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Abstract: The Camarasa Dam was built in 1920 using dolomitic aggregate and Portland cement
with two different compositions: type A (dolomite and Portland cement) and type B (dolomite and
sand-cement). The sand cement was a finely powdered mixture of dolomite particles and clinker of
Portland cement. The mineralogy of concrete was studied by optical microscopy, scanning electron
microscopy, and x-ray powder diffraction. Reaction of dedolomitization occurred in the two types of
concrete of the Camarasa Dam, as demonstrated by the occurrence of calcite, brucite, and/or absence
of portlandite. In the type A concrete, calcite, brucite, and a serpentine-group mineral precipitated
as a rim around the dolomite grains and in the paste. The rims, a product of the dedolomitization
reaction, protected the surface of dolomite from the dissolution process. In type B concrete, in addition
to dolomite and calcite, quartz and K-feldspar were present. Brucite occurred in lower amounts than
in the type A concrete as fibrous crystals randomly distributed in the sand-cement paste. Although
brucite content was higher in the type A concrete, type B showed more signs of loss of durability.
This can be attributed to the further development of the alkali-silica reaction in this concrete type.

Keywords: dolomite; sand-cement; concrete; dedolomitization reaction

1. Introduction

Concrete made of dolomite aggregate, has been the source of problems such as expansion and
cracking [1–7]. Traditionally, these deterioration problems were associated with the alkali-carbonate
reaction (ACR) [8,9], which is produced when dolomitic rocks with clay minerals are used as aggregates
or as a result of the reaction of dolomite with cryptocrystalline quartz [10]. Several dams, built with
carbonate aggregates, exhibit signs of deterioration such as the Bimont Dam in France, constructed
with dolomitic limestones [11], and the Chickamagua Powerhouse Dam in Tennessee [12].

Dolomite aggregate in the presence of hydrated Portland cement paste produces the
dedolomitization Reaction (1):

CaMg(CO3)2 + Ca(OH)2→ 2CaCO3 + Mg(OH)2

dolomite portlandite calcite brucite
(1)

Dolomite reacts with the portlandite of the cement paste to produce calcite and brucite. The kinetics
of this reaction have been studied in different alkaline media, temperatures, and silica content [13–16].
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The occurrence of the ACR can be checked using a combination of different techniques.
Petrographic study is a preliminary test to evaluate the reactive potential of the aggregates and
to identify the location of the chemical reactions [17]. The morphological characteristics of the
aggregate particles and their textures have an important role in the properties and durability of
concrete [18–20]. The effective reactive surface area is a critical parameter to the kinetics and depends
on the surface morphology, surface roughness, and internal structure (dislocation density, impurities,
point defects) of the mineral representing highly localized dissolution [21]. For this, accelerated testing
of mortar specimens is usually used to determine the reactive aggregates [22,23]. However, the study
of dolomitic concrete from old constructions could be a real study case that contributes with data to
understand this reaction.

At the beginning of the 20th century, several dams were built with a new agglomerate called
sand-cement. Sand-cement was patented in Copenhagen in 1893, and consisted of 45 wt% of siliceous
particles and 55 wt% of clinker of Portland cement, powdered up to less than 0.1 mm in size [24].
The concrete performed with this new product was largely investigated in the USA, where good
mechanical properties were reported: impermeability, low drying shrinkage because of the short
increase of temperature, and low setting time [25]. Other advantages of the sand-cement were that it
was cheaper than the Portland cement and was obtained in the manufacturing plant of the dam. The
new agglomerate was used to construct dams such as Arrowrock in 1915 and Elephant Butte in 1916,
in the USA and Camarasa in 1920 and Tranco de Beas in 1934 in Spain.

The Camarasa water reservoir is used for water storage and the production of hydroelectric power.
It is a 92 m high gravity dam. When it was constructed between 1917 and 1920 [26], it was the first in
Europe and the fourth in the world in height. The Camarasa concrete was made with a binder material
used for building several dams at that time named sand-cement. This was constituted by dolomitic
fine particle aggregates.

In the present work, the petrography and mineralogical composition of concrete from the Camarasa
Dam was studied, a hundred years after its construction, to assess the development of the ACR and
thus, the concrete durability. The Camarasa Dam can be considered as a natural laboratory to study the
reaction of dedolomitization in concrete. The characterization of this concrete can illustrate the behavior
of an ancient hydraulic construction made of dolomitic aggregate and of sand-cement composed of a
high fraction of very small particles of dolomite, which, in an alkaline media, are highly reactive.

2. Materials and Methods

2.1. Materials

The Camarasa Dam was constructed with Portland cement and dolostones in its vicinity. It is
located on the Noguera-Pallaresa channel river, just before the confluence with the Segre River (Figure 1).
This area is constituted of Jurassic carbonated rocks of the Mesozoic Tremp Basin in the marginal
Sub-Pyrenean Zone (Spain). The dam is hosted in dolomitic rocks constituted by massive dark beds,
with abundant dissolution cavities filled of calcite crystals, up to one cm in size [27]. The raw dolostones
exhibit a sparitic texture with dolomite subhedral crystals of up to 1.0 mm in size. They are composed
of almost pure dolomite, with less than 1 wt% of calcite (Figure 2). Calcite is not homogenously
distributed; it constitutes interstitial cement or is located in the rims around the dolomite crystals;
occasionally dolomite crystals are surrounded by calcite crystals formed by a dedolomitization process.

The raw rocks were crushed and selected according its grain size at the manufacturing plant
located beside the dam, at a higher level to transport the materials by gravity. Several blocks of
dolostones (15% of the total volume of concrete), were deposited in the basis and in the inner parts of
the dam in order to increase the whole density and make the structure more stable [26].

According to the dose, two types of concrete, A and B, were used for the construction of the
Camarasa Dam (Figure 1b). The basis of the dam was built with 32.559 m3 of type A concrete, composed
of 9 wt% of Portland cement and 91 wt% of dolomitic aggregate.
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Figure 1. (a) View of the Camarasa Dam; (b), sketch with the distribution of the two concrete types
(modified from [26] and the location of the cores (black lines) and samples (red)).

Later, in order to reduce the costs, the Portland cement was substituted by the sand-cement
mixture, and 183.839 m3 of type B concrete were used to finish building the dam [27]. The total
composition of this concrete consisted of 5.2 wt% of Portland cement and 94.8 wt% of dolomite. The
sand-cement used in this dam was a homogeneous mixture of 55 wt% of clinker of Portland cement
and 45 wt% of dolomite pounded together up to less than 0.13 mm in size. The composition of the two
concrete types is presented in Table 1.

The concrete was studied in ten drill cores of 55 mm in diameter, obtained in 1998 by the electric
power company, owner of the dam.

Minerals 2019, 9, x FOR PEER REVIEW 4 of 13 

 

The x-ray powder diffraction (XRPD, Siemens AG, Munich, Germany) was used to determine 
the mineral phases present in the concrete. Measurements were performed in a Bragg-Brentano θ2θ 
Siemens D-500 diffractometer (radius = 215.5 mm) with Cu Kα radiation, selected by means of a 
secondary graphite monochromator. The divergence slit was 1° and the receiving slit of 0.15°. The 
step size was 0.05° 2θ and the measuring time was 10 seconds per step. For the calculation of the 
mineral phase contents, the quantitative Rietveld analysis method with the FULLPROF program [28] 
was used. The analyses were made at the CCiTUB.  

3. Results 

3.1. Raw Dolostones 

The rocks used as aggregates were mainly constituted by dolomite up to 89 wt% and calcite up 
to 11 wt% (Figure 2). The occurrence of calcite is the result of the dedolomitization process of the raw 
dolostones before being exploited. Brucite was been observed in any case.  

Under the microscope, the dolomite crystals exhibited a turbid appearance due to the content of 
abundant internal inclusions forming dark and clear bands, or a zebra texture (Figure 3). Calcite 
constituted the interstitial cement or was located in the rims around the dolomite crystals (Figure 3b) 
or in grains of dolomite in the natural process of dolomitization forming path textures.  

 
Figure 2. XRPD (x-ray powder diffraction) pattern of the dolostones used as aggregates to make the 
Camarasa concrete. 

 
Figure 3. Textures of raw dolomitic rocks: (a) The most abundant dolomite aggregates with a zebra 
texture. (b) The dolomite rock dyed with a solution of Alizarin Red S + 0.9g showed natural 
dedolomitization; the red matrix is calcite. 

Figure 2. XRPD (X-ray powder diffraction) pattern of the dolostones used as aggregates to make the
Camarasa concrete.



Minerals 2020, 10, 117 4 of 13

Table 1. Composition of type A and type B concrete [26].

Component Particle Size (mm) Type A (wt%) Type B (wt%)

Dolomitic aggregate 10–150 - 66
Dolomitic aggregate 10–70 62 -
Dolomitic aggregate 1–10 13 12
Dolomitic aggregate 0.1–1 12.2 10.8
Dolomitic aggregate <0.1 3.8 6

Portland cement 9.0 5.2

2.2. Analytical Methods

Thin sections were made from the cores with non-aqueous polishing fluids and epoxy resin
adhesives to prevent the dissolution of mineral phases. Several thin sections were stained with Alizarin
Red S+ Potassium to evaluate the composition of carbonate minerals.

Thin sections were studied by electronic microscopy with x-ray energy dispersive spectroscopy
(SEM + EDS); images and qualitative analyses were produced using a Leika Stereoscan 360, an ESEM
Quanta 200 FEI, XTE 325/D8395 and a field emission scanning electron microscope JEOL JSM-7001F at
the Serveis Científics i Tecnològics de la Universitat de Barcelona (CCiTUB).

The x-ray powder diffraction (XRPD, Siemens AG, Munich, Germany) was used to determine
the mineral phases present in the concrete. Measurements were performed in a Bragg-Brentano θ2θ
Siemens D-500 diffractometer (radius = 215.5 mm) with Cu Kα radiation, selected by means of a
secondary graphite monochromator. The divergence slit was 1◦ and the receiving slit of 0.15◦. The step
size was 0.05◦ 2θ and the measuring time was 10 seconds per step. For the calculation of the mineral
phase contents, the quantitative Rietveld analysis method with the FULLPROF program [28] was used.
The analyses were made at the CCiTUB.

3. Results

3.1. Raw Dolostones

The rocks used as aggregates were mainly constituted by dolomite up to 89 wt% and calcite up to
11 wt% (Figure 2). The occurrence of calcite is the result of the dedolomitization process of the raw
dolostones before being exploited. Brucite was been observed in any case.

Under the microscope, the dolomite crystals exhibited a turbid appearance due to the content
of abundant internal inclusions forming dark and clear bands, or a zebra texture (Figure 3). Calcite
constituted the interstitial cement or was located in the rims around the dolomite crystals (Figure 3b)
or in grains of dolomite in the natural process of dolomitization forming path textures.
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Figure 3. Textures of raw dolomitic rocks: (a) The most abundant dolomite aggregates with a
zebra texture. (b) The dolomite rock dyed with a solution of Alizarin Red S + 0.9g showed natural
dedolomitization; the red matrix is calcite.
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3.2. Concrete Petrography and Mineralogy

Type A and type B concrete can be distinguished by the color of the cement paste: type A is light
grey, whereas type B is dark brown (Figure 4). The visual inspection showed significant differences
between the type A and type B concrete. Type A looked more compact and was more resistant to
abrasion, whereas the type B concrete was more disagreeable. It was expected, then, that the behavior
of the dedolomitization reaction would be considerably different in the two concrete types.
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Figure 4. Fragments of cores from the Camarasa Dam. (a) Type A concrete; (b) type B concrete; (c) core
section: the left half is made up of type B concrete and the right half is type A.

Aggregate particles from the Camarasa Dam exhibited an equant and angular shape, and did
not look weathered. The most abundant aggregates were grey-brown particles constituted of pure
dolomite grains.

Under the microscope, the type A and type B concrete showed a random distribution of the
different particle size fractions of dolomitic particles (Figure 5a). Unconnected porosity was randomly
distributed in the paste. The thin sections stained with red alizarin show red rims in the contact
between the cement paste and the particles of the dolomitic aggregate (Figure 5b).

Minerals 2019, 9, x FOR PEER REVIEW 5 of 13 

 

3.2. Concrete Petrography and Mineralogy 

Type A and type B concrete can be distinguished by the color of the cement paste: type A is light 
grey, whereas type B is dark brown (Figure 4). The visual inspection showed significant differences 
between the type A and type B concrete. Type A looked more compact and was more resistant to 
abrasion, whereas the type B concrete was more disagreeable. It was expected, then, that the behavior 
of the dedolomitization reaction would be considerably different in the two concrete types. 

Aggregate particles from the Camarasa Dam exhibited an equant and angular shape, and did 
not look weathered. The most abundant aggregates were grey-brown particles constituted of pure 
dolomite grains. 

 
Figure 4. Fragments of cores from the Camarasa Dam. (a) Type A concrete; (b) type B concrete; (c) 
core section: the left half is made up of type B concrete and the right half is type A. 

Under the microscope, the type A and type B concrete showed a random distribution of the 
different particle size fractions of dolomitic particles (Figure 5a). Unconnected porosity was randomly 
distributed in the paste. The thin sections stained with red alizarin show red rims in the contact 
between the cement paste and the particles of the dolomitic aggregate (Figure 5b). 

 
Figure 5. Microscope image of the Camarasa type A concrete. (a) General view; (b) sample stained 
with red alizarin that shows a red rim of calcite in the contact dolomite aggregate-paste. dol, dolomite; 
cal, calcite. 

Dolomite and calcite are the major components in the paste of both concrete types. Other 
crystalline phases detected were different in them (Table 2). In order to evaluate the reactions 

Figure 5. Microscope image of the Camarasa type A concrete. (a) General view; (b) sample stained
with red alizarin that shows a red rim of calcite in the contact dolomite aggregate-paste. dol, dolomite;
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Dolomite and calcite are the major components in the paste of both concrete types. Other
crystalline phases detected were different in them (Table 2). In order to evaluate the reactions produced
in the Camarasa Dam aggregates, we describe the differences found in the chemical and mineralogical
characteristics of the two concrete types.

Table 2. Mineralogical composition of the paste from type A (convectional) and type B concrete (with
sand-cement).

Type Sample Calcite Dolomite Quartz Brucite Microcline

A 5bi-1 35 52 - 13 -
A 5bi-2 27 66 - 7 -
A P5bc 56 40 2 2 -
B 4a 16 66 11 1 6
B 13a 18 59 15 1 7
B P4a 18 67 11 <1 4
B P6a 19 65 11 <1 4
B P10a1 18 65 12 <1 5
B P10a2 26 55 13 1 5

3.2.1. Type A Concrete

XRPD and SEM show that in the type A cement paste, in addition to dolomite and calcite, a
significant amount of brucite and portlandite was also present (Figure 6).
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EDS analyses of dolomite crystals reveal approximately 25 µm wide compositional rims (Figure 7).
The chemical composition of mineral phases from these rims in the contact with the cement paste
is Mg, Al, Si-rich and indicates that their mineralogy is constituted by brucite and a member of the
serpentine group minerals (Figure 7).
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The XRPD of the paste in the type B concrete indicates that the crystalline phases were mainly 
dolomite, calcite, brucite, quartz, and K-feldspar. In this type of concrete, portlandite was not 
detected and the contents of brucite were significantly lower than in the type A concrete (Table 2). 
The presence of quartz and K-feldspar was probably due to the addition of sand from the channel 
river and from Cretaceous sandstones of the area during the manufacturing process of the sand-
cement. The SEM observations confirm the presence of brucite crystals up to 10 µm in size, with 
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Figure 7. (a) Image of a thin section of type A concrete stained with red alizarin, where calcite is red
stained and dolomite is not stained. (b) BSC-SEM Image of two selected zones with aggregate dolomite
particles showing grey rims of reaction between aggregate particles and cement paste; (c) Zoom of the
rim on top (c,d) with the mineral phases identified by SEM-EDS, dolomite (dol), calcite (Cal), serpentine
group mineral (Srp-g); (d) zoom of the image c, brucite (Brc) is detected by SEM-EDS forming radial
aggregates of fibrous crystals or elongated crystals maximum 6 µm; (e,f) Zoom of other rim of dolomite,
where elongated brucite crystals appears in contact with a cryptocrystalline serpentine-group mineral
and calcite crystals with irregular borders.

3.2.2. Type B Concrete

The XRPD of the paste in the type B concrete indicates that the crystalline phases were mainly
dolomite, calcite, brucite, quartz, and K-feldspar. In this type of concrete, portlandite was not detected
and the contents of brucite were significantly lower than in the type A concrete (Table 2). The presence
of quartz and K-feldspar was probably due to the addition of sand from the channel river and from
Cretaceous sandstones of the area during the manufacturing process of the sand-cement. The SEM
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observations confirm the presence of brucite crystals up to 10 µm in size, with platelets or fibrous habit
(Figure 8).Minerals 2019, 9, x FOR PEER REVIEW 8 of 13 
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Figure 8. (a) Image of a thin section of type B concrete stained with red alizarin; (b,c) SEM images of
the dolomite- and-cement paste contact in type B concrete with the development of fibrous brucite.

In addition, the SEM observations also showed the occurrence of ettringite and belite. Some
illite elongated crystals were detected by SEM-EDS, and nests of belite, “bunch of grapes”, with
dark hydration rims dispersed in the interstitial component or paste could occasionally be observed
(Figure 9a), indicating that the hydration of cement was not complete. Unconnected porosity was
randomly distributed in the paste. Most cavities exhibited recrystallization rims or were totally or
partially filled of calcite, ettringite, or portlandite (Figure 9b).
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Figure 9. Backscattered-Scanning Electron Microscopy image of type B concrete. (a) Elongated illite
crystal showing exfoliation planes, nodules of belite, and dolomite particles showing rhombohedral
exfoliation imbibed in the cement paste; (b) regular distribution of dolomite particle of aggregate and
fibrous crystals of ettringite filling a pore imbibed in the cement paste.

4. Discussion

The absence of brucite in the dolomitic rocks and its occurrence in the two types of concrete
indicates that the dedolomitization reaction took place in the concrete from the Camarasa Dam. In the
type A concrete, the reaction occurred on the surface of the dolomite aggregates, whereas in the type B
concrete, the reaction mainly took place in the sand-cement paste and in the dolomite grain borders,
although Blanco et al. [29] attributed a geological origin to the occurrence of brucite in the Camarasa
Dam concrete.

In the reaction of dedolomitization, two processes are involved: the dissolution of dolomite and
portlandite and the precipitation of new phases of brucite and calcite. The reaction of dedolomitization
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proceeds until the consumption of portlandite [15]. The dissolution rate of dolomite depends on
the mineral surface, which, in turn, depends on the particle sizes, and controls the kinetics of the
reaction [14,20]. The most reactive dolomite aggregate was the finest fraction, <0.13 mm in the concrete
of the Camarasa Dam. The two types of concrete exhibited differences in the content of this fraction
of dolomite aggregates. In the type B concrete, all of the dolomite particles of this fraction were
constituents of the sand-cement and were dispersed in the Portland cement.

In the type A concrete, the occurrence of portlandite in the paste indicates that this reaction can
still take place. The Mg2+ removed from dolomite was accomplished with the OH− from portlandite,
and brucite precipitates as a rim around the partially dissolved dolomite grains (Figure 10).
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Figure 10. (a) Image of a thin section of the type B concrete stained with red alizarin; (b) SEM images
of type B concrete that show the development of calcite and a rim of a serpentine group mineral; (c,d)
details of this rim; (e) development of brucite in the sand-cement paste.

In addition to the precipitation of brucite, the dissolution of the Si, Al-rich phases of the cement
paste removes the aluminum and silicon that substitute the Mg2+ from brucite. In this case, in order
to balance the electrical charges, a coupled substitution of OH− by CO3

2− and a Mg rich rim is
formed [30,31]. This rim constitutes a barrier that makes the dissolution of the dolomite aggregates
difficult, as a result, the reaction of dedolomitization slows down [14,32,33].

In the reaction of dedolomitization, calcite is formed from the CO3
2− and one Ca2+ provided by

the dissolution of dolomite, and another Ca2+ provided by portlandite located in the cement paste.
Then, most calcite is formed, not in direct contact with the dolomite aggregate, but in the contact
point between the brucite rim and cement paste. A similar distribution of the products of the reaction
of dedolomitization was obtained in experiments performed with a dolomite crystal immersed in
an alkaline portlandite-rich solution [14]. In that case, brucite precipitated attached to the dolomite
surface while most calcite precipitated in the solution.

In the type B concrete, the reaction of dedolomitization took place early, due to the high reactive
surface of dolomite particles in the sand-cement paste. In this concrete, portlandite is dissolved and the
OH− anions are quickly trapped by the Mg2+ provided by dolomite in the sand-cement paste. Thus,
brucite precipitates as fibrous crystals distributed in the sand-cement paste. The reaction consumes all
available portlandite, and then, the coarser particles of dolomite aggregate will not be affected by the
dedolomitization reaction. This process was also suggested for the dedolomitization reaction in batch
experiments of dolomite dispersion in alkaline media [14].
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Although the dedolomitization reaction occurred in both types of concretes, the visual inspection
showed slight differences between types A and B, where A looked more compact than type B. The
matrix of type B appeared more disaggregated and more fragile. However, the dedolomitization
reaction was more extended in the conventional, or type A aggregate, as demonstrated by the higher
proportion of calcite and brucite, which in turn decreased the binding properties and alkalinity of the
matrix. The compression resistance of the cores from Camarasa confirmed these observations. Cabrera
Vélez [34] reported mean values of 279.3 kg/cm2 for the concrete of Portland cement and from 148.5 to
220.1 kg/cm2 for concrete made with sand-cement. The parent density of both types of concrete [29]
also showed that the alteration in the area that constituted of sand-cement was higher. Brucite has been
considered as one of the main factors responsible for the loss of concrete durability [35]. However, in
other cases, the highest expansion and loss of durability was attributed to the alkali-silica reaction
(ASR) produced by the reactions due to the presence of quartz in the concrete matrix, which can
accompany the dolomitic aggregates [36,37].

It can be considered that the concrete of the dam contains an excess of dolomite, whereas the
amount of Portland cement, on the other hand, is significantly lower and therefore a limited amount of
portlandite and silica gel will be produced. The pore solution in contact with these phases is subsatured
in dolomite and CHS, which are thermodynamically unstable in this medium and will be dissolved.
The dissolution of these phases produces two basic processes: (1) a dedolomitization reaction, which
produces secondary calcite and brucite, and (2) between dolomite and the cement paste, a calcium
silicate gel (CHS) gel is present, which reacts with brucite to produce a Mg-silicate gel that crystallizes
in a serpentine group mineral. The formation of this mineral phase has also been reported in other
concretes of dolomite aggregates [7,36,38].

H6Ca3Si2O10 + 3Mg(OH)2 = Mg3(Si2O5)(OH)4 + Ca(OH)2 + H2O
CSH brucite serpentine group mineral portlandite

(2)

The kinetics of the dedolomitization reaction is controlled by the dissolution of the dolomite and
the amount of portlandite available in the system. The reaction occurs very quickly for the smallest
particles. For this reason, the mineralogical evolution of the system is qualitatively and quantitatively
different in each of the concretes used for the construction of the dam.

The use of a concrete made with sand-cement contributes to the system with a particle size fraction
of dolomite with an enormous reactive surface that confers to the reaction of dedolomitization a very
fast kinetics. This reaction is completed in the sand-cement matrix by replacing the sand-cement
paste in the surface, formed by dolomite and portlandite, with a mixture constituted of calcite and
brucite. The agglomerating properties of brucite are not good enough and therefore the properties of
the mechanical strength of the concrete are slightly diminished, as confirmed by the resistance behavior
of the concrete made with sand-cement. Once the dolomite of the paste is consumed, a small fraction
of portlandite remains undissolved and is susceptible to react with the larger grain size fractions of
particles in the aggregate.

In the case of Portland concrete, the proportion of dolomitic aggregates with a reactive surface
equivalent to that of the sand-cement dolomite particles was significantly lower. It was observed that
the dedolomitization was produced by forming a reaction rim of less than 25 µm in thickness around
the dolomite particles, consisting mainly of brucite, calcite, and a gel phase, and that a significant
proportion of portlandite remained in the matrix of the concrete. The formation of a reaction rim
around the aggregate hinders the dissolution of the dolomite, therefore the reaction occurs very slowly.

The gel phase is unstable in the system and evolves in the presence of Mg, forming hydrotalcite
and serpentine group mineral, which are more stable in the system. Reaction (2) describes how the
gel reacts with brucite, which is the product of the dedolomitization reaction, to form serpentine
group mineral. Studies carried out on concretes attacked by magnesium sulfates show that serpentine
group minerals have a low binder capacity with an appearance similar to that of the final stages of
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concrete deterioration [30]. In the case of the Camarasa concrete, the magnesium source comes from
the dissolution of dolomite and the presence of magnesium sulfate is not necessary.

Concrete constituted initially of dolomite and gel of the Portland cement in the appropriate ratios
will evolve until reaching the equilibrium state with the formation of calcite and serpentine group
mineral. The concrete of the Camarasa Dam has a large excess of dolomite that will not react. Given
the reduced agglomerating properties of the serpentine group mineral, its difficulty of formation is
rather beneficial, since it allows the gel life of the Portland to be extended. On the other hand, the
formation of reaction rims on the surface of the dolomite is also an important factor in delaying the
reactions that will produce the degradation of the concrete [39].

5. Conclusions

The concrete of the Camarasa Dam is made of aggregates mainly composed of dolomite. According
to the dose, two type of concrete are distinguished: type A (dolomite and Portland cement) and
type B (dolomite and sand-cement). The ACR occurs in both concrete types of the Camarasa Dam,
forming calcite and brucite from the dissolution of dolomite in an alkaline media. In type A concrete,
the dedolomitization reaction takes place on the surface of the aggregate particles and stops early,
preserving the portlandite of the cement paste. In contrast, in the type B concrete, the reaction
occurred in the sand-cement paste and all portlandite available was consumed very early by the
dedolomitization reaction.

Although the brucite content was higher in type A concrete, type B showed more signs of loss of
durability. This can be attributed to the greater development of the ASR in this concrete type.

In order to prevent the ACR, it is proposed that fractions smaller than 1 mm of the dolomite
aggregate in the concrete are avoided completely.
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