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Abstract: The viscosity of slag is a key factor affecting metallurgical efficiency and recycling, such
as metal-slag reaction and separation, as well as slag wool processing. In order to comprehensively
clarify the variation of the slag viscosity, various data mining methods have been employed to predict
the viscosity of the slag. In this study, a more advanced dual-stage predictive modeling approach
is proposed in order to accurately analyze and predict the viscosity of slag. Compared with the
traditional single data mining approach, the proposed method performs better with a higher recall
rate and low misclassification rate. The simulation results show that temperature, SiO2, Al2O3,
P2O5, and CaO have greater influences on the slag’s viscosity. The critical temperature for onset of
the important influence of slag composition is 980 ◦C. Furthermore, it is found that SiO2 and P2O5

have positive correlations with slag’s viscosity, while temperature, Al2O3, and CaO have negative
correlations. A two-equation model of six-degree polynomial combined with Arrhenius formula
is also established for the purpose of providing theoretical guidance for industrial application and
reutilization of slag.
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1. Introduction

The viscosity of slag has a significant effect on metallurgical efficiency and slag recycling, which
inevitably affects the metal quality and sustainable development of high temperature industries, such
as metal-slag reaction and separation, mass and heat transfer in the melts, furnace lining corrosion, as
well as slag wool processing [1–3]. In the smelting process, if the viscosity of molten slag is too low,
the heat preservation and reoxidation resistance will be weakened because of higher slag fluidity and
the large-area-exposed molten metal. In addition, the refractory materials will be seriously corroded,
which results in a reduced lining life and cleanliness of the metal. However, it is known that the
high viscosity of molten slag will show lower fluidity and lead to the inactivation of molten pool,
which makes the melting process difficult to proceed smoothly. In general, an appropriate viscosity
is conducive for fiber formation in the slag wool processing. It is concluded that slag with suitable
viscosity is beneficial for improving the quality of molten metal and reducing the consumption of
refractories as well as slag reutilization. Therefore, the viscosity of slag has been studied extensively
through experimental measurements and modeling predictions [4–11].

The flow of slag is closely related to molecular structure and rheology, so both the composition
of slag and temperature have significant and complex effects on viscosity. For the slag containing
silicate, the network former can increase the viscosity while the network modifier can reduce viscosity.
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The amphoteric body can exhibit the characteristics of either network former or network modifier [12].
Although the slag is Newtonian fluid at high temperatures, the change of viscosity with temperature at
low temperatures will exhibit the properties of non-Newtonian fluid [13,14]. Therefore, great research
efforts have been devoted to the establishment of mathematical models in order to automatically
predict the viscosity values of different slag systems.

There are three types of mathematical models for predicting viscosity, including the theoretical
method, the empirical method, and the semiempirical method. The theoretical model is based on the
material structure, the properties of the melt are deduced according to the basic principles of quantum
mechanics and statistical mechanics, and finally the viscosity expressions of various melts are obtained.
Although this method is based on a clear physical theory, it has two obvious defects such as a poor
accuracy and a limited application scope. The empirical method, which combines the theory with data
gathered from the experiment to establish the prediction model, can provide more accurate results and
has been popularly used in the viscosity calculation of metallurgical melts. The viscosity prediction
model proposed by Urbain is one of the empirical models. The viscosity expression in Urbain’s model
is obtained based on the Weymann–Frenkel equation. In addition, the components of slag can be
separated into network former, network modifier, and network amphoteric based on Urbain’s model
for the purpose of calculating the final viscosity values [7]. This model can achieve a satisfied predictive
performance on the SiO2-Al2O3-CaO-MgO system and its subsystems. The semiempirical method,
which aims to build a prediction model based on the theoretical correction of specific experimental
experience, can provide more accurate predictions and has been widely applied [8,9]. Chou found that
the geometric models as one type of semiempirical models could be used to predict viscosity [10,11]
and had been widely used in binary or ternary systems. However, these models cannot be generalized
to multisystems. In summary, the existing research gaps, including limited number of samples, a large
number of reference experience parameters, and the limited application scopes, make it difficult for
any existing models to be applied to multiple slag systems to achieve the automatic prediction of
slag’s viscosity.

In recent years, with the rapid development of information technology, the world has entered the
era of big data. Namely, the data scale is growing explosively and the data forms are getting more and
more complex. Raw data is meaningless unless it is properly mined to extract potentially useful and
hidden information that can provide wisdom for related stakeholders [15]. This process is called data
mining, which usually uses statistics, data visualization, machine learning, text mining, and even deep
learning methods to detect trends or patterns without prior knowledge of the data [16,17]. Therefore,
employing data mining methods to support related decision-making is more recommended than
expert experience or intuitions in the big data era [18]. The concept of data-driven decision-making
has penetrated into various fields such as government management [19], economics [20], medical
treatment [21], education [22], and manufacturing industry [23]. The researchers used several data
mining methods to construct prediction models for predicting the conductivity of metallurgical
melts and reported that the Gradient Boosting Decision Tree (GBDT) model was the best model
with the highest prediction performance [24]. It may also provide new perspective for investigating
slag’s viscosity.

In order to address the above research gaps, this study proposes a novel dual-stage approach based
on data mining methods for automatically predicting slag’s viscosity and providing decision-making
support for related stakeholders. Therefore, this study aims to answer the following research questions:
(1) Could the data mining methods be employed for analyzing and predicting slag’s viscosity? (2)
Can the proposed dual-stage predictive modeling approach provide better prediction outcomes than
baseline models? (3) What are the important factors for predicting and adjusting viscosity in practice?
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2. Materials and Methods

2.1. Data Collection and Preprocessing

A total of 1459 slags’ (i.e., samples) data with one variable denoting slags’ viscosity and 26
common variables were collected for this study [25–29]. These 25 common variables as shown in
Table 1, including 24 slag’s component proportional variables and 1 temperature variable, can be
adopted as input variables for building prediction models. However, it is found that there are
significantly different ranges among different variables in the dataset. It is necessary to perform a data
transformation procedure in order to speed up the convergence of the training model. This study
transforms all input variables into a range of 0–1 based on the Equation (1).

xt =
x− xmin
xminmax

(1)

Table 1. Variables for data analysis.

Variables Attribute Description

Al2O3 Numeric Al2O3 mass fraction in slag
FeO Numeric FeO mass fraction in slag
SiO2 Numeric SiO2 mass fraction in slag
P2O5 Numeric P2O5 mass fraction in slag
CaF2 Numeric CaF2 mass fraction in slag
Li2O Numeric Li2O mass fraction in slag
B2O3 Numeric B2O3 mass fraction in slag
CaO Numeric CaO mass fraction in slag

Gd2O3 Numeric Gd2O3 mass fraction in slag
La2O3 Numeric La2O3 mass fraction in slag
Nd2O3 Numeric Nd2O3 mass fraction in slag

TiO2 Numeric TiO2 mass fraction in slag
Fe2O3 Numeric Fe2O3 mass fraction in slag
K2O Numeric K2O mass fraction in slag
MgO Numeric MgO mass fraction in slag
MnO Numeric MnO mass fraction in slag
Na2O Numeric Na2O mass fraction in slag
ZrO2 Numeric ZrO2 mass fraction in slag
CaS Numeric CaS mass fraction in slag
SrO Numeric SrO mass fraction in slag
ZnO Numeric ZnO mass fraction in slag
V2O5 Numeric V2O5 mass fraction in slag
Cr2O3 Numeric Cr2O3 mass fraction in slag

S Numeric S mass fraction in slag
Temperature Numeric Temperature of slag

Viscosity Categorical Slag’s viscosity value

Slag’s viscosity is usually recorded and stored by a numeric form. In order to model slag’s
viscosity performance, slag’s viscosity value is transformed into a binary variable as the prediction
target marking all samples as high or low viscosity. With regard to high or low criterion, different
practitioners have different guidelines. In this study, slag with no less than 10P viscosity can be
considered as a high sample and the remaining are labeled as low. Therefore, after data cleaning, the
dataset contains 28.17% high viscosity samples and 71.83% low viscosity samples. Table 1 lists all the
variables for the following modeling and comparisons.

After data preprocessing, cross validation [30] is applied to split the dataset into two subsets
for model training and validation. In this study, splitting 70% is for training and the remaining 30%
is for validation. Stratified sampling [31] based on minority category (i.e., high viscosity) is also
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followed in order to ensure the training and the validation datasets have the same sample distributions.
All prediction models are optimized by the validation results to avoid overfitting.

2.2. The Proposed Dual-Stage Predictive Modeling Approach

It is clearly shown that the collected slag dataset is imbalanced. Generally, there are two strategies,
including adjusting the imbalanced status from the data-level and designing new predictive approaches,
for dealing with imbalanced classification problems [32].

It is known that many typical data mining methods, including Logistic Regression (LR), Naïve
Bayes (NB), Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), and Deep
Neural Network (DNN), have been widely used for building prediction models [24]. In this study, the
prediction of slag’s viscosity can be considered as a classification task, which means the prediction
models can be constructed based on the above data mining methods. However, each prediction
model has its own advantages, especially for an imbalanced dataset. It indicates that one model may
accurately identify one type of sample and another model can achieve better prediction for another
class of samples. Based on this concern, this study proposes a dual-stage predictive modeling approach
in order to make more accurate predictions based on the results of these two models. Figure 1 shows
the logic flow of the proposed dual-stage predictive modeling approach. It indicates that the proposed
approach consists of two stages and the prediction outcomes of the first stage are considered as inputs
of the second stage model for final prediction.
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Figure 1. The proposed dual-stage predictive modeling approach for predicting slag’s viscosity.

Specifically, two predictive models need to be trained in the first stage. One model aims to predict
high viscosity samples (MH thereafter) and another model aims to identify low viscosity samples
(ML thereafter). It must be emphasized that these two models have the same input variables but the
opposite target variable. MH can generate one probability value for each slag sample, which is called
PH in this study, indicating the possibility of high viscosity. Similarly, ML can produce one probability
value for each slag sample, which is called PL, denoting the possibility of low viscosity. Ideally, the
sum of PH and PL (called Pt) should be equal to 1 when using algorithms like Logistic Regression,
and Pt should be close to 1 when using ensemble models. It means a high PH sample should obtain a
low PL and vice versa. Because the optimal parameters of the model based on GBDT or DNN will
be determined by the target variable, which means the parameters of MH and ML will be different
for obtaining their individual best prediction accuracy. It is not surprising that some slag samples
may obtain both high or low probabilities from MH and ML because of this characteristic. This may
result in misclassification and further inappropriate decision-making. This study takes into account
this hidden concern and proposes to build the second stage predictive model for performing final
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predictions. Therefore, the first stage should employ ensemble algorithms such as GBDT and DNN
rather than simple classifiers to ensure nonlinear relationships among PH, PL, and Pt.

Then the three probability outcomes (i.e., PH, PL and Pt) are fed to the second stage model as
inputs. The decision tree algorithm is employed for building the second stage model because of its
great advantages in visualizing the decision process, and the prediction target is same to that of MH.
The second stage model can also be considered as a coordination model. Therefore, the dual-stage
predictive modeling approach makes the final predictions based on the prediction results of the MH
and ML models, which can be considered as a novel ensemble method using stacking strategy [33].
It is expected that the proposed dual-stage predictive modeling approach can make more accurate
predictions for high viscosity samples than just one MH model.

2.3. Metrics for Performance Evaluation

Measuring the overall prediction accuracy (i.e., the proportion of the correctly identified samples)
and misclassification rate (i.e., the proportion of the misclassified samples) are commonly used in data
mining tasks [24]. However, due to the imbalanced characteristics of the dataset (the percentage of
samples with high viscosity is less than 30%), it is critical to correctly identify the minority category
(i.e., high recall rate). In addition, increasing the false positive cases also needs to be avoided (i.e., high
precision rate). Therefore, F1 score is selected as a harmonic mean of precision and recall. In general,
the higher the value of F1 score, the better the prediction performance of models. Finally, four metrics
as shown in Equations (2)–(5), including overall accuracy, misclassification, recall, and F1 score, are
chosen for measuring and comparing models’ prediction performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Misclassification =
FP + FN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)

F1 =
2× TP

2× TP + FP + FN
(5)

True positive (TP) denotes a slag sample whose status is positive and the model also correctly
predicts this sample as positive. True negative (TN) indicates a slag sample whose status is negative
and the model also predicts it as negative. False positive (FP) means a sample whose status is negative,
but the model misclassifies it as positive, and false negative (FN) is the opposite of FP. In this study,
positive means high viscosity samples in MH and low viscosity samples in ML, while negative denotes
low viscosity samples in MH and high viscosity in ML. In this study, the accuracy, misclassification,
and F1 score are indicators to evaluate the model’s overall prediction performance.

2.4. The Identification of Significant Factors

In the field of data mining, data scientists need to not only focus on how to improve the prediction
accuracy but also discover the significant factors from the large amounts of data. The former can
inform related stakeholders about the results at which slag could have a high possibility of being a high
viscosity sample, but the researchers and practitioners still do not know how to effectively optimize
the components or conditions to improve or change viscosity unless they have been informed which
factors can significantly affect slag’s viscosity.

In this study, the surrogate modeling method (i.e., using another model to explain a complex model
(“Surrogate model,” n.d.)) [34] is employed to interpret results generated from the best prediction
model. Therefore, the surrogate model has the same sets of input variables, but the target variables are
replaced with the predicted values by the best model. The decision tree algorithm is able to simulate
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the best model with 100% accuracy, and the obtained decision tree can be visualized to show the
decision process. Therefore, using a decision tree method to build the surrogate model can help us find
the significant factors for providing related stakeholders with insights and guidelines.

3. Results

3.1. Prediction Performance of the Baseline Methods

Firstly, several commonly used data mining methods, including LR, NB, SVM, KNN, GBDT, and
DNN, are adopted as baseline methods in this study. These baseline models have the same inputs and
prediction target with MH model. The validation results of these baseline methods are listed in Table 2.
These results can not only answer the first research question but also be used for comparison with that
of the proposed dual-stage predictive modeling approach.

Table 2. The validation results of baseline models.

Methods LR NB SVM KNN GBDT DNN

Accuracy 0.87 0.55 0.86 0.91 0.92 0.94
Misclassification 0.13 0.45 0.14 0.09 0.08 0.06

Recall 0.60 0.95 0.63 0.80 0.81 0.82
F1 0.87 0.54 0.72 0.85 0.85 0.88

Table 2 shows that the data mining methods can be used for investigating slag’s viscosity. It also
indicates that the KNN, GBDT, and DNN can achieve both higher accuracy rates and better F1 scores,
but the remaining baseline methods have relatively poor performance, especially the NB method.
Although the NB classifier could capture all the high viscosity slag samples in the validation dataset, it
can also result in a high misclassification rate, which makes the reliability of the prediction results
quite low in practice. Therefore, these commonly used data mining methods are able to predict
slag’s viscosity, but whether they can outperform the proposed dual-stage approach needs to be
further investigated.

3.2. Prediction Performance of the Proposed Dual-Stage Predictive Modeling Approach

As mentioned earlier, there are two probabilities (PH and PL) generated from the first stage
models in the proposed dual-stage predictive modeling approach. Furthermore, this approach needs
to use ensemble methods for building the first stage models so that the sum of PH and PL (i.e., Pt) has
a wide range rather than be always equal to 1. Therefore, the GBDT and DNN methods are used for
constructing the first stage models (i.e., MHs and MLs), and the validation results in the first stage are
listed in Table 3 for further comparison with that of the second stage.

Table 3. The validation results of prediction models in the first stage.

Metrics
MH ML

GBDT DNN GBDT DNN

Accuracy 0.92 0.94 0.92 0.94
Misclassification 0.08 0.06 0.08 0.08

Recall 0.81 0.82 0.95 0.99
F1 0.85 0.88 0.94 0.96

Meanwhile, each slag sample could obtain three probabilities (i.e., PH, PL, and Pt) from the first
stage models. These three probabilities are considered as inputs of the second stage decision tree model.
In order to visually understand the input distributions of the second stage training set, the ascending
order of PH values were used to visualize the three probabilities as shown in Figure 2. Figure 2 shows
that Pt is not always equal to 1 both for GBDT and DNN. The first subfigure representing the results of
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MH and ML based on GBDT has a Pt range from 0.844 to 1.305, but the subfigure denoting the results
of DNN’s models has a wider Pt range from 0.109 to 1.715. It is also found that both subfigures have
more than 82% of Pts in the range of 0.90 and 1.10.Minerals 2020, 10, x FOR PEER REVIEW 7 of 15 
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It is known that 0.5 is traditionally adopted as the default threshold for predictive modeling.
It means if the probability is greater than 0.5 the sample will be classified as positive. The second stage
aims to build the coordination model to monitor and decide a more optimized threshold. Specifically,
the second stage adopts the PH, PL, and Pt as inputs and the high viscosity label as target to train
a decision tree model. Table 4 shows the results of the coordination model. The numbers with
the parentheses in Table 4 are the results of MHs at the first stage. The results indicate that the
coordination model can further improve the recall rates without decreasing the overall accuracy rates,
misclassifications, and F1 scores. Therefore, it can be concluded that the proposed dual-stage predictive
modeling approach performs better than baseline models (i.e., just MH).

Table 4. The comparison of the results between the coordination model and MH.

Metrics Coordination Based on GBDT Coordination Based on DNN

Accuracy 0.95 (0.92) 0.95 (0.94)
Misclassification 0.05 (0.08) 0.05 (0.06)

Recall 0.89 (0.81) 0.85 (0.82)
F1 0.90 (0.85) 0.90 (0.88)

In addition, observing the decision process of the coordination models can obtain the dynamic
high viscosity rules. One rule obtained from the coordination model based on GBDT is PH > 0.655.
Another rule from the model based on DNN is PL ≤ 0.906 and PH > 0.556. They indicate that the more
optimal threshold can be identified for better classification rather than 0.5 default threshold in the
proposed dual-stage predictive modeling approach.

Furthermore, considering that the ‘underfitting’ and ‘overfitting’ are two common issues in the
data mining research [24], it is necessary to further verify the robustness of the proposed dual-stage
predictive modeling approach. Adjusting the different sizes of training dataset to build models and
validate them is a feasible way to investigate the robustness. The validation results of models that
were built based on different sizes of training dataset are shown in Figure 3. The results show that
containing at least 918 samples in the training dataset is necessary to make sure the reliability of the
proposed prediction model.
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Figure 3. F1 values of models based on different training size.

3.3. Significant Factors of the Slag’s Viscosity

The surrogate modeling method can be used to interpret results generated from the prediction
model (such as GBDT model) in the first stage in order to reveal significant factors. Considering
that the ensemble models are recommended in the first stage of the proposed dual-stage predictive
modeling approach, the surrogate model is also complex. The top five layers of the surrogate model
are shown in Figure 4 in order to clearly present the most significant division variables.
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Figure 4 shows the most important factors affecting slag’s viscosity are temperature, SiO2, Al2O3,
P2O5, CaO, and B2O3. The “0” in Figure 4 denotes the low viscosity slags whose viscosity values
are less than 10P, while the “1” means high viscosity slags. Paths for identifying high viscosity slag
samples are marked with an asterisk in order to enhance readability.

• Rule 1-1: Temperature ≤ 980 ◦C (0/1: 0.402/0.598)
• Rule 1-2: Temperature > 980 ◦C (0/1: 0.876/0.124)
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• Rule 2-1: 1-1 + Al2O3 ≤ 2.3% (0/1: 0.553/0.447)
• Rule 2-2: 1-1 + Al2O3 > 2.3% (0/1: 0.139/0.861)
• Rule 2-3: 1-2 + SiO2 ≤ 91.3% (0/1: 0.924/0.076)
• *Rule 2-4: 1-2 + SiO2 > 91.3% (0/1: 0/1)
• Rule 3-1: 1-1 + 2-1 + P2O5 ≤ 72.4% (0/1: 0.688/0.312)
• Rule 3-2: 1-1 + 2-1 + P2O5 > 72.4% (0/1: 0.026/0.974)
• Rule 3-3: 1-2 + 2-2 + SiO2 ≤ 26.8% (0/1: 0.294/0.706)
• *Rule 3-4: 1-2 + 2-2 + SiO2 > 26.8% (0/1: 0/1)
• Rule 3-5: 1-2 + 2-3 + B2O3 ≤ 14.3% (0/1: 0.939/0.061)
• Rule 3-6: 1-2 + 2-3 + B2O3 > 14.3% (0/1: 0.214/0.786)
• Rule 4-1: 1-1 + 2-1 + 3-1 + B2O3 ≤ 32.8% (0/1: 0.772/0.228)
• Rule 4-2: 1-1 + 2-1 + 3-1 + B2O3 > 32.8% (0/1: 0.296/0.704)
• *Rule 4-3: 1-1 + 2-1 + 3-2 + CaO ≤ 24% (0/1: 0 /1)
• Rule 4-4: 1-1 + 2-1 + 3-2 + CaO > 24% (0/1: 0.25/0.75)
• Rule 4-5: 1-1 + 2-2 + 3-3 + Temperature ≤ 959 ◦C (0/1: 0.105/0.895)
• Rule 4-6: 1-2 + 2-2 + 3-3 + Temperature > 959 ◦C (0/1: 0.846/0.154)
• Rule 4-7: 1-2 + 2-3 + 3-5 + SiO2 ≤ 47.4% (0/1: 0.98/0.02)
• Rule 4-8: 1-2 + 2-3 + 3-6 + SiO2 > 47.4% (0/1: 0.721/0.279)
• *Rule 4-9: 1-2 + 2-3 + 3-6 + B2O3 ≤ 88% (0/1: 0/1)
• Rule 4-8: 1-2 + 2-3 + 3-5 + B2O3 > 88% (0/1: 1/0)

There are four paths that can lead to a higher chance of the slag being identified as high viscosity,
including (rules 1-2 and 2-4), (rules 1-1 and 2-2 and 3-4), (rules 1-1 and 2-1 and 3-2 and 4-3), and (rules
1-2 and 2-3 and 3-6 and 4-9). The rule 1-2 means if the temperature is higher than 980 ◦C, the probability
of a high viscosity sample is 0.124. When the rule 1-2 is satisfied and the slag’s SiO2 component is
greater than 91.3%, the high probability is increased from 0.124 to 1. This path indicates that the higher
the component of SiO2, the higher the viscosity. The second path denotes that if the temperature is
less than 980 ◦C and the slag’s Al2O3 component is greater than 2.3% and the SiO2 component is also
greater than 26.8%, the slag’s viscosity value must be greater than 10P. These two paths indicate that
containing higher SiO2 is beneficial for improving slag’s viscosity value.

The third path shows that if the temperature is less than 980 ◦C, and the slag’s components satisfy:
Al2O3 ≤ 2.3%, P2O5 > 72.4%, and CaO ≤ 24%, the high probability is equal to 1. The fourth path
denotes that if the temperature is greater than 980 ◦C, the slag’s SiO2 component is no more than 91.3%,
as well as if the B2O3 component is greater than 14.3% and less than 88%, it can be inferred that the
slag’s viscosity is greater than 10P. The last two paths may indicate that adding P2O5 or B2O3 can
increase the slag’s viscosity.

The remaining factors that were not been listed in Figure 4 (such as MgO, Fe2O3, and Li2O)
have little effect on slag’s viscosity. The above paths show that the most important factors related
to slag’s viscosity are temperature, SiO2, Al2O3, P2O5, CaO, and B2O3. Therefore, researchers and
practitioners could pay more attention to these significant factors to adjust the slag’s viscosity based on
their individual requirements. In addition, the paths generated by the surrogate model as shown in
Figure 3 can be utilized for guiding decision-making in practice.

4. Discussion

This study aims to investigate whether data mining methods can be used for analyzing slag’s
viscosity, whether the proposed dual-stage predictive modeling approach can further improve the
prediction performance, and which factors are more important for guiding related stakeholders to
make decisions.
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4.1. High Recall Rate and Low Misclassification Rate of the Proposed Approach

Firstly, the comparison results of the six data mining methods show that although NB can capture
95% high viscosity samples, it also misclassified a great number of low viscosity samples as high
category. This method results in a 0.45 misclassification rate, which indicates the NB classifier cannot
be used in practice. This finding is consistent with the previous study [24]. The possible reason may
be that the NB classifier is built on the assumption of attribute independence and simplifies the real
classification task [35], but the input variables in this study are continuous and not independent of
each other. The SVM and LR classifiers also achieve poor overall accuracy and recall rates. The KNN,
GBDT, and DNN can achieve both high accuracy rates and F1 scores, but the recall rates are no more
than 0.82, which means more than 18% of high viscosity slag samples cannot be correctly identified.
Therefore, there is still room for improving the prediction performance.

Considering that each prediction model has its own advantages in identifying some types of
samples, this study proposes a dual-stage predictive modeling approach in order to improve the recall
rate without increasing the overall misclassification rate. The experimental results show that the
proposed dual-stage modeling approach can better achieve both a high recall rate and F1 score as well
as a low misclassification rate compared to just one prediction model (MH). The new thresholds of the
proposed approach indicate that combining the results of two models for making final predictions
seems to be threshold moving. Threshold moving is a common approach in the field of machine
learning for the purpose of changing the model’s recall and precision rates [36,37]. Typically, lowing
the model’s threshold can usually increase the recall rate, but such action will increase the number
of false positive cases at the same time. It means traditional threshold moving can increase the
misclassification rate. However, the proposed dual-stage modeling approach can increase the recall
rate and decrease the misclassification rate by optimizing two models’ thresholds with the coordination
model. The proposed dual-stage approach can also be considered as an ensemble model that is based
on the stacking strategy [33]. Therefore, it is not surprising that the proposed approach can further
improve the prediction performance.

4.2. The Significant Factors and Prediction for Slag’s Viscosity

The changes of slag composition and smelting temperature will greatly affect the viscosity of
slag during the smelting process. It is found that among the gathered 25 variables, temperature, SiO2,
Al2O3, P2O5, and CaO had a greater effect on viscosity. The relationship between these variables and
viscosity will be discussed below.

Temperature has the most significant effect on the viscosity of the slag, and the viscosity tends
to decrease along with increasing temperature. As shown in Figure 3, the critical temperature for
Newtonian fluid transferring to non-Newtonian fluid is 980 ◦C. When the temperature is lower than
980 ◦C, the slag shows a characteristic of high viscosity and a nonlinear polynomial model can fit the
relationship between viscosity and temperature with low error (R2 = 0.97). Therefore, temperature is
the only major factor in this range [38,39]. When the temperature is higher than 980 ◦C, the Arrhenius
formula was applied to express the viscosity of slag [40]. Therefore, a model of six-degree polynomial
combined with Arrhenius formula has been established and the expression is as follows:

η =

 4.81T6
× 10−8

− 2.21T5
× 10−4 + 0.42T4

− 422.29T3 + 2.38T2
× 105

− 7.10T × 107 + 8.79× 109, 500 < T ≤ 980
A· exp

(
−Eη/R(T + 273)

)
, T > 980

(6)

where η is the slag viscosity, P; T is the temperature, ◦C; A is a constant; Eη is the activation energy; and
R is the gas constant. The value of A and Eη is mostly related to the composition of the slag as shown
in Table 5.
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Table 5. The value of A and Eη in the different slag systems.

The Slag System Content of Each Component (wt%) A Eη (kJ/mol)

SiO2 SiO2: 100 6.00 × 10−9 −567.97
Al2O3-Gd2O3 Al2O3: 52.987; Gd2O3: 47.013 8.00 × 10−5 −124.65
Al2O3-La2O3 Al2O3: 55.586; La2O3: 44.414 2.00 × 10−5 −145.24
Al2O3-Nd2O3 Al2O3: 54.839; Nd2O3: 45.161 7.00 × 10−5 −122.48

SiO2-B2O3

SiO2: 71.463; B2O3: 28.537 2.00 × 10−5 −304.53
SiO2: 43.185; B2O3: 56.815 0.0005 −176.65
SiO2: 34.441; B2O3: 65.559 0.0005 −162.29

SiO2: 25; B2O3: 75 0.0146 −100.94
SiO2: 15.385; B2O3: 84.615 0.0497 −72.55
SiO2: 8.696; B2O3: 91.304 0.129 −52.56
SiO2: 5.187; B2O3: 94.813 0.1247 −48.10

P2O5-CaO

P2O5: 43.4; CaO: 56.6 4.00 × 10−5 −132.82
P2O5: 51.2; CaO: 48.8 0.0034 −73.05
P2O5: 57.4; CaO: 42.6 0.0354 −43.61
P2O5: 68.9; CaO: 31.1 0.0003 −110.05
P2O5: 75.2; CaO: 24.8 0.0001 −128.58
P2O5: 76.8; CaO: 23.2 2.00 × 10−5 −150.07
P2O5: 77.2; CaO: 22.8 1.00 × 10−5 −158.58
P2O5: 78.6; CaO: 21.4 1.00 × 10−5 −157.87
P2O5: 83.1; CaO: 16.9 5.00 × 10−5 −144.27

CaO-Fe2O3

CaO: 13.885; Fe2O3: 86.115 0.0007 −79.97
CaO: 16.520; Fe2O3: 83.480 0.0005 −85.68
CaO: 19.476; Fe2O3: 80.524 0.0006 −82.74

Al2O3-CaO-ZrO2
Al2O3: 60; CaO: 30; ZrO2: 10 5.00×10−7 −257.55
Al2O3: 50; CaO: 25; ZrO2: 25 0.0002 −179.42

SiO2-CaO-TiO2 SiO2: 27.454; CaO: 29.894; TiO2:42.652 0.0004 −107.59
SiO2-LiO2-TiO2 SiO2: 31.902; LiO2: 18.535; TiO2: 49.563 0.0069 −52.98

Al2O3-SiO2-CaO-MgO

Al2O3: 4; SiO2: 48.95; CaO: 44.05; MgO: 3 0.0012 −124.89
Al2O3: 9; SiO2: 48; CaO: 28; MgO: 15 0.0037 −108.91

Al2O3: 5.5; SiO2: 47.2; CaO: 37.8; MgO: 9.5 0.0034 −112.48
Al2O3: 8; SiO2: 46.5; CaO: 32.5; MgO: 13 0.0009 −128.83

Al2O3: 6.5; SiO2: 45.85; CaO: 36.65; MgO: 11 0.0017 −120.86
Al2O3: 12; SiO2: 45.4; CaO: 22.6; MgO: 20 9.00 × 10−6 −194.94

Al2O3: 5.5; SiO2: 44.75; CaO: 40.25; MgO: 9.5 0.0023 −117.54
Al2O3: 11; SiO2: 44.5; CaO: 26.5; MgO: 18 6.00 × 10−6 −200.92
Al2O3: 4; SiO2: 44.3; CaO: 48.7; MgO: 3 0.0022 −119.21
Al2O3: 8; SiO2: 43.9; CaO: 35.1; MgO: 13 0.0004 −139.45

Al2O3: 6.5; SiO2: 43.4; CaO: 39.1; MgO: 11 0.0014 −120.49
Al2O3: 4; SiO2: 42.3; CaO: 50.7; MgO: 3 7.00 × 10−6 −200.17

Al2O3: 11; SiO2: 41.75; CaO: 29.25; MgO: 18 0.0036 −110.26
Al2O3: 8; SiO2: 41.6; CaO: 37.4; MgO: 13 4.00 × 10−5 −173.26

Al2O3: 6.5; SiO2: 41.25; CaO: 41.25; MgO: 11 0.0058 −101.22
Al2O3: 12; SiO2: 40; CaO: 28; MgO: 20 0.0024 −110.77

Al2O3: 8; SiO2: 39.5; CaO: 39.5; MgO: 13 0.0019 −117.08
Al2O3: 9; SiO2: 36.2; CaO: 39.8; MgO: 15 2.00 × 10−5 −182.75
Al2O3: 8; SiO2: 35.9; CaO: 43.1; MgO: 13 3.00 × 10−12 −403.35

Al2O3: 12; SiO2: 35.8; CaO: 32.2; MgO: 20 6.00 × 10−6 −202.51
Al2O3: 12; SiO2: 30.9; CaO: 37.1; MgO: 20 2.00 × 10−8 −282.90

Al2O3-FeO-SiO2-CaO-TiO2-MgO

Al2O3: 11.26; FeO: 5; SiO2: 27.85; CaO: 36.76;
TiO2: 10; MgO: 9.13 6.00 × 10−21 −667.25

Al2O3: 11.26; FeO: 15; SiO2: 23.54; CaO: 31.07;
TiO2: 10; MgO: 9.13 9.00 × 10−21 −644.31

Al2O3: 11.26; FeO: 10; SiO2: 25.69; CaO: 33.92;
TiO2: 10; MgO: 9.13 0.2643 −21.17

Al2O3:11.26; FeO: 15; SiO2: 23.54; CaO: 31.07;
TiO2: 10; MgO: 9.13 4.00 × 10−18 −564.46

Al2O3:11.26; FeO: 15; SiO2: 21.38; CaO: 28.23;
TiO2: 15; MgO: 9.13 3.00 × 10−20 −647.89

Al2O3-FeO-SiO2-CaO-TiO2-MgO-V2O5

Al2O3:15.76; FeO: 4; SiO2: 30.12; CaO: 6.02; TiO2:
30; MgO: 12.7; V2O5: 1.4 2.00 × 10−23 −750.58

Al2O3:15.76; FeO: 14; SiO2: 20.11; CaO: 5.03;
TiO2: 30; MgO: 12.7; V2O5: 2.4 2.00 × 10−9 −1566.86

Al2O3-CaF2-CaO

Al2O3: 10; CaF2: 50; CaO: 40 0.0003 −108.12
Al2O3: 20; CaF2: 60; CaO: 20 0.0001 −116.07
Al2O3: 30; CaF2: 40; CaO: 30 7.00 × 10−5 −146.63
Al2O3: 40; CaF2: 40; CaO: 20 1.00 × 10−6 −205.41

FeO-SiO2-TiO2
FeO: 13.92; SiO2: 2; TiO2: 84.08 3.00 × 10−74 −2713.68
FeO: 13.63; SiO2: 4; TiO2: 82.37 1.00 × 10−101 −3732.29
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It is well known that slag composition is another major factor affecting slag viscosity. According
to the above results, both SiO2 and P2O5 can increase the viscosity of the slag, while the slag containing
CaO shows lower viscosity. According to the ionization theory of slag, both SiO2 and P2O5 belong
to the acidic oxides in the oxide slag and can be used as network formers in the slag. These two
oxides have a strong ability to compete for oxygen in the slag and have a large electrostatic potential.
Therefore, they can form complex network structures with the bridging oxygen in the slag, which
can enhance the polymerization degree of the slag network and make the flow resistance increase.
Therefore, it is not surprising that the viscosity of the slag increases along with the concentration of
two oxides. However, alkaline oxides are mostly network modifiers in the slag, and their ability to
compete for oxygen is weak. The complex slag structure is depolymerized in the smelting process,
which simplifies the flow structure in the slag and reduces the flow resistance. CaO belongs to alkaline
oxides. Therefore, the slag will show the characteristics of low viscosity with the increasing of CaO.

As an amphoteric oxide, the effect of Al2O3 will change with the change of slag composition.
In basic slag, with the increase of Al2O3 content, the number of (AlO4)5− anion groups in the slag will
increase, and the structural units inside the slag will be complicated. In addition, Al2O3 is prone in
basic oxide to form complex compounds with high melting points, such as spinel (MgO·Al2O3), which
increases the viscosity of slag containing Al2O3. In this path, Al2O3 is in the acidic slag, and Al2O3

will provide O2−, which forms a six-coordination or higher coordination structure with nonbridged
oxygen or free oxygen. It can greatly reduce the degree of polymerization, and the slag presents a
lower viscosity.

Table 5 also shows that the value of A and Eη are varied in different slag systems, such as
Al2O3-Gd2O3 slag, Al2O3-La2O3 slag, and Al2O3-Nd2O3 slag. For the same slag system, the difference
in component content will also cause the difference in Arrhenius formula, which can be proved by the
SiO2-B2O3 system, P2O5-CaO system, and other slag systems. From the fourth path of the surrogate
results, in the case of the SiO2-B2O3 slag, it can be found that when the temperature is higher than 980
◦C, the content of SiO2 is no more than 91.3%, and the content of B2O3 is greater than 14.3% and less
than 88%, the slag viscosity value will be greater than 10P. Compared with B2O3, the effect of SiO2

on the viscosity in this binary slag is more significant, so this type of slag will show higher viscosity.
However, as shown in Table 5, the increase of the content of B2O3 is accompanied with the decrease of
the absolute value of the activation energy. It is found that the viscosity of slag containing B2O3 can
decrease with the increase of B2O3 content. Due to the low melting point of B2O3, it is easy to form low
melting point substances in the slag and reduce the melting temperature of the slag [41]. In addition,
some boron oxygen tetrahedrons [BO4]5− will change to [BO3]3− at high temperature, and the slag
structure will become loose, which will further reduce the viscosity [42]. The slag, which has high
content of TiO2 or medium content of TiO2 with a little V2O5, shows a higher absolute value of the
activation energy and lower value of A. Furthermore, with the increase of the number of components in
slag system, the changes of the value of A and Eη is becoming more and more complicated. Therefore,
different slag system components and contents will eventually lead to differences in slag viscosity.

Overall, compared with the traditional viscosity prediction method, this general-purpose
data-driven predictive modeling approach firstly classified the high viscosity data and low viscosity
data, and then the viscosity value of the slag was predicted by the subsection function. It performs better
with higher recall rate and a low misclassification rate to distinguish the range of the significant factors,
including temperature and slag composition. Moreover, lots of data collected from experimental values
that are the source of empirical or semiempirical models and the prediction results are consistent
with that of the Arrhenius formula. It breaks the limitations of theoretical and empirical methods for
prediction of slag viscosity with specific conditions. It also indicates that the proposed dual-stage
predictive modeling approach is promising for applying to various slag systems with higher efficiency.
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5. Conclusions

This study has proposed an innovative dual-stage predictive modeling approach for automatically
predicting the viscosity of the slag and demonstrated its effectiveness on a collected imbalanced dataset.
The proposed approach, which seems like an ensemble method, can achieve higher recall rate and
lower misclassification cases than baseline methods. Several important factors, including temperature,
SiO2, Al2O3, P2O5, and CaO, have also been identified by employing the surrogate modeling approach.
Among them, the viscosity shows an increasing trend with the increasing of SiO2 and P2O5 content,
while the viscosity decreases with the increase of Al2O3 and CaO content. Finally, a two-equation
model of six-degree polynomial combined with Arrhenius formula was established. The effects of
B2O3, FeO, TiO2, and V2O5 on the viscosity of the partial slag system were revealed and discussed in
order to provide theoretical guidance for industrial application and reutilization of slag.
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