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Abstract: Cold seep carbonates are important archives of pore water chemistry and ancient
methane seepage activity. They also provide an important contribution to the global carbon sink.
Seep carbonates at three sediment layers (3.0, 52.1, and 53.6 mbsf) were collected at site W08B in the
Qiongdongnan Basin of the South China Sea. This study investigated the mineralogy, microstructure,
stable carbon and oxygen isotopes, trace elements, and U-Th dates of these carbonates to identify
the relationship between methane flux and authigenic carbonate precipitation. The results showed
that the δ13C and δ18O values of all carbonates are similar, indicating that the carbon source for
shallow carbonates and deep carbonates has remained constant over time and included biogenic
and thermogenic methane. Although carbonates were found in three sediment layers, the two main
stages of methane seepage events were discernible, which was likely caused by the dissociation of
gas hydrates. The first methane seep took place at 131.1–136.3 ka BP. During a dramatic drop in the
sea level, the seep carbonate at 52.1 mbsf formed at 136.3 ka BP through the anaerobic oxidation of
methane (AOM). The carbonate at 53.6 mbsf resulted from the vertical downward movement of the
sulfate-methane transition zone with decreasing methane flux at 131.1 ka BP. This is the reason for
the age of carbonates at 52.1 mbsf being older than the age of carbonates at 53.6 mbsf. The second
methane seep took place at 12.2 ka BP. Shallow carbonate formed at that time via AOM and is now
located at 3 mbsf. Moreover, thin-section photomicrographs of deep carbonate mainly consisted of
matrix micrite and biological debris and acicular aragonite occurred as vein cement filling the pore
spaces between the matrix micrite. The acicular aragonite was mainly influenced by the timing of the
carbonate precipitation of minerals. This research identified a long history of methane seep activity
reflected by the vertical distribution of carbonates.

Keywords: cold seep; South China Sea; authigenic carbonate; gas hydrate; U-Th dating; rare
earth element

1. Introduction

A deep-sea cold seep is a unique environment where deeply sourced fluids (containing methane
and other hydrocarbon gases) migrate upward and seep from the seafloor [1]. Cold seep development
is mainly driven by overpressure, which is caused by tectonic compression and rapid sediment
deposition [2,3]. Therefore, unlike hydrothermal systems, which are mainly distributed in mid-ocean
ridges [4,5], cold seeps are widely dispersed throughout the active and passive continental margins
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and sedimentary basins with thick sediments [3,6–8]. Methane reacts with seawater sulfate via the
sulfate-driven anaerobic oxidation of methane (SR-AOM), which produces hydrogen sulfide and
bicarbonate [9], and provides nutrients for chemosynthetic communities [10–12]. Therefore, a special
chemosynthetic ecosystem [13], widely distributed carbonate on the seafloor [14], and gas bubble
emission from the seafloor [15,16] are important indicators for the identification of marine cold seeps.
It is of great significance to study the distribution and activity of these cold seeps because they are not
only used as indicators for deep-water petroleum exploration at the early stage [17], but are also closely
related to global climate change [18], ocean acidification [19], and the global carbon cycle [20,21].

Seep carbonates represent important records of cold seep activities [22]. Comprehensive studies,
investigating mineralogy, stable carbon isotope (δ13C) ratios, oxygen isotope (δ18O) ratios, rare earth
elements (REEs), and dating (U-Th and 14C), have been conducted. Seep carbonates have been
sampled from various sea areas worldwide, thus providing the possibility to reconstruct the cold seep
environment and its activity [23–28]. The δ13C provides particularly valuable clues for developing a
better understanding of the carbon source [23], while the δ18O plays a significant role in identifying
the surrounding temperature and fluid source during carbonate formation [29]. REEs are an important
proxy for reconstructing the prevailing redox conditions [24]. Furthermore, dating based on U-Th and
14C is often used to identify the relationship between cold seep activity and global climate change [30].

Over the past two decades, several active cold seeps have been discovered on the northern slope
of the South China Sea [31], including the Jiulong seeps [32], Haima cold seeps [10], and station
F [33]. In recent years, a large number of seep carbonates have been collected from these cold seeps by
multiple research expeditions [30–32,34]. More information on cold seep activities has been increasingly
reported. These samples were usually obtained by a gravity corer or a remotely operating vehicle
(ROV) in shallow sediment. However, most carbonates in shallow sediments have ages younger than
20 ka, which cannot help to study a longer period of cold seep activity.

Controlled by various factors, such as the gas supply, deep strata pressure, changes in the sea level,
global climate change, and gas hydrate and carbonate formation, cold seeps are usually intermittently
and periodically active [10,14,35]. Therefore, seep carbonates buried at different depths are valuable
for reconstructions of the historical activities of ancient cold seeps [26]. However, since they are buried
deep in the marine sediment, these samples can only be obtained by drilling, which is very costly.
Therefore, very few drilling expeditions are specifically designed for cold seep research. In 2018,
the Guangzhou Marine Geological Survey (GMGS) carried out the fifth natural gas hydrate drilling
expedition in the Qiongdongnan Basin of the South China Sea (Figure 1) [36]. Seep carbonates were
obtained from multiple layers of site W08B (Figure 1) [30]. Based on both field data and literature
research, preliminary hypotheses of the cold seep activity were formulated [30]; however, these
hypotheses have not been validated by geochemical data. This study systematically investigated the
seep carbonates in multiple horizons of site W08B, using mineralogy, δ13C, δ18O, U-Th dating, and REE
analysis. The age, carbon and oxygen sources, and redox environment of carbonate formation were
discussed. Based on the U-Th ages, the sedimentation rate in this area was further calculated. Finally,
the relationship between methane flux and different carbonate textures, as well as the relationship
between the historical activity of methane seeps and the distribution of carbonate, were identified.
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Figure 1. Location of the drill site GMGS5-W08B. The topographic map and inset map were obtained
from the website https://maps.ngdc.noaa.gov/viewers/fishmaps/.

2. Geological Settings and Site Description

The study area is located in the Qiongdongnan Basin of the South China Sea (Figure 1). The Red
River Fault, which is the largest N–S strike-slip belt, marks the western boundary of the Qiongdongnan
Basin [37]. The sedimentary sequence of the Qiongdongnan Basin includes Eocene lacustrine deposits,
Oligocene lacustrine and shallow water deposits, and Miocene deep-water deposits [38]. Thermogenic
gas is mainly derived from mature to over-mature Oligocene source rocks [39], while biogenic gas
mainly originates from immature to low-maturity Miocene to Pliocene source rocks [40]. Channels,
fans, and gravity deposits are widely developed in the study area [41]. In recent years, a large number
of bottom simulating reflectors (BSR) and gas chimneys have been widely discovered [42], indicating
the existence of both natural gas hydrates and fluid flow in the Qiongdongnan Basin.

In 2018, site W08B was drilled for natural gas hydrate exploration by the GMGS in the
Qiongdongnan Basin [30]. The water depth is around 1740 m and the drilling depth was about
164 m. ROV seafloor observation identified the sporadic distribution of seep bivalve remnants and tube
worms on the seafloor, indicating that the ancient cold seeps at this site were historically active; however,
gas emission was not observed [30]. Seep carbonates were recovered from multiple subseafloor strata,
implying intermittent cold seep activity. The drilling results identified a complex natural gas hydrate
system, which had developed in the gas chimney [30]. Logging while drilling and coring results
showed that gas hydrates are distributed at 6–174 mbsf. The hydrate-bound gas consists of a large
volume of high-order hydrocarbons, such as ethane and propane [30]. δ13C and gas composition
analysis indicated that the identified hydrate-bound gases are a mixture of biogenic and thermogenic
gas. The paleo-uplift resulted in the differential compaction and formation of fractures and faults,
which ultimately controlled the development of gas hydrate [43]. An intermediate gas reservoir lies
beneath 190 mbsf, which has been suggested to bridge the deep gas reservoir and shallow gas hydrate
system [36]. Ascribed to the gas chimney and fluid flow system, the geothermal gradient at this site
reaches up to 102 ◦C/km, which is almost twice the background value [30].

https://maps.ngdc.noaa.gov/viewers/fishmaps/
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3. Materials and Methods

The carbonate samples used in this study were recovered from sediment layers at 3, 52.1,
and 53.6 mbsf of borehole W08B, for which the carbonate sample numbers 3, 52.1, and 53.6 were used,
respectively. Twelve sub-samples (Table 1) were collected from the three samples for X-ray diffraction
and REE analysis, five of which were prepared for δ13C and δ18O. Petrographic observations were
performed on samples 52.1 and 53.6 (Figure 2). U-Th dating was also performed on the three samples.
All analyses were conducted at the laboratory of the GMGS, except for the U-Th dating, which was
conducted in the Institute of Geology and Geophysics, Chinese Academy of Sciences.

Table 1. Mineral composition of carbonate subsamples from core W08B.

Sample No.
Approximate Relative Percentages (%)

Aragonite Calcite High-Mg Calcite Quartz Illite Gypsum Albite

3–1 65.3 18.3 5.4 11.0 - - -
3–3 83.5 13.0 - 5.2 - - -
3–2 61.1 12.5 7.6 14.0 2.7 0.4 2.4

52–1 98.0 0.5 - - - - -
52–2 80.5 4.2 - 11.2 2.5 - 0.6
53–1 84.0 3.9 - 8.9 - - 1.2
53–2 83.8 2.4 2.2 9.6 - - 1.2
53–3 83.1 3.3 1.9 8.7 - - 0.6
53–4 83.1 8.7 1.9 3.3 - - 0.6
53–5 88.0 3.8 2.0 5.1 - - -
53–6 94.8 1.9 - 3.2 - - -
53–7 40.5 5.8 35.9 9.8 3.5 - 1.4

Figure 2. Carbonate samples recovered from core W08B. Color differences resulted from different
dryness. Above: Photographs of carbonate after recovery [30]. Below: Photographs of carbonate in the
onshore laboratory prepared for subsampling.

Petrographic analyses of the carbonate samples were conducted by using polarized light
microscopy (Zeiss Axioskop 40). Scans were run from 5◦ to 65◦ 2θ (where θ is the scan angle),
with a step size of 0.02◦ and count time of 5 s per step. X-ray diffraction was used to analyze and
identify the carbonate mineral composition (Table 1). The samples were first dried for 7 h and then
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gently ground by a mortar. The ground sample was packed into X-ray sample holders for analysis.
Scans were run at room temperature using a Rigaku D/Max 2500 X-ray diffractometer with 18 kW
power. The species and content of the minerals were analyzed by using the software Jade2010 [44].

Stable carbon and oxygen isotope ratios were measured using a Thermo MAT-253 isotope ratio
mass spectrometer. CO2 gas was extracted by a reaction with supersaturated phosphoric acid on a
Thermo Kiel IV Carbonate Device and was introduced into the MAT-253 dual inlet system. The isotope
ratios were reported relative to Vienna Peedee Belemnite (VPDB). The precisions of δ13C and δ18O
were ±0.1%� and ±0.25%�, respectively.

REE analysis was performed following the procedure established by Rongemaille et al. [45].
Fifty milligrams of sample was weighed into a pre-cleaned Teflon centrifuge tube. Then, an ultra-pure
solution of 5% acetic acid was added and the mixture was left to react for 24 h in a water bath to
separate carbonate mineral and residue phases. Subsequently, the mixture was centrifuged to obtain
the supernatant, and the process of washing and centrifugation was repeated three times. Finally,
the solution was evaporated on a hotplate until complete dryness and was dissolved in 3% HNO3.
REE was measured via ICP-MS (Therme Fisher Scientific, Waltham, MA, USA). The analytical precision
was better than 5%. In this paper, Ce/Ce * = 3CeN/(2LaN + NdN), Pr/Pr * = 2PrN/(CeN + NdN), Eu/Eu *
= 2EuN/(SmN + GdN). N refers to the normalized concentration against the standard Post-Archaean
Australian Shale [43].

Furthermore, 10–50 mg of each subsample from three carbonates was used to conduct the U-Th
dating analyses. The chemical procedures used to separate uranium and thorium for 230Th dating
have been described in [46]. 230Th dating was performed by using a multi-collector inductively
coupled plasma mass spectrometer (MC-ICPMS, Thermo-Scientific Neptune). Details of instrumental
approaches have been described in Wang et al. [47].

4. Results

4.1. Petrology and Mineralogy

The microphotograph shows that shallow carbonates mainly consist of matrix micrite.
The thin-section photomicrographs of deep carbonate mainly consist of matrix micrite and biological
debris (Figure 3). In general, acicular aragonite occurs as vein cement filling the pore spaces between
the matrix micrite (Figure 3a–c). It was common to observe the accretionary overgrowth of rim
cement around the foraminifera test (Figure 3d). All carbonates contain seep bivalve shells (Figure 2).
XRD analysis showed that, except for sample 53–7 (Table 1), all carbonate samples are dominated by
aragonite (61.1–98.0%), with a certain amount of calcite (0.5–18.3%) and a high amount of magnesium
calcite (1.9–7.6%). In sample 53-7, the content of high-magnesium calcite (35.9%) is approximately as
high as that of aragonite (40.5%). Sample 52–1 was collected from the loose translucent part of the
carbonate and contains the highest content of aragonite (98%). In addition, most samples also contain
a small amount of other minerals, such as quartz (3.2–14.0%), illite (2.5–3.5%), and albite (0.6–2.4%).
Gypsum (0.4%) occurred in sample 3–2.
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Figure 3. Thin-section photomicrographs of carbonate samples. (a,b) Sample at 52.1 mbsf. (c,d) Sample
at 53.6 mbsf. m: micrite; ar: aragonite; for: foraminifer; and pore: pore space.

4.2. Rare Earth Elements

The total content of REEs varies significantly from 2.64 to 64.5 ppm (Table 2). The Ce/Ce * values
show a normal to slightly negative anomaly (Ce/Ce * < 1.05), which ranges between 0.79 and 1.04.
Compared with heavy REEs (Ho to Lu) and light REEs (La to Nd), medium REEs (Sm to Dy) in the
carbonates are relatively enriched.

Table 2. Rare earth element (REE) contents of the authigenic carbonates.

Element
Approximate Content (ppm)

3–1 3–2 3–3 52–1 52–2 53–1 53–2 53–3 53–4 53–5 53–6 53–7

La 11.4 13.6 5.6 0.6 9.0 4.9 9.2 10.1 9.1 2.8 6.1 9.2
Ce 23.4 28.3 10.9 0.9 17.1 9.3 17.7 18.7 17.5 5.1 9.4 17.6
Pr 2.4 2.9 1.1 0.1 1.9 1.0 1.9 2.1 1.9 0.6 1.2 1.9
Nd 9.5 11.9 4.9 0.4 7.3 4.0 7.4 8.2 7.3 2.2 5.0 7.3
Sm 1.9 2.1 0.9 0.1 1.3 0.8 1.4 1.6 1.4 0.4 0.8 1.5
Eu 0.4 0.4 0.2 0.1 0.3 0.2 0.3 0.3 0.3 0.1 0.2 0.3
Gd 1.7 1.9 0.8 0.1 1.2 0.7 1.2 1.4 1.2 0.4 0.7 1.2
Tb 0.2 0.3 0.1 0.0 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.2
Dy 1.1 1.4 0.7 0.1 0.9 0.5 0.9 0.9 0.9 0.3 0.5 0.8
Ho 0.2 0.2 0.1 0.0 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.2
Er 0.6 0.7 0.4 0.1 0.5 0.3 0.5 0.5 0.5 0.2 0.3 0.5
Tm 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1
Yb 0.5 0.6 0.3 0.1 0.4 0.3 0.5 0.5 0.4 0.1 0.2 0.4
Lu 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1∑
.EE 53.36 64.50 26.17 2.64 40.37 22.21 41.54 44.75 40.92 12.27 24.70 41.07

Ce/Ce * 1.03 1.04 0.99 0.82 0.96 0.97 0.98 0.94 0.98 0.93 0.79 0.97
Eu/Eu * 0.95 1.04 0.99 3.64 1.06 1.03 1.08 0.94 1.05 1.48 1.50 1.07
Pr/Pr * 0.96 0.94 0.92 1.02 0.99 0.94 0.97 0.99 0.98 0.98 1.05 0.98

Ce/Ce *—3CeN/(2LaN + NdN). Pr/Pr *—2PrN/(CeN + NdN). Eu/Eu *—2EuN/(SmN + GdN). N refers to the
normalized concentration against the standard Post-Archaean Australian Shale [43].
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4.3. δ13C and δ18O Values

The δ13C and δ18O of the five carbonate sub-samples are presented in Figure 4 The result shows
that the δ13C and δ18O of samples 53–1 and 52–1 are −38.1%� and −38.0%�, and 4.6%� and 5.0%�,
respectively. Compared with deeply buried samples (53–1 and 52–1), shallowly buried samples (3–1,
3–2, and 3–3) have higher δ13C values (between −33.8%� and −25.6%�) and lower δ18O values (between
3.6%� and 3.8%�).

Figure 4. Stable carbon isotope (δ13C) values and oxygen isotope (δ18O) values of authigenic carbonates
at deferent sediment layers. Shallowly buried samples (3–1, 3–2, and 3–3) have higher δ13C values
(between −33.8%� and −25.6%�) and lower δ18O values (between 3.6%� and 3.8%�). The δ13C values of
53–1 and 52–1 are −38.1%� and −38.0%�. Modified from reference [31].

4.4. U-Th Age of Carbonates

The U-Th ages of the three carbonate samples are presented in Table 3. The result shows that
the age of sample 3 (~3 mbsf) is 12.2 ± 2.3 ka. The ages of the samples at 52.1 and 53.6 mbsf are very
similar, namely 136.3 ± 3.6 and 131.1 ± 2.5 ka, respectively.

Table 3. Activity ratios used for age calculation and isochron U-Th ages.

Sample No.
230Th/232Th 234U 230Th/238U 230Th age (yr) 230Th age (yr)

(AT × 10−6) (not calibrated) (calibrated)

3 20.0 ±0.4 144.0 ±3.7 0.1512 ±0.0013 15,408 ±155 12,210 ±2269
52 92.9 ±2.0 112.9 ±3.9 0.8190 ±0.0069 139,969 ±2585 136,281 ±3605
53 113.9 ±2.3 101.1 ±2.4 0.7913 ±0.0037 134,088 ±1351 131,143 ±2461

5. Discussion

5.1. Fluid Source and Environment of Seep Carbonate Formation

At cold seeps, the anaerobic oxidation of methane (AOM) typically proceeds in anoxic sub-surface
sediments, which leads to increased alkalinity levels in pore waters and, as a consequence, often
results in carbonate precipitation [27,31,44,48–62]. Occurrences of authigenic carbonate deposits at the
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sea floor or in sedimentary records are therefore often related to the paleo-seepage of methane-rich
fluids at continental margins. At GMGS5, carbonates were collected at 3, 52, and 53 mbsf layers of the
Qiongdongnan Basin of the South China Sea. Gas hydrates have been found at 6 and 136 mbsf and
the current sulfate and methane transition zone (SMTZ) is located at about 0.47 mbsf [43]. Therefore,
GMGS5 is an ideal experimental site for studying the long history and the relationship between
carbonate formation and methane leakage.

REEs have been widely applied as a redox proxy in the marine environment [37–46]. Diagenetic
processes generally alter the REE composition of carbonates and cause a negative correlation between
Ce/Ce * and DyN/SmN and a positive correlation between Ce/Ce * and

∑
REE [47]. In the studied

samples, no such correlation was found (Figure 5d,f). Hence, it can be assumed that all studied samples
retained their original REE budget. Feng et al. (2009) considered that small MREE enrichment or flat
REE patterns of methane-seep carbonates are indicative of intermittent redox conditions [46,48–51].
The REE/PAAS patterns in shallow carbonates and deeper carbonates are flat REE patterns with small
MREE enrichments in both carbonates. The intermittent redox conditions indicate that the deeper
carbonates and shallow carbonates formed in the sulfate methane transition zone. This is because the
redox environment of deep sediments remains stable and will not be affected by debris input. On the
contrary, the redox environment of the shallow sediments, which is close to the water-sediment surface,
is stable under the influence of debris input. Large number of seep bivalve shells that can only survive
on the seafloor were cemented in the carbonates [52,53]. This also indicates that the methane flux was
high at the time of carbonate formation. Moreover, none of the carbonate samples show Ce anomalies
(Figure 5a). There were no Ce anomalies or slightly negative Ce anomalies ranging from 0.79 to 1.05
(Table 2), mainly indicating that seep carbonates were formed in a reducing condition [23,48–50,54,55].
Remarkably, the deeper carbonates at 52.1 and 53.6 mbsf show positive Eu anomalies, indicating
the mixing of reducing porewater (positive anomaly) with variable proportions of seawater (no Eu
anomaly). An additional factor to be considered is the possible contribution of deep-sourced fluids
that generally carry an Eu-enriched signal generated by Eu fractionation at elevated temperatures [42].
Based on the widely distributed gas chimneys and deep faults in the area [43], it is reasonable to assume
that deeper fluids may also have influenced the REE budget and partly contributed to the development
of positive Eu anomalies in the porewater [43]. These data are indicative of precipitation under variable
redox conditions as the frequency observed in modern and ancient cold seep carbonates.

In marine sediments, methane is mainly produced via biogenic and thermogenic
processes [12,13,27–35,48]. Generally, the δ13C values of biogenic methane typically fall within
the range of −110%� to −50%�, whereas the values of thermogenic methane typically range from −50%�

to −30%� [31,34,56,63]. Moreover, δ13C values of sedimentary organic matter are about −25.0%� on
average. The δ13C values of carbonates always inherit the δ13C characteristic of the carbon source
for carbonates. The pore water dissolved inorganic carbon (DIC) includes different carbon sources
(methane-derived carbon, seawater DIC, and DIC from organic matter degradation). Therefore, δ13C
of the seep carbonates can be used to indicate the carbon source of the seeping fluids [42,43]. The δ13C
values of deeper carbonates and shallow carbonates varied from −38.1%� to −25.6%�, covering the
range for biogenetic gas and thermogenic gas, and also covering the sedimentary organic matter.
Accordingly, it is reasonable to propose that carbon sources for shallow carbonates and deep carbonates
are diverse, including biogenic and thermogenic methane and sedimentary organic matter. Among
them, biogenic methane is mainly derived from the Miocene source rock and its overlying strata, while
thermogenic methane mainly originates from Oligocene source rocks [48]. However, it is difficult to
identify methane sources, based on the δ13C values of carbonates, because the great variability in δ13C
values demonstrates the geochemical complexity of these sites.
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Figure 5. (a) Shale-normalized REE pattern of the seep carbonates. (b) Plot of Ce/Ce * with the LaN/SmN;
(c) plot of Ce/Ce * with the DyN/SmN; (d) plot of Ce/Ce * with the Pr/Pr *; and (e) plot of Ce/Ce * with
the REE.

The δ18O values of shallow carbonates range from 3.6%� to 3.8%� and the δ18O values of deep
carbonates range from 4.6%� to 5.0%�. Both samples show obviously higher δ18O values than seawater.
The fact that anomalously positive δ18O values of carbonate are obviously different from those of
modern seawater points to the precipitation of carbonate from 18O-enriched fluids. At a constant
bottom water temperature during carbonate formation, the anomalous δ18O of carbonate can be
explained by the presence of exotic 18O-enriched fluids. In general, the source of 18O-enriched fluids is
the dehydration of clay minerals at great depths and or dissolution of gas hydrate [57,63–65]. For the
first case, the reaction of clay mineral dehydration takes place at least 2 km below the seafloor and the
gas source rock depth in our study area is not compatible with that process. Therefore, the possible
influence of the dehydration of clay minerals on δ18O values could be excluded in the first place.
For the second case, the enrichment in δ18O of interstitial fluids in the study area is best explained by
gas hydrate dissolution. The δ18O values of carbonates 52–1 and 53–1 (5.0 %� and 4.6 %�, respectively)
are rather heavy compared to most recent samples (3.6–3.8%�) and might reflect paleo-gas hydrate
dissociation. It can be speculated that in the process of the upward migration of methane-rich fluids,
released by the deeper hydrate (136 mbsf), a large amount of released methane will reform at the
shallow hydrate layer (6 mbsf) under an appropriate temperature and pressure environment.
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5.2. Influence of Methane Flux on the Formation of Authigenic Carbonate

This section addresses three questions: (1) As mentioned above, the deeper carbonates and
shallow carbonates are formed by AOM, and the organic characteristic of different layers is consistent.
What mechanism causes methane seeps? (2) The U-Th date of carbonate at 3 mbsf is the 12.2 ± 2.2 ka
period, while for carbonate at 52.1 mbsf, it is the 136.3 ± 3.6 ka period, and for carbonate at 53.6 mbsf,
it is the 131.1 ± 2.5 ka period. What are the causes of the older age of carbonate at 52 mbsf than the age
of carbonate at 53 mbsf? (3) There are two major types of aragonite: The shallow carbonates cement by
microcrystalline aragonite in the matrix, while the surface of the cavities in the deep carbonates cement
by acicular aragonite (Figure 3). What are the causes of the different morphologies of aragonite?

With regard to the first question, in general, methane flux has been assumed to be influenced by
changes in sea level and tectonic activities at continental margins [55–60,63–65]. Among these changes,
the change of sea level has been regarded as the prominent factor, leading to the decomposition of
gas hydrate in geological history [61]. The U-Th dates of all samples fall within periods in which
the sea level was 110 m lower than the present sea level (Figure 6) [61,62,66–68]. The coincidence
with a low stand is very strong evidence for relationships between seep activity and the sea level.
This suggests that sea level change was the main factor that triggered the leakage of methane-rich
fluid [68]. Combined with the gas hydrate distribution at 6 and 136 mbsf, this study proposes that
the methane-rich fluids were mainly produced by gas hydrate dissociation. This result is consistent
with other research conclusions, indicating that the seep carbonates formed in a period of carbonate
formation with lower sea levels [52–56].

With regard to the second question (why carbonates at 52 mbsf are older than those at 53 mbsf),
in this study area, the sulfate and methane transition zone was not stable during the geological
history. At about 136 ka BP, the global sea level dropped rapidly, and the methane-rich fluids
diffused from the bottom and reacted with sulfate when it was close to the sediment–water interface.
With the AOM, the carbonate gradually precipitated in the sulfate and methane transition zone. Then,
between 131 and 136 ka BP, with an increasing temperature, the sea level gradually rose. With this
change in sea level, the methane flux gradually decreased. Previous studies have suggested that the
sulfate and methane transition zone (SMTZ) was influenced by the methane flux and sedimentation
rate [46,47]. The sediments in the Qiongdongnan Basin are mainly from rivers and gravity deposits
with a sedimentation rate of up to 1 m/ka [30,47]. However, the Qiongdongnan Basin is very broad,
with large spatial differences in sedimentation rates. Based on the ages of the three samples obtained
by U-Th dating, the deposition rate of this site was calculated to be approximately 0.41 m/ka. However,
due to the scarcity of dating data, the calculated deposition rate is unreliable. It can be found from the
seismic profile of site W08 that there is no development of turbidity sediments. Therefore, the influence
of turbidity can be eliminated (Figure 7); therefore, the age reversal was not caused by debris input or
the turbidity of the sediment. Hence, the main reason for the age reversal was a change in methane
flux. In general, the more intense the methane flux, the shallower the SMTZ, and the weaker the
methane flux, the deeper the SMTZ. Therefore, as the methane flux decreased with the changing sea
level, the SMTZ moved downward. The younger carbonate at 53.6 mbsf formed at a deeper SMTZ.
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Figure 6. (a) The sea level change [59] and the distribution of carbonate. The sun symbols represent the
time of carbonate formation. (b) The sedimentation rate estimated based on the U-Th carbonate ages.

Figure 7. Pseudo-3D seismic profiles showing the characteristics of the bottom simulating reflector
(yellow line: BSR) and mass transport depositions (MTDs) at site GMGS5-W08-2018 [43].
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With regard to the third question (the causes of the difference between shallow carbonates and deep
carbonates), the petrology and mineral composition of seep carbonates are useful for understanding the
environmental changes underlying carbonate formation [25,51,52]. XRD showed that both aragonites
are pure minerals, containing no other components. Furthermore, allogenic terrigenous minerals,
quartz, and feldspar comprise a minor portion of authigenic carbonate rock (Figure 8a). Moreover,
XRD analyses showed that the aragonite content is high, except for the carbonate at 53.6 mbsf, which
has high contents of high-Mg calcite. It is indicated that shallow carbonates and deeper carbonates
were formed under high SO4

2− environments. As a typical authigenic carbonate mineral, aragonite
is more likely to be affected by the fluid environment [56–61,63–65]. Of the allogenic terrigenous
minerals, quartz is the most thermodynamically stable as most natural fluids achieve supersaturation
concerning quartz [53]. In this study, the plot of aragonite content vs. quartz content shows an obvious
negative correlation (Figure 8b). This relationship was also observed in the seep carbonates of the Gulf
of Mexico [53–56,63,64]. The quartz and aragonite content can be used as indicators of the evolution
of a seepage system, to a certain extent. In fact, the formation and dissolution of carbonate minerals
in authigenic carbonates follow a time sequence. At the early stage, high-Mg calcite and aragonite
are the primary cement, while the quartz content is low. However, at the dissolution stage, aragonite
starts to dissolve. At the last stage, the quartz increases because the HMC and aragonite are replaced
by silica and quartz [57,65,67,68]. At the studied site, the deeper carbonate and shallow carbonate
show a high content of aragonite and low content of quartz. This indicates that all carbonates are
not significantly affected by diagenetic alteration. In general, aragonite seems to be favored in high
SO4

2− environments with high total alkalinity concentrations [69,70]. The crystallization of magnesium
calcite preferentially occurs under conditions with lower SO4

2− and total alkalinity concentrations [71].
Furthermore, it is suggested that the occurrence of aragonite reflects high methane flux and efficient
methane oxidation [71,72]. In deep and shallow carbonates, minerals are mainly composed of aragonite.
It is indicated that all the carbonates formed under high SO4

2−. However, the microphotographs
show that shallow carbonates mainly consist of matrix micrite. The thin-section photomicrographs of
deep carbonate mainly consist of matrix micrite and biological debris (Figure 3). In general, acicular
aragonite occurs as vein cement filling the pore spaces between the matrix micrite (Figure 3a–c). It was
common to observe the accretionary overgrowth of rim cement around the foraminifera test. Harry
et al. considered that seep carbonates precipitated in a high sulfate concentration environment are
characterized by sparitic and acicular aragonite cements [73,74]. Higher sulfate concentrations tend to
promote aragonite precipitation [69–73]. Such conditions represent deeper carbonates formed in an
environment where HCO3

−-rich fluids mix with sulfate-rich bottom water. This conclusion is supported
by the large fragments of chemosynthetic bivalves observed. Xi et al. found that the in situ Raman
spectra of the authigenic carbonates exhibited the highest crystallinity in the fauna-rich area. Scanning
electron microscopy and X-ray diffraction analyses of the samples supported the conclusion that the
aragonite in the fauna-rich area is more euhedral than that in the fauna-poor area [69]. Therefore,
this suggests that the differences can also be caused by different methane fluxes [69]. The difference
between the morphologies of shallow and deep aragonite in this article are also more likely caused by
the growth time of the minerals. A longer growth time leads to euhedral minerals [54–56,63,67,68].
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Figure 8. (a) Mineral distributions of all carbonate samples. (b) Plot of the aragonite content and the
quartz content.

5.3. Mechanism of Seep Carbonate Formation and Methane Seep Evolution

In the studied area, the REE patterns and the lack of Ce anomalies indicate that all carbonates
formed in a reduced environment. The low δ13C values indicate that carbonate formation has a
close relationship with methane seep. In the studied area, three stages of methane seepage could
be identified.

The first stage: About 136 ka BP years ago, the sea level decreased dramatically. This caused a
decrease in hydrostatic pressure. Under such a condition, gas hydrate became unstable and released
methane into shallower sediments. When it reached the sediment–water interface, the released methane
reacted with sulfate and carbonate precipitated as a by-product of AOM. At first, the carbonates at
51.2 mbsf were mainly cement by microcrystalline aragonite under a high concentration of SO4

2−

(Figure 9a).
The second stage: From 131 to 136 ka BP, the methane flux gradually decreased with the gradually

increasing sea level. Hence, the SMTZ moved down and was fixed at new balanced layers. At the
same time, the carbonate at 53.6 mbsf formed at the bottom of carbonate at 51.2 mbsf. As time went by,
the formed carbonate mineral at 51.2 mbsf was gradually cemented by sparitic and acicular aragonitein
cavities (Figure 9b).

The third stage: At about 12 ka BP, the newly formed hydrate was influenced by the drop of the sea
level and released methane into shallow sediments. With the help of AOM, carbonate at 3 mbsf formed.
Since the growth of aragonite is short, the carbonate matrix mainly cemented by microcrystalline
aragonite (Figure 9c).
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Figure 9. (a) Formation mechanism of carbonate at 52 mbsf: the sea level decreased dramatically.
This caused a decrease in hydrostatic pressure. Under such a condition, gas hydrate became unstable
and released methane into shallower sediments. When it reached the sediment–water interface,
the released methane reacted with sulfate and carbonate precipitated as a by-product of AOM.
(b) formation mechanism of carbonate at 53 mbsf: The methane flux gradually decreased with the
gradually increasing sea level. Hence, the SMTZ oved down and was fixed at new balanced layers.
At the same time, the carbonate at 53.6 mbsf formed at the bottom of carbonate at 51.2 mbsf and
(c) formation mechanism of carbonate at 3 mbsf: At about 12 ka BP, the newly formed hydrate was
influenced by the drop of the sea level and released methane into shallow sediments. With the help of
AOM, carbonate at 3 mbsf formed.



Minerals 2020, 10, 1135 15 of 19

6. Conclusions

Systematic analyses, including those on the mineralogy, petrography, stable carbon and oxygen
isotopes, REE, and U-Th dating, were conducted on three seep carbonate samples (3, 52.1, and 53.6 mbsf)
recovered from site W08B in the Qiongdongnan Basin, China. Based on comprehensive analyses,
the following major conclusions were drawn: Two distinct stages of methane seepage events are
discernible, which were likely caused by the dissociation of gas hydrates. The first methane seep took
place at 131–136 ka BP. The methane seepage caused carbonates at 52.1 and 53.6 mbsf, formed during
131–136 ka BP. Meanwhile, the methane flux changes caused the vertical downward movement of the
sulfate-methane transition zone. Furthermore, the carbonate at 53.6 mbsf formed at the bottom of
carbonates at 52.1 mbsf. This is the reason why the age of carbonate at 52.1 mbsf is older than the age of
carbonates at 53.6 mbsf. The second methane seep took place at 12.2 ka BP. Shallow carbonates formed
at that time via AOM and are now located at 3 mbsf. The shallow carbonate and deep carbonate
minerals are mainly composed of aragonite, indicating that all carbonates formed at a high SO4

2−

concentration. The higher SO4
2− concentration close to the seafloor also indicates a higher methane

flux. However, the thin-section photomicrographs of deep carbonate mainly consist of matrix micrite
and biological debris and acicular aragonite occurs as vein cement filling the pore spaces between
the matrix micrite. It was common to observe the accretionary overgrowth of rim cement around the
foraminifera test. Th thin-section photomicrographs of shallow carbonate mainly consist of matrix
micrite and biological debris. The differences between shallow carbonates and deeper carbonates
were mainly caused by the duration of the carbonate precipitation of minerals. Moreover, the δ18O
values and δ13C values of the deeper carbonates and shallow carbonates indicate that the carbon source
for carbonates remained constant through time and included biogenic and thermogenic methane.
This research reveals the history of methane seep and the relationship between the methane seep
activity and the vertical distribution of carbonates.
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