Supplementary Materials

A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

a (Å)	b (Å)	c (Å)	β (degrees)	Volume (Å ³)	ref.
7.0823(2)	7.5525(2)	7.7786(5)	118.631(3)	365.226(30)	Meusberger et al. (2019)
7.084	7.550	7.779	118.63	395.16	Giester et al. (1994)
7.078(3)	7.549(3)	7.773(3)	118.65(2)	364.48	Wildner and Giester (1991)
7.123(9)	7.469(9)	7.837(9)	118.65(2)	364.48	Pistorius (1960)
7.09	7.55	7.78	118.65(2)	365.2(1)	This study

Table S1. Lattice parameters of szomolnokite at ambient pressure and temperature conditions.

Pressure (GPa)	0 ^a	0	0.40(4)	1.6(3)	2.9(4)	6.4(9)	12(1)	19(1)	45(3)	56(1)	62(1)	73.4(1)	95(4)
QS (mm/s)													
Site 1	2.670(3)	2.642(3)	2.64	2.79	2.79	2.834(2)	2.795(2)	2.838(6)	2.96(4)	2.843(9)	2.89(2)	3.08(3)	3.05(2)
Site 2	2.07(3)	2.306(13)	1.95	1.51	1.51	2.178(8)	2.01(7)	2.187(4)	2.41(3)	2.10(2)	2.18(4)	2.23(2)	2.24(2)
Site 3	-	-	1.16	1.27	1.27	1.06(19)	1.216(32)	2.76(3)	1.78(2)	1.841(5)	1.88(1)	1.80(2)	1.718(7)
Site 4	-	-	-	-	-	-	-	0.34(1)	-	-	-	-	-
IS ^a , ⊿IS1 (mm/s)													
Site 1	1.231(7)	-	-	-	-	-	-	-	-	-	-	-	-
Site 2	0.98(2)	-0.339(12)	-0.16	-0.16	-0.16	-0.069(6)	0.02(1)	-0.061(6)	0.048(1)	-0.054(4)	-0.071(5)	-0.042(7)	-0.102(6)
Site 3	-	-	-0.35	-0.4	-0.4	-0.241(5)	0.32(1)	-0.1(1)	-0.72(2)	-0.796(3)	-0.794(4)	-0.74(2)	-0.84(1)
Site 4	-	-	-	-	-	-	-	-0.135(9)	-	-	-	-	-
Weight Fraction													
Site 1	0.83(6)	0.91(66)	0.647(9)	0.625(7)	0.612(5)	0.643	0.643	0.51	0.463	0.522	0.475	0.409	0.368
Site 2	0.17	0.09	0.144	0.153	0.159	0.2	0.2	0.27	0.21(4)	0.15(1)	0.21(2)	0.30(2)	0.28(2)
Site 3	-	-	0.209	0.221	0.229	0.157	0.157	0.16	0.24(1)	0.242(6)	0.2(1)	0.223(7)	0.29(7)
Site 4	-	-	-	-	-	-	-	0.06	-	-	-	-	-
FWHM (mm/s)													
Site 1	0.116(4)	0.061(2)	0.085(3)	0.093(4)	0.119(4)	0.095	0.095	0.15	0.4	0.4	0.4	0.4	0.4
Site 2	0.008(4)	0.03(4)	0.16(1)	0.27(2)	0.18(2)	0.05	0.05	0.05	0.3	0.3	0.3	0.3	0.3
Site 3	-	-	0.5	0.5	0.5	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3
Site 4	-	-	-	-	-	-	-	0.1	-	-	-	-	-
χ^2	1.52	1.25	1.44	1.23	1.60	1.42	1.42	1.04	1.62	1.48	1.36	1.25	1.64

Table S2. Best fit hyperfine parameters for szomolnokite according to Model 1.

Notes: Best-fit values using CONUSS version 2.2.0 (Sturhahn, 2000; www.nrixs.com). Uncertainties are given at the 68% level. Values without reported errors were fixed. Pressures were determined using ruby fluorescence and the Dewaele et al. 2008 scale. Thickness was fixed at 3 μ m and the Lamb-Mössbauer factor was fixed at 0.6 at all compression points. The isomer shifts of Sites 2 to 4 are given relative to Site 1 (see text for details), with the exception of the values for 0^a GPa. ^aValues from ambient pressure determined from a dual fit with a 10 μ m thick naturally enriched stainless steel foil in the x-ray beam path with the sample, and isomer shift values are relative to α -iron.

Pressure (GPa)	0 ^a	0	0.40(4)	1.6(3)	2.9(4)	6.4(9)	12(1)	19(1)	45(3)	56(1)	62(1)	73.4(1)	95(4)
QS (mm/s)													
Site 1	2.670(3)	2.642(3)	2.64	2.79	2.79	2.834(2)	2.795(2)	2.838(7)	3.125(5)	3.152(6)	3.177(5)	3.223(9)	3.179(6)
Site 2	2.07(3)	2.31(1)	1.95	1.51	1.51	2.177(8)	2.009(7)	2.187(4)	2.64(5)	2.508(6)	2.451(8)	2.548(8)	2.519(9)
Site 3	-	-	1.16	1.27	1.27	1.06(2)	1.22(3)	2.76(3)	0	0	0	0	0
Site 4	-	-	-	-	-	-	-	0.34(1)	1.12(1)	0.983(9)	1.12(1)	1.086(8)	1
IS ª, ΔIS1 (mm/s)													
Site 1	1.231(7)	-	-	-	-	-	-	-	-	-	-	-	-
Site 2	0.98(2)	-0.34	-0.16	-0.16	-0.16	-0.069(5)	0.03(1)	-0.061(6)	-0.07(5)	-0.066(6)	0.02(6)	0.042(6)	-0.13
Site 3	-	-	-0.35	-0.4	-0.4	-0.241(5)	-0.32(1)	-0.13(2)	-0.449(5)	-0.456(4)	-0.429(8)	-0.473(5)	-0.435(4)
Site 4	-	-	-	-	-	-	-	-0.135(9)	-0.52(1)	-0.53(8)	-0.47(1)	-0.51(1)	-0.463(7)
Weight Fraction													
Site 1	0.83(6)	0.91(7)	0.64(8)	0.62(7)	0.61(5)	0.643	0.643	0.51	0.387	0.387	0.387	0.387	0.371
Site 2	0.17	0.090	0.144	0.153	0.159	0.2	0.2	0.27	0.258	0.258	0.258	0.258	0.222
Site 3	-	-	0.208	0.221	0.230	0.157	0.157	0.16	0.29	0.29	0.29	0.29	0.30(6)
Site 4	-	-	-	-	-	-	-	0.06	0.065	0.065	0.065	0.065	0.111
FWHM (mm/s)													
Site 1	0.116(4)	0.061(1)	0.085(3)	0.093(3)	0.119(4)	0.095	0.095	0.15	0.4	0.4	0.4	0.5	0.5
Site 2	0.008(4)	0.02(4)	0.16(1)	0.27(2)	0.18(2)	0.05	0.05	0.05	0.3	0.3	0.3	0.3	0.3
Site 3	-	-	0.5	0.5	0.5	0.2	0.2	0.2	0.6	0.6	0.6	0.6	0.47(6)
Site 4	-	-	-	-	-	-	-	0.1	0.05	0.05	0.05	0.05	0.1
χ^2	1.52	1.25	1.44	1.23	1.60	1.42	1.41	1.04	1.75	1.65	1.69	1.59	1.18

Table S3. Best fit hyperfine parameters for szomolnokite according to Model 2.

Notes: Best-fit values using CONUSS version 2.2.0 (Sturhahn, 2000; www.nrixs.com). Uncertainties are given at the 68% level. Values without reported errors were fixed. Pressures were determined using ruby fluorescence and the Dewaele et al. 2008 scale. Thickness was fixed at 3 µm and the Lamb-Mössbauer factor was fixed at 0.6 at all compression points. The isomer shift of Sites 2 to 4 are given relative to Site 1 (see text for details), with the exception of the values for 0^a GPa. ^aValues from ambient pressure determined from a dual fit with a 10 µm thick naturally enriched stainless steel foil in the x-ray beam path with the sample, and isomer shift values are relative to α-iron.

Pressure (GPa)	0 ^a	0	0.40(4)	1.6(3)	2.9(4)	6.4(9)	12(1)	19(1)	45(3)	56(1)	62(1)	73.4(1)	95(4)
QS (mm/s)													
Site 1	2.670(3)	2.642(3)	2.64	2.79	2.79	2.834(2)	2.795(2)	2.838(6)	3.0(1)	3.058(9)	3.057(2)	3.175(8)	3.21(1)
Site 2	2.07(3)	2.31(1)	1.95	1.51	1.51	2.177(8)	2.009(7)	2.187(4)	2.69(2)	2.521(7)	2.482(2)	2.40(2)	2.35(1)
Site 3	-	-	1.16	1.27	1.27	1.06(2)	1.22(3)	2.76(3)	2.71(2)	2.73(2)	2.75(3)	2.64(3)	2.50(5)
Site 4	-	-	-	-	-	-	-	0.34(1)	0.388(7)	0.41(2)	0.39(2)	0.40(1)	0.32(8)
Site 5	-	-	-	-	-	-	-	-	0	0	0	0	0
IS ª, ∆IS1 (mm/s)													
Site 1	1.231(7)	-	-	-	-	-	-	-	-	-	-	-	-
Site 2	0.98(2)	-0.34	-0.16	-0.16	-0.16	-0.069(5)	0.025(10)	-0.061(6)	-0.07(1)	-0.019(7)	0.01(1)	-0.03	-0.029
Site 3	-		-0.35	-0.4	-0.4	-0.241(5)	-0.32(1)	-0.13(1)	0.32(1)	0.37(1)	0.41(2)	0.32	0.29
Site 4	-							-0.135(9)	-0.13(3)	-0.393(7)	-0.42(4)	-0.59	-0.603
Site 5	-								-0.245(5)	-0.02(1)	-0.03(2)	-0.074	-0.078
Weight Fraction													
Site 1	0.83(6)	0.91(7)	0.64(8)	0.62(7)	0.61(5)	0.643	0.643	0.51	0.406	0.406	0.401	0.406	0.406
Site 2	0.17	0.090	0.144	0.153	0.159	0.2	0.2	0.27	0.297	0.297	0.293	0.297	0.297
Site 3	-	-	0.208	0.221	0.230	0.157	0.157	0.16	0.158	0.129	0.12(9)	0.099	0.05
Site 4	-	-	-	-	-	-	-	0.06	0.099	0.099	0.098	0.099	0.099
Site 5	-	-	-	-	-	-	-	-	0.04	0.069	0.088	0.099	0.149
FWHM (mm/s)													
Site 1	0.116(4)	0.061(1)	0.085(3)	0.093(3)	0.119(4)	0.095	0.095	0.15	0.4	0.4	0.4	0.4	0.42
Site 2	0.008(4)	0.02(4)	0.16(1)	0.27(2)	0.18(2)	0.05	0.05	0.05	0.3	0.3	0.3	0.3	0.32
Site 3	-	-	0.5	0.5	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.22
Site 4	-	-	-	-	-	-	-	0.1	0.1	0.1	0.1	0.1	0.12
Site 5	-	-	-	-	-	-	-	-	0.2	0.2	0.2	0.2	0.22
χ^2	1.52	1.25	1.44	1.23	1.60	1.42	1.41	1.04	1.38	1.48	1.43	1.49	1.28

Table S4. Best fit hyperfine parameters for szomolnokite according to Model 3.

-

Notes: Best-fit values using CONUSS version 2.2.0 (Sturhahn, 2000; www.nrixs.com). Uncertainties are given at the 68% level. Values without reported errors were fixed. Pressures were determined using ruby fluorescence and the Dewaele et al. 2008 scale. Thickness was fixed at 3 μ m and the Lamb-Mössbauer factor was fixed at 0.6 at all compression points. The isomer shift of sites 2 to 5 are given relative to site 1 (see text for details), with the exception of the values for 0^a GPa. ^aValues from ambient pressure determined from a dual fit with a 10 μ m thick naturally enriched stainless steel foil in the x-ray beam path with the sample, and isomer shift values are relative to α -iron.

Mineral	Formula	Number (Fig. 2)	Sample	IS (mm/s)	QS (mm/s)	Weight %
Szomolnokite	FeSO ₄ ·H ₂ O	1a	This study	1.23	2.64	91
Szomolnokite	FeSO ₄ ·H ₂ O	1b	This study	0.89	2.31	9
Szomolnokite	FeSO ₄ ·H ₂ O	Blue Square	Alboom et al. 2009	1.263	2.231	100
Szomolnokite	FeSO ₄ ·H ₂ O	Orange Square	Giester et al. 1994	1.26	2.71	100
Szomolnokite	FeSO ₄ ·H ₂ O	Pink Square	Russel & Montano 1978	1.18	2.69	100
Szomolnokite	FeSO ₄ ·H ₂ O	2	ML-S77	1.26	2.73	94
Szomolnokite	FeSO ₄ ·H ₂ O	3	92942	1.26	2.73	96
Szomolnokite	FeSO ₄ ·H ₂ O	4a	136685-2	1.29	2.74	82
Szomolnokite	FeSO ₄ ·H ₂ O	4b	136685-2	0.23	0.69	12
Szomolnokite	FeSO ₄ ·H ₂ O	4c	136685-2	0.54	0.14	7
Szomolnokite	FeSO ₄ ·H ₂ O	5	104276	1.28	2.76	100
Szomolnokite	FeSO ₄ ·H ₂ O	6a	ML-S60	1.31	2.89	57
Szomolnokite	FeSO ₄ ·H ₂ O	6b	ML-S60	1.31	3.42	31
Szomolnokite	FeSO ₄ ·H ₂ O	6c	159098	1.24	2.78	43
Szomolnokite	FeSO ₄ ·H ₂ O	7a	159098	1.31	2.69	42
Szomolnokite	FeSO ₄ ·H ₂ O	7b	159098	0.49	0.18	12
Szomolnokite	FeSO ₄ ·H ₂ O	8a	ML-S103	1.27	2.74	93
Szomolnokite	FeSO ₄ ·H ₂ O	8b	ML-S103	0.43	0.42	7
Szomolnokite	FeSO ₄ ·H ₂ O	9a	159266	0.46	0.36	72
Szomolnokite	FeSO ₄ ·H ₂ O	9b	159266	0.14	0.56	28
Szmikite	MnSO ₄ ·H ₂ O	10a	159189	0.52	0.93	18
Szmikite	MnSO ₄ ·H ₂ O	10b	159189	1.24	2.59	82
Gunningite	ZnSO4·H2O	11a	56925	0.26	0.4	32
Gunningite	ZnSO4·H2O	11b	56925	0.37	1.26	10
Gunningite	ZnSO4·H2O	11c	56925	1.25	2.74	58
Chalcanthite	CuSO4·5H2O	12a	DD100	0.1	0.51	29
Chalcanthite	CuSO4·5H2O	12b	DD100	0.26	0.76	30
Chalcanthite	CuSO4·5H2O	12c	DD100	1.26	2.32	22
Chalcanthite	CuSO4·5H2O	12d	DD100	1.3	2.88	19
Pentahydrite	MgSO4·5H2O	13a	VZO121	0.5	0.83	8
Pentahydrite	MgSO4·5H2O	13b	VZO121	1.26	3	53
Pentahydrite	MgSO4·5H2O	13c	VZO121	1.27	3.68	38
Jokokuite	MnSO4·5H2O	14a	G3536	0.15	0.56	26

Table S5. Hydrated iron-bearing sulfates and their experimentally determined quadrupole and isomer shift values at ambient pressure and temperature.

Jokokuite	MnSO4·5H2O	14b	G3536	1.13	2.63	6
Jokokuite	MnSO4·5H2O	14c	G3536	1.26	2.51	65
Halotrichite	FeAl2(SO4)4·22H2O	15a	G1616	1.27	3.29	92
Halotrichite	FeAl2(SO4)4·22H2O	16a	VZO128	0.13	0.49	10
Halotrichite	FeAl2(SO4)4·22H2O	16b	VZO128	0.36	0.31	14
Halotrichite	FeAl2(SO4)4·22H2O	16c	VZO128	1.45	1.56	13
Halotrichite	FeAl2(SO4)4·22H2O	16d	VZO128	1.28	2.76	43
Halotrichite	FeAl2(SO4)4·22H2O	16e	VZO128	1.3	3.29	20
Melanterite	Fe ²⁺ (H ₂ O) ₆ SO ₄ ·H ₂ O	16	2070	1.27	3.21	100
Rozenite	FeSO ₄ ·4H ₂ O	17a	JB626B	1.33	2.97	59
Rozenite	FeSO ₄ ·4H ₂ O	17b	JB626B	1.33	3.39	34
Rozenite	FeSO ₄ ·4H ₂ O	18a	SPT130	0.39	0.95	8
Rozenite	FeSO ₄ ·4H ₂ O	18b	SPT130	1.27	3.21	92
Starkeyite	MgSO4·4H2O	19a	137725	0	0.57	9
Starkeyite	MgSO4·4H2O	19b	137725	1.14	2.65	91

Figure S1. Fitted hyperfine parameters determined using CONUSS: The relative isomer shift values of sites 2 to 5 are given with respect to site 1 (Δ IS1), and the full width at half maximum (FWHM) describes the distribution of field gradients in mm/s for a particular site. (**A**) Low pressure values, as all models are identical from 0 to 19 GPa. (**B**) Values from Model 1 applied to 19-95 GPa. Sites 2 and 3 have FWHM fixed to the same value so they overlap completely in the figure. (**C**) Values from Model 2 applied to 19-95 GPa. In this model, site 3 (green) undergoes a high to low spin transition between 19 and 45 GPa. (**D**) Values from Model 3 (gradual spin transition) applied to 19-95 GPa. Sites 3 and 5 have FWHM fixed to the same value so they overlap completely in the figure. See text for more details on Models 1, 2, and 3. Values, including the χ^2 for each fit, are reported in Tables S2, S3, and S4.