 to 0.4 mm. Biotite grains occur as euhedral crystals
up to 0.8 mm long. Amphibole grains are euhedral to subhedral with sizes in the range of 0.1 to 0.3 mm.Minerals 2020, 10, x FOR PEER REVIEW 5 of 22 
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Figure 3. Photographs (left) and corresponding thin section photomicrographs (right) of the granitoids
from Zalute. (a,b) Quartz diorite, (c,d) monzogranite, and (e,f) granite porphyry. Mineral abbreviations:
Amp—amphibole; Bi—biotite; Pl—plagioclase; Kfs: K-feldspar; Qz—quartz.

Monzogranites show fine-to-medium-grained texture (Figure 3c). They mainly consist of
plagioclase, K-feldspar, quartz, biotite, and amphibole (Figure 3d). Accessory minerals include
apatite, zircon, monazite, and ilmenite. Plagioclase commonly occurs as euhedral grains up to 2 mm
long. Occasionally, K-feldspar (up to 0.8 mm) contains small quartz inclusions. Quartz (0.1–0.8 mm)
generally display subhedral grains. Biotite and amphibole grains are mainly euhedral to subhedral,
occurring between the intervals or enclosed by quartz.

Granite porphyries are typically porphyritic with phenocrysts (up to 2 mm) of plagioclase,
quartz, K-feldspar, and biotite (Figure 3e,f). Plagioclase and biotite phenocrysts are mainly euhedral or
subhedral. K-feldspar phenocrysts occur as subhedral grains. Quartz phenocrysts occur as subhedral
to anhedral grains in shape with rounded edges.

3.2. SHRIMP U–Pb Zircon Dating

Zircon grains were separated using conventional heavy liquids, hand-picking, and then mounted
on epoxy resin and polished to expose the crystal interiors. To characterize internal structures
of zircon grains and select better target sites for U–Pb dating, cathodoluminescence (CL) imaging
was performed using a JXA-8800R Electron Probe at the Institute of Geology, Chinese Academy of
Geological Sciences (CAGS), Beijing, China. Zircon U–Pb isotopic analyses of all the samples were
carried out using a Sensitive High-Resolution Ion Micro Probe (SHRIMP) II following the method
of Williams [48], at the Beijing SHRIMP Center, CAGS, Beijing, China. International standard SL13
(572 Ma) and TEMORA (417 Ma) were used for the test procedure as discussed by Black et al. [49].
For the sake of monitoring the contents of U, Th, and Pb, one SL13 reference sample was run for every
nine analyses of the samples with a beam diameter of 30–40 µm. To maintain the precision of the
measured results, one TEMORA reference sample was run for every four analyses of the samples.
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Detailed analytical procedures followed those described by Song [50]. The weighted mean ages were
calculated, and Concordia diagrams were conducted using Isoplot (Ex ver3, Berkeley Geochronology
Center, Berkeley, CA, USA) [51].

3.3. Zircon Hf Isotopes

In situ Lu–Hf isotopic analyses were conducted by using a Neptune Plus multi-collector inductively
coupled plasma mass spectrometry (MC–ICP–MS) (Thermo Fisher Scientific, Erlangen, Germany),
attached to a GeoLas HD excimer ArF laser ablation (LA) system (Coherent, Göttingen, Germany)
that is hosted at the Wuhan Sample Solution Analytical Technology Co., Ltd., Hubei. To correlate
LA–MC–ICP–MS zircon Hf isotope data with U–Pb isotope data, analytical spots were situated
close to or overlapping with the SHRIMP measure spots. A spot size of the laser was set to 44 µm,
with a laser repetition rate of 8 Hz and an energy density of ~7.0 J/cm2. To track the accuracy of
analysis, zircon standards 91,500 and GJ-1 were used as reference samples, yielding weighted mean
176Hf/177Hf ratios of 0.282295 ± 0.000005 (2σ) and 0.282000 ± 0.000009 (2σ), respectively, which are good
agreement with their recommended ratios. Detailed operating conditions can be found in Hu et al. [52].
Off-line selection, integration of analyte signals, and mass bias calibrations were made using soft
ICPMSDataCal10.7 [53].

3.4. Major and Trace Elements

The samples were first powdered to ~200 mesh. Then, major and trace element analyses of
whole-rock were conducted at Createch Testing Technology Co., Ltd., Beijing. China. Major element
analyses were performed by X-ray fluorescence spectrometry (XRF-1800). The analytical error and
accuracy for major elements are generally better than 1% based on analyses of national rock standards
(GSR-1, GSR-2, GSR-3, GSD-9, BHVO-2, and AGV-2). Trace element analyses of whole-rock were
analyzed using Agilent 7500ce inductively coupled plasma mass spectrometry (ICP–MS). The detailed
analytical procedures followed those described by Wei et al. [54].

3.5. Sr and Nd Isotopes

The Sr and Nd isotopic compositions were determined by using a multi-collector (MC) –ICP–MS
(Neptune Plus, Thermo-Fisher) at Createch Test Technology Co. Ltd., Beijing, China. Detailed analytical
procedures can be found in Yang et al. [55]. The ratios of 87Rb/86Sr and 147Sm/144Nd were calculated
from Rb, Sr, Sm, and Nd concentrations measured by ICP–MS. During the analytical process, the average
147Sm/144Nd ratios for international basalt standard BHVO-2 and BCR-2 were 0.1542 (2σ, n = 17)
and 0.1405 (2σ, n = 17), respectively. The average 143Nd/144Nd ratios for standard BHVO-2 and
BCR-2 were 0.512964 ± 5 (2σ, n = 17) and 0.512608 ± 5 (2σ, n = 17), respectively, which are within
the error of those reported by Li et al. [56]. The Sr isotope international standard NBS 987 was
repeatedly tested for monitoring the accuracy of the test results, yielding an average 87Sr/86Sr ratio of
0.710247 ± 13 (2σ, n = 17), which is close to that reported by Zhai et al. [57].

4. Analytical Results

4.1. Zircon U–Pb Age Data

The zircon SHRIMP U–Pb age data are listed in Supplementary Table S1. Zircon grains from
the quartz diorite (sample TW28) show euhedral to subhedral, prismatic, and transparent, spanning
from 60 to 140 µm in length. Their weakly oscillatory zoning is visible in CL images (Figure 4a).
Fifteen spots from fifteen zircon grains were carried out for U–Pb dating. These zircon grains have
824–891 ppm U and 178–912 ppm Th, with Th/U ratios in the range of 0.6–1.0, indicating a magmatic
origin. The results gave 206Pb/238U ages ranging from 134 to 139 Ma. These analyses fall closely on
the Concordia, yielding a weighted mean 206Pb/238U age of 136 ± 1.4 Ma (MSWD = 0.25; Figure 4a),
which represents the crystallization age of quartz diorite.
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Zircon grains from the monzogranite (sample TW8192) are euhedral to subhedral, varying from
70 to 160 µm in length. They are transparent and prismatic, with well-developed oscillatory zoning
visible in CL images (Figure 4b). The zircon grains possess 506–1407 ppm U and 198–1065 ppm
Th, with Th/U ratios in the range of 0.33 to 0.76, suggesting a magmatic origin. Sixteen spots were
performed on sixteen zircon grains for U–Pb dating, yielding 206Pb/238U ages spanning from 133
to 139 Ma. The concordant to sub-concordant analyses yield a weighted mean 206Pb/238U age of
136 ± 0.8 Ma (MSWD = 0.91; Figure 4b), which is interpreted as the crystallization age of monzogranite.
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Zircon grains from the granite porphyry (sample TW3127) are transparent, prismatic, and euhedral,
and are 80–200 µm in length. CL images reveal that they have apparent concentric zoning (Figure 4c).
Fourteen spots were performed on fourteen zircon grains for U–Pb dating. These zircon grains have
227–1937 ppm U and 158–1412 ppm Th, with Th/U ratios of 0.4–1.18, indicating a magmatic origin.
The results gave 206Pb/238U ages varying from 129 to 140 Ma. The concordant to sub-concordant analyses
yield a weighted mean 206Pb/238U age of 137 ± 1.3 Ma (MSWD = 1.7; Figure 4c), which represents the
crystallization age of granite porphyry.

4.2. Zircon Hf Isotopic Data

The zircon Hf isotopic data are given in Supplementary Table S2 and shown in Figure 5a.
Eight zircon grains from the quartz diorite (sample TW28) were measured for in situ Hf isotope
analyses. Their εHf(t) are restricted to high values of +8.1 to +9.6, corresponding to crustal Hf model
ages (TDM

C) of 0.58 to 0.68 Ga.
Nine zircon grains from the monzogranite (sample TW8192) were determined for in situ Hf

isotope analyses. The variation of εHf(t) is limited (+6.8 to +7.8), corresponding to TDM
C ages of 0.7 to

0.76 Ga.
Eight zircon grains from the granite porphyry (sample TW3127) were measured for in situ Hf

isotope analyses. They also possess a restricted range of εHf(t) values from +7.4 to +9.1, corresponding to
TDM

C ages of 0.61 to 0.73 Ga.

4.3. Major and Trace Element Data

The major and trace element data for the Zalute granitoids are present in Supplementary Table S3.
As shown in the total alkalis–silica (TAS) ((K2O + Na2O) versus SiO2) diagram, the quartz diorite
samples straddle the line between the diorite and monzonite field, and the monzogranite and granite
porphyry samples plot mainly in the field of quartz-monzonite and granite, respectively (Figure 6a).
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diagrams for the granitoids from Zalute. Data sources are from previously published Sr–Nd–Hf isotopic
data for the SGXR [9,17,18,27,58–60].

The quartz diorite samples are characterized by moderate SiO2 contents (60–62.6 wt.%) and
relatively high contents of CaO (4.05–5.71 wt.%; Figure 7a), MgO (1.26–3.60 wt.%; Figure 7b),
Fe2O3

T (4.91–6.62 wt.%; Figure 7c), and TiO2 (0.6–1.04 wt.%; Figure 7d), with a medium differentiation
index (60–70). They exhibit variable P2O5 (0.02–0.20 wt.%; Figure 7e) and K2O contents (1.5–2.8 wt.%;
Figure 6b), most of which belong to high-K calc-alkaline series (Figure 6b). All samples possess a
limited variety of Na2O (3.92–4.95 wt.%; Figure 6c) and Al2O3 contents (17.4–18 wt.%; Figure 7f),
with relatively variable A/CNK (molar Al2O3/(CaO + Na2O + K2O)) values varying from 0.83 to 1.04,
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displaying metaluminous to weakly peraluminous characteristics (Figure 6d). Moreover, they show
relatively high Sr (530–962 ppm; Figure 7g) and Ni contents (6.7–13.8 ppm; Figure 7h). The quartz
diorite samples exhibit fractionated REE patterns (Figure 8a; LaN/YbN = 7–13), with negative to weakly
positive Eu anomalies (Eu/Eu* = 0.56–1.09). In the primitive mantle-normalized trace element patterns
(Figure 8b), they are enriched in large ion lithophile elements (LILE) (e.g., K, Pb, and Sr) and depleted
in high field strength elements (HFSE) (e.g., Nb, Ta, and Ti).
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silica classification [61]; (b) SiO2 versus K2O [62]; (c) Na2O versus K2O [63]; (d) A/NK (molar
Al2O3/(Na2O + K2O)) versus A/CNK (molar Al2O3/(CaO + Na2O + K2O)) [64]; (e) Rb versus (Y + Nb) [65];
and (f) La/Sm versus La diagrams [66]. WPG: within-plate granite; VAG: volcanic arc granite; Syn COLG:
syn-collisional granite; Post-COLG: post-collisional granite; and ORG: ocean ridge granite.

By contrast, the monzogranite samples display elevated SiO2 contents (63.4–68.8 wt.%)
and lower contents of CaO (1.4–3.5 wt.%; Figure 7a), MgO (0.63–1.57 wt.%; Figure 7b),
Fe2O3

T (3.12–5.62 wt.%; Figure 7c), TiO2 (0.41–0.8 wt.%; Figure 7d), P2O5 (0.04–0.19 wt.%; Figure 7e),
Al2O3 (14.8–16.6 wt.%; Figure 7f), Sr (203–494 ppm; Figure 7g), and Ni (4.1–7.6 ppm; Figure 7h),
with elevated differentiation index (73–86). These samples are metaluminous to weakly peraluminous
(Figure 6d) with A/CNK values of 0.91–1.12 and are characterized by high K2O (3.21–4.66 wt.%;
Figure 6b) but variable Na2O (3.62–5.62 wt.%) (Figure 6c), plotting in the high-K calc-alkaline field
(Figure 6b). The chondrite-normalized REE diagram of the monzogranite samples (Figure 8a) shows
fractionated REE patterns (LaN/YbN = 4–17), with negative Eu anomalies (Eu/Eu* = 0.46–0.95).
Their primitive mantle-normalized trace element patterns (Figure 8b) are enriched in Rb, Th, K, and Pb
relative to Ba, Nb, P, and Ti.

The granite porphyry samples, with high SiO2 contents of 70.4 to 74.5 wt.% and high differentiation
index (83–94), belong to the high-K calc-alkaline series with high K2O contents (3.9–5.1 wt.%; Figure 6b).
They are characterized by variable Na2O (3.04–5.1 wt.%; Figure 6c) but low contents of CaO
(0.43–2.12 wt.%; Figure 7a), MgO (0.31–1.04 wt.%; Figure 7b), Fe2O3

T (1.88–3.03 wt.%; Figure 7c),
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TiO2 (0.17–0.35 wt.%; Figure 7d), P2O5 (0.01–0.13 wt.%; Figure 7e), Al2O3 (12.9–14.8 wt.%; Figure 7f),
Sr (20–198 ppm; Figure 7g), and Ni (2.4–5.3 ppm; Figure 7h). These samples are metaluminous to
peraluminous with variable A/CNK values of 0.86–1.32 (Figure 6d). They also display fractionated
REE patterns (Figure 8a; LaN/YbN = 4–16), with medium to strongly negative Eu anomalies
(Eu/Eu* = 0.08–0.65). As shown in the primitive mantle-normalized trace element patterns (Figure 8b),
the granite porphyry samples are enriched in LILE (e.g., K and Pb) and depleted in HFSE (e.g., Nb, Ta,
and Ti).
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4.4. Whole-Rock Sr–Nd Isotopic Data

Whole-rock Sr–Nd isotopic data for the Zalute granitoids are listed in Supplementary Table S4
and shown in Figure 5b. Initial Sr and Nd isotopic ratios were calculated at their zircon weighted
mean 206Pb/238U ages. The quartz diorite samples exhibit high and uniform initial 87Sr/86Sr ratios of
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0.7044–0.7049 and near-zero to positive εNd(t) values of −0.02 to +2.61, corresponding to two-stage
Nd model ages (TDM2) of 0.72 to 0.93 Ga. The monzogranite samples also show depleted Sr–Nd
isotopic compositions, with initial 87Sr/86Sr ratios of 0.7048–0.7049 and εNd(t) values of +0.98 to +1.5,
corresponding to TDM2 ages of 0.81 to 0.82 Ga. The granite porphyry sample has an initial 87Sr/86Sr
ratio of 0.7035, εNd(t) value of +1.37, and TDM2 ages of 0.82 Ga, which are close to those of the quartz
diorite and monzogranite samples.

5. Discussion

5.1. Timing of the Zalute Intrusive Suite

The intermediate-felsic intrusive suite (e.g., quartz diorite, quartz monzonite, monzogranite,
and granite porphyry) and alkaline intrusive suite (e.g., alkaline granite and albite granite) are
distributed at Zalute. Previous studies mainly focused on the geochronology of the alkaline intrusive
suite associated with the Baerzhe rare metal deposit [68–71]. For example, alkaline granites were
constrained at 127–121 Ma by Rb–Sr whole-rock isochron, LA–ICP–MS and SIMS zircon U–Pb dating,
respectively [68–71]. Furthermore, Rb–Sr whole-rock isochron dating yielded an age of 125.2 ± 2 Ma
for albite granite [70].

Although Shen et al. [72] reported a SHRIMP zircon U–Pb age of 137.4 ± 0.9 Ma for a quartz
monzonite sample, few studies were undertaken for widespread quartz diorites, monzogranites,
and granite porphyries at Zalute, which are the focus of this study. Here we present new ages of quartz
diorite (136 ± 1.4 Ma), monzogranite (136 ± 0.8 Ma), and granite porphyry (137 ± 1.3 Ma) by SHRIMP
zircon U–Pb dating (Figure 4). Based on the above chronological constraints, the intermediate-felsic
intrusive rocks at Zalute show a consistent crystallization age of ~137–136 Ma, which is earlier than the
alkaline intrusive rocks of ~127–121 Ma.

The Zalute intermediate-felsic intrusive suite is broadly coeval with or slightly earlier than the
Early Cretaceous granitoids in the surrounding regions, such as diorites, monzogranites, and granite
porphyries at Linxi (~135–125 Ma) [16,18,58], monzogranites at Ganzhuermiao (~139–125 Ma) [73],
and monzogranites and syenogranites at Xilinhot–Huolinguole (~139–121 Ma) [60,74]. The widespread
occurrences of these granitoids in the SGXR record an Early Cretaceous giant igneous event of the
eastern Central Asian Orogenic Belt [5,16]. Integrating our new data with previous studies in the
SGXR (Figure 5a), the early Early Cretaceous intermediate-felsic intrusive suite and middle Early
Cretaceous alkaline intrusive suite can be distinguished, representing two magmatic pulses with an
age gap of more than 10 Ma. Although many studies have been conducted on the late-stage alkaline
granitoids associated with the Baerzhe rare metal deposit [68–71], little is known about the early-stage
intermediate-felsic granitoids at Zalute. In what follows, we focus only on the early Early Cretaceous
intermediate-felsic intrusive suite.

5.2. Magma Sources and Petrogenesis

5.2.1. Source Nature

The quartz diorite, monzogranite, and granite porphyry at Zalute have uniform and highly positive
εHf(t) values ( +8.1 to +9.6, +6.8 to +7.8, and +7.4 to +9.1, respectively; Figure 5a), near-zero to positive
εNd(t) values (0.98 to 2.61) and low initial 87Sr/86Sr ratios (0.7035 to 0.7049; Figure 5b), suggesting that
they share the similar parental magma derived from juvenile source rocks. Furthermore, the occurrence
of negative εNd(t) value (−0.02) of one sample implies the involvement of minor ancient crustal
materials during magma generation.

In general, the magma sources with juvenile isotopic signatures can be produced by (1) the
evolved mantle-derived basaltic magma [75,76]; (2) underplated oceanic crust [2,77]; (3) magma
mixing [4,13,21,22]; and (4) juvenile lower crust [5]. As outlined below, the first three possible source
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candidates may be precluded for the origin of the studied granitoids. Instead, we consider that the
best source candidate is juvenile lower crust.

1. The studied granitoids have high SiO2 contents (up to 75.3 wt.%), implying that their
parental magma may not derive directly from mantle-melting [47,78]. Moreover, the less evolved
quartz diorites (SiO2 contents of 60.0 to 62.6 wt.%) have relatively low MgO (1.26 to 3.6 wt.%,
average 2.39 wt.%; Figure 7b), Cr (4 to 38 ppm, average 21 ppm), and Ni contents (7 to 14 ppm,
average 10 ppm; Figure 7h). This argues against the case of mantle-derived melts, which are characterized
by high MgO (>5% wt.%) (e.g., melts from the metasomatized mantle wedge) [79], Cr (~200 ppm),
and Ni contents (~100 ppm) (e.g., high-Mg diorites) [80,81]. Furthermore, fractional crystallization
of mantle-derived basaltic magma is commonly accompanied by mafic or ultramafic cumulates [75],
which were not found at Zalute [72]. Accordingly, the extreme differentiation model of mantle-derived
magma may be precluded.

2. Niu et al. [2] and Xiao et al. [82] argued that the juvenile isotopic signatures of granitoids
can be inherited from the underplated oceanic crust. The resultant granitoids generally mixed
with a large amount of ancient crustal materials in the sources, leading to large variation in εHf(t)
and enrichment εNd(t) values, as exemplified by the granitoids from the West Kunlun Orogen [83],
North Qilian Orogen [84,85], and West Qinling Orogen [86]. However, this is not in agreement with the
case of the Zalute granitoids, which are characterized by uniform and high positive εHf(t) (Figure 5a)
and depleted εNd(t) values (Figure 5b). Furthermore, the granitoids derived from the underplated
oceanic crust are expected to be formed in a syn-collision setting [2,77]. Nevertheless, a plot of Y + Nb
versus Rb (Figure 6e) reveals that the Zalute intermediate-felsic granitoid samples are mainly plotted
in the post-collisional granite field, indicating an extension setting. In addition, it is widely accepted
that the SGXR has experienced lithospheric extension since the early Early Cretaceous [21,27,87].
Thus, the Zalute granitoids are difficult to explain with the underplated oceanic crust model.

3. The granitoids formed by magma mixing commonly show resorption texture or reversed zoning
in plagioclase [84], which is not consistent with what we observed in the studied granitoids (Figure 3).
Moreover, the lack of mafic microgranular enclaves in the granitoids at Zalute also excluded the magma
mixing model [14,22]. Moreover, the granitoids formed by magma mixing are expected to have a wide
range of εHf(t) values (generally more than 10 units) due to incomplete mixing [88], which conflict
with the uniform εHf(t) values (+6.8 to +9.6) of the studied samples (Figure 5a). Therefore, the magma
mixing model is insufficient to explain the source of the Zalute granitoids.

4. The Zalute granitoids are characterized by “crustal-like” geochemical features, such as
enrichment in the LREE and LILE, and depletion in the HFSE (Nb, Ta and Ti) (Figure 8), implying that
their parental magmas are likely to be produced from the continental crust [47]. Moreover, the granitoids
show relatively low Ce/Pb (mainly 0.4 to 5.2; average 2.6) and Nb/Ta ratios (3.9 to 15.6; average 11.9).
Their Ce/Pb and Nb/Ta ratios are evidently lower than those of primitive mantle (Ce/Pb = 9 and
Nb/Ta = 17.5) but close to continental crust (Ce/Pb = 4 and Nb/Ta = 11–12) [89,90], further implying a
crustal origin [32]. Accordingly, we propose that the Zalute intermediate-felsic intrusive suite was
mainly derived from juvenile source rocks in the lower crust (cf. [1,9,17,18]).

5.2.2. Granite Type and Fractional Crystallization

In terms of source nature and geochemical characteristics, granitoids have been generally classified
as I-, S-, and A-types [78,91,92]. The early Early Cretaceous granitoids at Zalute have relatively low
zircon saturation temperatures (665 ◦C–816 ◦C; average 753 ◦C) according to the zircon saturation
thermometer of Boehnke et al. [93], similar to those of typical I-type granite (~760 ◦C) but significantly
lower than those of typical A-type granite (~840 ◦C) [94]. Most samples (exceptionally samples D9723
and D4449) are metaluminous to weakly peraluminous (Figure 6d), which are different from strongly
peraluminous S-type granites [95]. Furthermore, the absence of aluminous minerals such as garnet,
muscovite, and tourmaline further rules out their affinity with S-type granites. Only two samples
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display strongly peraluminous features with high A/CNK values of 1.12 and 1.32, which may be caused
by magmatic fractionation [78,96].

The metaluminous to weakly peraluminous melts forming I-type granites are characterized by the
low solubility of P and its decrease as the melt evolves, resulting in P2O5 decreasing with increasing
SiO2 in the I-type melts [97]. By contrast, the strongly peraluminous melts forming S-type granites are
unsaturated in P, hence no definite trend of decreasing P2O5 with the increase in SiO2 in the S-type
melts [57,98]. Therefore, the contrasting behaviors of P between I- and S-type melts can be used to
effectively distinguish between them [78]. Plotting P2O5 against SiO2 for the Zalute granitoids reveals a
strongly negative correlation between them (Figure 7e), indicating a chemical affinity to I-type granite.
This observation can be further reinforced by the K2O versus Na2O discrimination diagram that all the
samples were plotted in the field of I-type granite (Figure 6c) [63]. Accordingly, the intermediate-felsic
intrusive suite at Zalute is I-type granites.

Combination of geochronological, Sr–Nd–Hf isotopic, and whole-rock chemical data support a
magmatic differentiation model of an intermediate-felsic granitic system, with a close petrogenetic
relationship between quartz diorite, monzogranite, and granite porphyry at Zalute, as indicated by the
following lines of evidence.

1. The quartz diorites, monzogranites, and granite porphyries (~137–136 Ma; Figure 4) have a
close spatial–temporal relationship.

2. In plots of εHf(t) value versus age (Figure 5a) and initial 87Sr/86Sr ratio versus εNd(t) value
(Figure 5b), these granitoid samples are indistinguishable or overlapping within a narrow range in
terms of their Sr–Nd–Hf isotopic compositions, indicating a common source.

3. The quartz diorites, monzogranites, and granite porphyries display similar chondrite-normalized
REE patterns (Figure 8a) and primitive mantle-normalized trace element patterns (Figure 8b).
Moreover, these granitoids show clear trends in chemical compositions defining linear regressions on
variation diagrams, where the selected elements correlate negatively with SiO2 (Figure 7), resulting from
either partial melting or fractional crystallization. It is widely assumed that the effects of these two
processes can be evaluated and distinguished by a La/Sm versus La diagram [29,66]. As shown
in Figure 6f, the fractional crystallization process played a more important role in the evolution of
the Zalute intermediate-felsic granitoid magmatism. This observation is further supported by the
differentiation index increasing gradually from quartz diorites (60–70), toward monzogranites (73–86),
then to granite porphyries (83–94).

4. Fractional crystallization has taken place in the intermediate-felsic magmatic system, as indicated
by the pronounced depletion in Nb, Ti, and Eu (Figure 8a,b). The marked negative anomalies of Nb
and Ti are thought to be related to the fractionation of biotite [99]. Previous studies have demonstrated
that biotite/melt partition coefficients are significantly higher for V and Sc relative to Th, resulting in
Th partitioned more strongly into the residual melts than V and Sc during biotite crystallization,
and hence lower V/Th and Sc/Th ratios, accompanied with increasing SiO2/Al2O3 ratios in the
residual melts [100,101]. Our granitoid samples exhibit negative correlations with SiO2/Al2O3 by
V/Th (Figure 9a) and Sc/Th (Figure 9b), as well as SiO2 by Al2O3 (Figure 7f) and TiO2 (Figure 7d),
indicating biotite fractionation. Negative correlations with SiO2 are also shown by CaO (Figure 7a),
and Sr (Figure 7g), and Eu/Eu* (Figure 7i), implying fractionation of plagioclase and/or K-feldspar.
The MgO (Figure 7b), Fe2O3

T (Figure 7c), and Ni (Figure 7h) of the granitoids are negatively correlated
with SiO2, which are related to the fractionation of amphibole [102]. A negative correlation between
P2O5 and SiO2 (Figure 7e) resulted from apatite fractionation [103].

Taking all the above considerations into account, the parental melts equivalent to the early Early
Cretaceous granitoids at Zalute were generated by partial melting of juvenile source rocks in the
lower crust induced by mantle-derived magmatic underplating, followed by continued fractional
crystallization from quartz diorites, towards monzogranites, then to granite porphyries.
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5.3. Geodynamic Implications

The geodynamic setting of the Early Cretaceous magmatic rocks in the SGXR has been hotly
debated over the past several decades. Five scenarios have been proposed as follows: (1) mantle
plume-rift-extension or other intraplate processes [35,76,104]; (2) lithospheric extension related to
ridge subduction of the Mongol–Okhotsk Ocean and a resultant slab window [20]; (3) delamination
of thickened crust related to the closure of the Mongol–Okhotsk Ocean [5,11,23,24] or subduction
and subsequent retreat of the Paleo-Pacific oceanic slab [25,26,45,105]; (4) combination effects of
lithospheric extension associated with break-off of the Mongol–Okhotsk oceanic slab and rollback of
the Paleo-Pacific oceanic slab generating back-arc spreading [14,15]; and (5) post-collisional extension
related to the scissor-type closure of the Mongol–Okhotsk Ocean [5,11,16,106,107].

Based on Early Cretaceous basaltic rocks characterized by both intraplate and volcanic arc
geochemical properties, Ge et al. [76] proposed that the mantle plume hypothesis could interpret
the Early Cretaceous magmatism in the SGXR. Larson and Olson [108] suggested that the process
of rifting above a mantle plume commonly produces a circular- or ring-shape distribution pattern
of magmatic rocks, which conflicts with the Early Cretaceous NE-trending granitoid belt in the
SGXR [9,16]. Furthermore, such Early Cretaceous granitoid magmatism lasted for at least ~25 Ma,
which also argues against the mantle plume model that related magmatism is thought to continue for
only a few million years due to the rapid upwelling mantle plume [44].

Widespread adakitic rocks, high-Mg andesites, and tholeiite are typical products of the slab
window-related subduction [20,58,109]. However, these magmatic rocks were not found at Zalute,
precluding the possibility of a slab window model in the generation of the studied intermediate-felsic
intrusive suite.

The Early Cretaceous granitoids occur in the interior of the continent far from (>103 km) the active
continental margin of the Paleo-Pacific subduction zone during the Early Cretaceous, responding to
the intracontinental extension [14,15,110]. Additionally, recent seismological studies suggested that
the back-arc extension of the Paleo-Pacific Ocean did not extend to the continental hinterland of the
SGXR [111]. There is still a lack of robust evidence to demonstrate the far-field effect of the Paleo-Pacific
plate on the intracontinental magmatism [16]. Therefore, the model involving the far-field effect of the
Paleo-Pacific oceanic plate may not be responsible for the Zalute granitoid magmatism.

Here an alternative scenario that post-collisional extension related to the closure of
Mongol–Okhotsk Ocean is favored based on the following observations. First, numerous studies have
shown that post-collisional granitoid magmatism has a wide range in the compositions from high-K
calc-alkaline (volume-dominated) to shoshonitic or alkaline granitoids [87,112]. The Zalute granitoids
consist of the early Early Cretaceous intermediate-felsic intrusive suite (mostly high-K calc-alkaline in
nature; Figure 6b) and middle Early Cretaceous alkaline intrusive suite, supporting the post-collisional
magmatism. Secondly, the intermediate-felsic granitoids exhibit LREE enrichment relative to HREE
(Figure 8a) and negative Nb-Ta anomalies (Figure 8b), commonly encountered in typical post-collisional
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granitoids [113]. These observations are further supported by the discrimination diagram for tectonic
setting that all the samples were plotted in the post-collisional granite field (Figure 6e).

The closure of the Mongol–Okhotsk Ocean occurred gradually from southwest to northeast by the
scissor-type manner, terminating in the northeast in the Late Jurassic–early Early Cretaceous [11,25,107,114].
This interpretation is also supported by recent palaeomagnetic studies (e.g., [115]). The SGXR witnessed a
transient Mongol–Okhotsk collisional orogeny in the latest Jurassic–earliest Cretaceous [16,39]. After early
Early Cretaceous, the SGXR experienced intensive lithospheric extension, causing the Early Cretaceous
giant granitoid-forming event, accompanied by widespread basin-and-range tectonism, metamorphic core
complexes, rift basins, and large-scale magmatic-hydrothermal deposits [5,14,27].

The post-collisional granitoid magmatism could be generated by slab break-off or delamination
of thickened crust, both of which can provide sufficient heat for crustal melting to produce resultant
magmas [116,117]. The lack of S-type granite and crustal eclogite formed in thickened crust-related
settings [114,118] implies that the Zalute granitoids seem not to be related to a thickened crust.
Furthermore, the lithospheric delamination process generally produces a planar distribution pattern of
granitoid rocks, whereas the slab break-off process can result in a narrow, linear distribution pattern of
counterparts [117,119,120]. The Early Cretaceous granitoid magmatism in the SGXR is characterized by
a NE-trending magmatic belt (Figure 1c) [9,16], implying break-off of the Mongol–Okhotsk oceanic slab.

Considering the above information, the parental magma of intermediate-felsic intrusive suite at
Zalute may be interpreted tentatively to be formed dominantly by the partial melting of the underplated
juvenile basaltic crust, followed by magmatic fractionation, which is associated with break-off of the
Mongol–Okhotsk oceanic slab during the post-collisional extension (Figure 10).
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6. Conclusions

1. SHRIMP zircon U–Pb dating for a suite of dioritic and granitic samples from Zalute gives
a consistent crystallization age of ~137–136 Ma, involving quartz diorite dated at 136 ± 1.4 Ma,
monzogranite at 136 ± 0.8 Ma, and granite porphyry at 137 ± 1.3 Ma. The new geochronological data
reveals that the Zalute intermediate-felsic granitoids were formed in the early Early Cretaceous.

2. The quartz diorite, monzogranite, and granite porphyry, constituting an I-type intrusive suite,
are characterized by uniform and depleted Sr–Nd–Hf isotopic compositions (initial 87Sr/86Sr ratios of
0.7035 to 0.7049, εNd(t) of −0.02 to 2.6, and εHf(t) of +6.8 to +9.6), indicating that they share a common
origin. Their parental magma was dominantly derived from the partial melting of underplated mafic
lower crust with minor ancient crustal components. Combined with their close spatial–temporal
distribution pattern, common source, and compositional trend, a magmatic fractionation model of
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the Zalute intermediate-felsic intrusive suite is proposed, with a close petrogenetic relation between
quartz diorites, monzogranites, and granite porphyries.

3. The post-collisional extension related to the closure of the Mongol–Okhotsk Ocean and
subsequent slab break-off played an important role in the generation of the Zalute intermediate-felsic
intrusive suite.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/10/927/s1.
Table S1: SHRIMP zircon U–Pb age data for granitoids from Zalute in the SGXR, Table S2: Hf isotopic data for
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from Zalute in the SGXR, Table S4: Whole-rock Sr–Nd isotopic compositions for granitoids from Zalute in
the SGXR.
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