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Abstract: Carboniferous–Permian detrital zircons are recognized in the Upper Paleozoic of the whole
Ordos Basin. Previous studies revealed that these Carboniferous–Permian zircons occurred in the
Northern Ordos Basin mainly originated from the Yinshan Block. What has not been well documented
until now is where this period’s zircons in the Southern Ordos Basin came from, and very little
discussion about their provenance. To identify the provenance of the detrital zircons dating from
~350 to 260 Ma, five sandstone samples from the Shan 1 Member of Shanxi Formation and eight
sandstone samples from the He 8 Member of Shihezi Formation were analyzed for detrital zircon
U-Pb age dating and in situ Lu-Hf isotopic compositions. The results indicate that the two age clusters
of 520–378 Ma and ~350–260 Ma in the Southern Ordos Basin most likely derived from the North
Qinling Orogenic Belt–North Qilian Orogenic Belt and the North Qinling Orogenic Belt, respectively.
Furthermore, we propose that the zircons aging ~320–260 Ma are representative of the important
tectonothermal events occurred in the North Qinling Orogenic Belt during the Late Paleozoic.

Keywords: provenance; detrital zircon; LA–ICP–MS; U-Pb dating; Lu-Hf isotope; Upper Paleozoic;
Ordos Basin

1. Introduction

The Ordos Basin, located in the southwest part of the North China Craton (Figure 1), is the second
largest sedimentary basin in China [1] and is over 250,000 km2 in size [2]. Abundant oil and gas
resources occur in the Upper Paleozoic clastic rocks of the basin.

The Carboniferous–Permian (~350–260 Ma) detrital zircons are widely distributed in the Upper
Paleozoic of the whole Ordos Basin, which are believed to be a derivation from the Yinshan Block in
the Northern Ordos Basin [3]. At present, some studies have investigated the source of the Upper
Paleozoic in the Southern Ordos Basin (SOB) [4–12]. Previous studies that used the methods of
analyzing sandstone detrital component [4–7,9–11], sandstone composition [4–7,9–11], heavy mineral
component [4,5,7–9,11], whole rock geochemistry [4,6], and the analyses of the paleocurrent [4,5,8–11]
and sedimentary facies [4,7–9] in the SOB suggest that the source supplying directions of the Upper

Minerals 2020, 10, 265; doi:10.3390/min10030265 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
http://dx.doi.org/10.3390/min10030265
http://www.mdpi.com/journal/minerals
https://www.mdpi.com/2075-163X/10/3/265?type=check_update&version=2


Minerals 2020, 10, 265 2 of 23

Paleozoic were from southwest to northeast, southeast to northwest and south to north, and the main
source areas were the North Qinling Orogenic Belt (NQinOB) and North Qilian Orogenic Belt (NQiOB).
However, the provenance of the ~350–260 Ma detrital zircons in the SOB was poorly defined.

Geologists have not paid enough attention to the ~350–260 Ma tectonothermal events due to the poor
tectonothermal event records in the NQinOB and NQiOB, however, there are Carboniferous–Permian
magmatic event records in the Yinshan Block. The detrital zircons from the Carboniferous–Triassic sandstone
in the Liuyehe Basin (LYHB), which is an intermountain basin in the NQinOB [4,6,8] (Figure 1b), also present
an age group of ~350–260 Ma [13,14]. Gao et al. (2015) and Li et al. (2015) suggested that the provenance
of the ~350–260 Ma zircons in the Liuyehe Basin was from the NQinOB [13,14]. It shows that dated
~350–260 Ma tectonothermal events once occurred in the NQinOB. In the published literatures, there are
few studies on the geochronology of the Upper Paleozoic in the SOB. Only Dai et al. (2016) studied the
provenance of the Upper Paleozoic in the Southwestern Ordos Basin using zircon age distribution [12].
The studies by conventional provenance analysis methods show that the sources of the Upper Paleozoic
in the SOB derived from the NQinOB and NQiOB. Therefore, there is no reliable evidence to determine
whether the zircons of ~350–260 Ma were from the NQinOB, NQiOB or from the Yinshan Block.

The laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) technique has
been used in geological research for more than 30 years [15–23]. In the past decade, the mountain
orogenesis and basin deposition coupling analyses based on the detrital zircon U-Pb dating was
successfully used to determine precisely the provenance of sedimentary rocks, especially with in situ
zircon Lu-Hf isotopic analyses [24–28]. In this study, the Shan 1 Member of Shanxi Formation (Fm.)
and the He 8 Member of Shihezi Fm. in the SOB are selected as typical representatives, and the detrital
zircon U-Pb age dating and Lu-Hf isotopic analysis are utilized to provide insight into the provenance
of the Carboniferous–Permian detrital zircons in the SOB. It is further verified whether there are any
~350–260 Ma tectonothermal events occurred in the NQinOB.

2. Geological Background

The Ordos Basin is surrounded by the Khondalite Belt and Yinshan Block (YB) to the north,
the Helanshan–Liupanshan Thrust Belt to the west, the Qinling Orogenic Belt to the south, and the
Trans-North China Orogen to the east [29] (Figure 1b). The Ordos Basin is a typical multicycle
cratonic basin, which is covered by the Mesoproterozoic to Cenozoic sedimentary rocks on the
Archean–Paleoproterozoic basement [1,2,29,30]. The study area is located in the south margin of the
Ordos Basin (Figure 1a). In the Late Paleozoic, there were extension events, which led to a thick
sequence of clastic rock deposits [31–34], including the Carboniferous Benxi Fm., the Permian Taiyuan
Fm., Shanxi Fm., Shihezi Fm., and Shiqianfeng Fm. (Figure 1a).

The sediments of Benxi Fm. are mainly composed of sandstone–mudstone of littoral and neritic
facies, limestone of tidal flat facies, and coal and carbonaceous mudstone of littoral swamp facies [35].
The Taiyuan Fm. is characterized by the interbedded mudstone, carbonaceous mudstone, limestone,
coal seam and sandstone formed in deltaic plain facies and tidal flat facies [35]. Lithology of the
Shanxi Fm. is mainly composed of dark–gray to gray–black mudstone, siltstone and fine–medium
grained sandstone [35]. The Shanxi Fm. can be divided into two members of the Shan 1 Member
and Shan 2 Member (Figure 1a). The layered sandstone, massive sandstone and coal seams are
common in the Shan 2 Member. The Shan 1 Member is the upper part of Shanxi Fm. (Figure 1a) with
rock assemblage including interbedded gray–black mudstone, coal seam, siltstone, and sandstone
(Figure 2a). The Shihezi Fm. is a set of pebbly sandstones formed in the Middle Permian and can be
divided into eight members (Figure 1a), of which, the He 8 Member is the lowest part with a thickness
ranging from 40 to 70 m. The bottom of the He 8 Member is named the Camel Neck Sandstone,
which conformably overlayed on the Shanxi Formation (Figure 2a). The Camel Neck Sandstone is
mainly composed of pebbly medium–coarse grained sandstone (Figure 2a,c). The upper part of the
He 8 Member is characterized by the gravel–bearing medium–coarse grained sandstone, interbedded
medium–coarse grained sandstone and fine–medium grained sandstone with lamellar mudstone
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(Figure 2b). Tabular cross bedding, parallel bedding, and fragments of plant fossils are very common
in the He 8 Member (Figure 2d,e).

Figure 1. Schematic geological map showing the tectonic subdivision of the Ordos Basin (a), modified
from [29]) and North China Craton (b), modified from [36], NQinOB: North Qinling Orogenic Belt,
NQiOB: North Qilian Orogenic Belt), and the Ordos Basin with the Upper Paleozoic formation systems
(modified from [12]).
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Figure 2. Photographs of the field outcrops and drilling cores in the study area. (a) the boundary
between the Shan 1 and He 8 Member of the Kouzhen outcrop; (b) pebbly medium–coarse grained
sandstone of the Hancheng outcrop; (c) pebbly coarse grained sandstone of the Kouzhen outcrop; (d)
tabuler cross bedding in the medium grained sandstone from the drilling cores in Well Yi24; (e) the
fragments of plant fossils in the grey–black mudstone from the drilling cores in Well Yi24.

3. Sampling and Methodology

3.1. Sampling Information

Five sandstone samples from the Shan 1 Member and eight sandstone samples from the He 8
Member were collected from five boreholes and three field outcrops (Kouzhen, Xuefengchuan and
Pingliang outcrop) in the SOB for the detrital zircon U-Pb chronologic and Lu-Hf isotopic analyses
(Table 1 and Figure 1a). We also collected zircon U-Pb age data of the 18 samples in the Northern
Ordos Basin, and the samples of N14–N18 and N1–N13 are from the Shan 1 Member and He 8 Member,
respectively. The sampling locations are shown in Figure 1a. Of these study samples, the research of
petrographic characteristics shows that most of the quartz in 13 sandstone samples are sub-angular or
sub-rounded (Figure 3). The quartz overgrowth is common (Figure 3a,b,f). Feldspars (~3%–7%) are
found in the samples of ChunT1-01 and 16HC-03. Most of the feldspars are sub-angular and corroded
(Figure 3c,e). In addition, lithic fragments are very common in samples, especially in the samples of
Luo2-04 and 16HC-03 (Figure 3), and most of them are metamorphic and volcanic fragments with
some clay mineral and carbonate cement. Detailed information on the samples is presented in Table 1.
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Figure 3. Microphotos of the sandstone samples from the SOB. All are shown under cross–polarized
light. Q: quartz, Pl: plagioclase, Bi: biotite, LF: lithic fragment, QO: quartz overgrowth.

Table 1. Summarized samples description.

Well/Section Stratum Sample Lithology n1/n2 n3/n4 n5/n6 Brief Description

Pingliang Shan 1 16PL-01 Quartz sandstone 81/102 12/17 7/47 Gray, fine–medium
grained

He 8 16PL-08 Quartz sandstone 97/100 12/12 11/61 Off white,
medium–coarse grained

ChengTan 2 Shan 1 CT2-01 Quartz sandstone 90/102 9/12 7/38 Gray, medium–coarse
grained

He 8 CT2-03 Quartz sandstone 85/102 14/20 7/26 Off white,
medium–coarse grained

Kouzhen
Shan 1 17KZ-01 Quartz sandstone 65/102 7/9 7/49 Yellow–gray, medium

grained

He 8 17KZ-08 Quartz sandstone 56/102 3/15 3/42 Off white,
medium–coarse grained

Luo 2
Shan 1 Luo2-02 Quartz sandstone 90/102 14/22 10/34 Gray, medium grained

He 8 Luo2-04 Lithic sandstone 80/101 14/21 10/30 Gray, fine–medium
grained

Yi 24
Shan 1 Yi24-02 Quartz sandstone 78/102 16/26 14/40 Off white,

medium–coarse grained

He 8 Yi24-03 Quartz sandstone 81/102 12/15 10/32 Gray, fine–medium
grained

Xiang 1 He 8 Xiang1-04 Quartz sandstone 74/102 14/27 10/34 Off white,
medium–coarse grained

ChunTan 1 He 8 ChunT1-01 Quartz sandstone 83/102 35/47 14/35 Off white,
medium–coarse grained

Hancheng He 8 16HC-03 Lithic sandstone 89/101 10/16 9/47 Yellow–gray,
medium–coarse grained

n1: number of zircon U-Pb ages with in 90%–110% concordance. n2: number of all zircon U-Pb dating in sample. n3:
number of the 550–260 Ma zircon U-Pb ages with in 90%–110% concordance. n4: number of the 550–260 Ma zircons
U-Pb dating in sample. n5: number of the 550–260 Ma zircon Lu-Hf isotopic analysis. n6: number of all Lu-Hf
isotopic analysis in sample.

3.2. Zircon Separation and CL Imaging

Zircon minerals were separated by traditional heavy liquid and magnetic techniques [37],
and handpicked using a binocular microscope. More than 200 zircon grains were randomly selected
and fixed in epoxy resin in a 1 cm diameter mount, and then polished until the interior surfaces
of all zircons were exposed. All zircons were documented in the optical photomicrographs under
the transmitted, reflected light and cathodoluminescence (CL) imaging to uncover their internal
structures [37]. The CL images were taken at the State Key Laboratory of Continental Dynamics,
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Northwest University, Xi’an, China. A detailed description of using instruments was described by
Wang et al. [38].

3.3. LA–ICP–MS Zircon Dating

The U-Pb isotopic ratios of zircons were measured in situ using a GeoLasPro 193 UV laser ablation
system (Lambda Physik AG, Göttingen, Germany) coupled with a 7500a ICP–MS (Agilent Technologies
Inc., Santa Clara, CA, USA) at the State Key Laboratory of Continental Dynamics, Northwest University,
Xi’an, China. The laser beam size and frequency were 32 µm and 6 Hz, respectively. Three international
standard samples of zircon NIST SRM 610, 91500, GJ-1 were tested for every twelve sample analyses,
and one standard sample 91500 was tested after the sixth sample of those 12 sample analyses. In order to
calculate zircon ages, the zircon 91500 was adopted as an external standard. The detailed instrumental
settings and analytical procedures were described by Yuan et al. [39], Diwu et al. [40] and Thomas [41].
The U, Th and Pb concentrations as well as 207Pb/206Pb, 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios
were computed by GLITTER 4.0 software (Macquarie University, Sydney, Australia). Their ages were
calculated by Isoplot/Ex v. 3.0 [42]. For the element content analysis, the artificial synthetic silicate
glass NIST SRM 610 of the American National Standard Substance Bureau, as an external standard,
was used to calibrate U, Th and Pb concentration, while 29Si was adopted as the internal standard
element. All analytical results are shown in Supplementary Table S1.

3.4. Zircon Lu-Hf Isotopic Analysis

In situ zircon Lu-Hf isotopic analyses were carried out on a Nu Plasma II MC–ICP–MS (Nu Instruments
Ltd., Wrexham, UK) connected to a RESOLution M-50 193 nm laser system at the State Key Laboratory of
Continental Dynamics, Northwest University (Xi’an, China). The spot size was 44 µm. Lu-Hf isotopic
measurements were taken at the same spots or in the same age domains of zircon grains with concordant
U-Pb age (discordance <10%). The international standard zircon 91500 was used as an external correction.
The running state of the instrument was described by Bao et al. (2017) [43], and detailed information of
the analysis strategy and data deduction is stated in the published literature [44]. A 176Hf/177Hf ratio of
0.282772 and 176Lu/177Hf of 0.0332 [45] of the chondritic were used to calculate εHf(t), and single–stage
Hf model ages (TDM1) and two–stage Hf model ages (TDM2) were calculated by the depleted mantle
with 176Hf/177Hf value of 0.28325 [46], 176Lu/177Hf of 0.0384 [46], 176Hf/177Hf of 0.28325 [46] and λ of
1.867 × 10−11 year−1 [47]. The fLu/Hf of the upper crust is −0.72 [48], and the fLu/Hf of the depleted mantle is
0.16 [46]. Calculation formulas of εHf(t), TDM1, TDM2 and fLu/Hf of samples according to Wu et al. (2007)
were used [49]. The results are presented in Supplementary Table S2.

4. Results

4.1. U-Pb Ages

In order to study the potential relationship between zircon age and grain size, the grain size
and shape parameters of each dated zircon were measured and used to calculate the equivalent
spherical diameter (ESD) [50]. The ESD is the cube root of the length values of the three axes of zircon
grains [50,51]. Figure 4 shows that the distribution of ages is independent from ESD i.e., the dated
zircon ages can be regarded as representatives of whole rocks [50].
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Figure 4. Equivalent spherical diameter (ESD) of zircon grains vs detrital zircon ages in samples.
The distribution of ages is independent from grain–size.

A total of 510 and 812 detrital zircons in the Shan 1 and He 8 Member were analyzed, and 404 and
645 grains’ ages were concordant (discordance <10%), respectively. Of these, 85 (Shan 1) and 173 (He 8)
grains yielded ages of 520–262 Ma (Table S1), and 58 and 114 spots gave concordant ages, respectively.
The analytical results of 520–260 Ma are shown in the Supplementary Table S1. The concordant ages of
the Shan 1 Member samples range from 509.9 Ma to 262.2 Ma, with peaks at 432 Ma, 400 Ma, 325 Ma
and 302 Ma. In contrast, those in the He 8 Member range from 519.7 Ma to 268.2 Ma, with peaks
at 439 Ma, 323 Ma, 305 Ma and 286 Ma. The majority of the detrital zircons lie on the concordant
curve (Figure 5). Most of the zircons are subhedral to euhedral, displaying a short to long prismatic,
and sub-rounded to rounded shapes, with a length of 80–250 µm, which are similar to the magmatic
zircon with the length of between 20 and 250 µm [52,53], and a width of 50–230 µm and length/width
ratios of 1:1–3.5:1 (Figure 6). Some zircons exhibit dark or blurry oscillatory zoning (Figure 6) with
Th/U ratios > 0.4, suggesting a magmatic origin [52,54–57]. Two grains display fan zoning structures
(Figure 6m), which may indicate a metamorphic origin [52,54–56] and yielded ages of 301.1 ± 2.6 Ma
and 284.2 ± 3.3 Ma. Generally, the Th/U ratio of igneous zircon is > 0.4 and metamorphic zircon is
< 0.1 [53,58,59], which can be used to distinguish the origin of the zircons. Most of the analyzed zircons
have the Th/U ratios > 0.4, and 21 grains (9 in Shan 1 and 12 in He 8) with the ratios of 0.1–0.4, and only
three grains less than 0.1 (one in Shan 1 and two in He 8) (Table S1 and Figure 7), indicating main
magmatic origin and a few metamorphic origin. Of which, three zircons with the Th/U ratios < 0.1
were aged at 404.4 ± 2.6 Ma (Shan 1 Member), 443.0 ± 2.6 Ma, and 391.6 ± 2.3 Ma (He 8 Member),
indicating a metamorphic origin.

The U-Pb age data of 18 sandstones were collected in the Northern Ordos Basin, and ages’ peak at
438 Ma, 408 Ma, 372 Ma, 337 Ma, 321 Ma and 302 Ma (Figure 8e). The samples of N14–N18 were from
the Shan 1 Member, with peaks at 411 Ma, 378 Ma, 318 Ma and 304 Ma (Figure 8c), and the samples of
N1–N13 from the He 8 Member peaking at 438 Ma, 405 Ma, 335 Ma, 320 Ma and 304 Ma (Figure 8d).

4.2. Lu-Hf Isotopic Compositions

In situ Lu-Hf isotopic compositions were measured a total number of 45 grains from the Shan 1
Member and 74 grains from the He 8 Member. As shown in Table S2 and Figure 9, the εHf(t) values of
the samples from the Shan 1 Member yielded a wide range from −20.84 to 11.37, with the TDM2 of
679–2178 Ma. Among these, 41 zircons yielded negative εHf(t) values from −20.84 to −1.88, with the
TDM2 of 1041–2178 Ma and the remaining four grains have positive εHf(t) values from 0.22 to 11.37,
with the TDM2 of 679–1209 Ma (Table S2 and Figure 9).
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Figure 5. U-Pb concordia diagrams of 520–260 Ma detrital zircons. Errors are quoted at the 1σ level.
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Figure 6. Representative cathodoluminescence (CL) images of the zircons from all samples.

Figure 7. U-Pb age vs. Th/U ratio diagram. The shaded area denotes values for typical metamorphic
zircons with Th/U < 0.1.
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Figure 8. Contrasting relative probability plots of zircon U-Pb ages. Only those ages with a discordance
of less than 10% are used. The yellow, pink, blue, gray and green bars show the age groups of 285–260
Ma, 320–285 Ma, 350–320 Ma, 400–370 Ma and 520–400 Ma, respectively. Data sources: (h) the magmatic
ages of the North Qinling Orogenic Belt (NQinOB) are from [60–71], and the metamorphic ages of
the NQinOB from [62,65,68,72–93]; (i) the magmatic ages of the North Qilian Orogenic Belt (NQiOB)
are from [94–110], and the metamorphic ages of the NQiOB from [94,95,99,111–114]; (j) the magmatic
ages of the Yinshan Block (YB) are from [115–132]; (c)–(e) the detrital zircon ages of the Northern
Ordos Basin (NOB) are from [3,133,134]; (g) the detrital zircon ages of the Liuyehe Basin (LYHB) are
from [13,14], and the detrital zircon ages shown in Figure 8a, b and f from this study. The relative
probability curves were drawn on the DensityPlotter program (version 8.5) by using the model of
Kernel Density Estimation (KDE) [135].

In the He 8 Member zircons, 68 analytical data yielded negative εHf(t) values from −16.6 to −0.78,
with the TDM2 of 1164–1948 Ma (Table S2 and Figure 9). The remaining six grains have positive εHf(t)
values from 1.28 to 5.18, with the TDM2 of 859–1125 Ma.

5. Major Tectonothermal Events Analyses of Adjacent Regions

The ~520–260 Ma tectonothermal events occurred in the Yinshan Block (YB), North Qinling
Orogenic Belt (NQinOB), and North Qilian Orogenic Belt (NQiOB) around the Ordos Basin (Figure 1b).
Many zircon U-Pb geochronology have been conducted over the past decades, and a great number of
available ages have been obtained from these adjacent regions, providing us with a relatively well
constrained framework for the provenance interpretation and correlation for the SOB.
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Figure 9. εHf(t) values vs. U-Pb ages (a) and TDM2 values vs. U-Pb ages (b). The yellow, pink, blue,
gray and green bars show the age groups of 285–260 Ma, 320–285 Ma, 350–320 Ma, 400–370 Ma and
520–400 Ma, respectively. The Hf isotope evolution line for Depleted Mantle follows [46]. The Lu-Hf
isotopic compositions of the North Qinling Orogenic Belt (NQinOB) are from [60,61,64–67], the North
Qilian Orogenic Belt (NQiOB) from [94–96,136], and the Yinshan Block (YB) from [115–124].

5.1. North Qinling Orogenic Belt (NQinOB)

Based on the previous detrital zircon U-Pb geochronology results of the NQinOB, three magmatic
event age peaks at 486 Ma, 451 Ma and 409 Ma can be recognized [60–71] (Figure 8h). They genetically
related to the ~500 Ma deep continental–subduction, ~450 Ma crustal thickening and uplifting due
to continent–continent collision, and subsequent crustal uplifting in ~420–400 Ma, respectively [60].
These zircons have εHf(t) values from −27.6 to 14.6 (average −2.1, Figure 9a) and the TDM2 of
551–2759 Ma (average 1398 Ma, most of TDM2 between 0.8–2.0 Ga), suggesting the main reworking
of Paleo-Neoproterozoic crust [60] (Figure 9b). Moreover, the 517–324 Ma metamorphic ages (peaks
at 495 Ma, 450 Ma, 420 Ma, 372 Ma and 335 Ma) have also been reported (Figure 8h). The NQinOB
experienced metamorphism at ~500 Ma, and then overprinted medium–pressure granulite facies
metamorphism at ~450 Ma, and amphibolite facies at ~420 Ma during the Early Paleozoic [59,60].
These magmatic and metamorphic events suggest that the NQinOB underwent a multi–stage tectonic
evolution of accretion and collision in the Paleozoic period [34,137,138].

5.2. North Qilian Orogenic Belt (NQiOB)

In contrast to the NQinOB, there are some magmatic events with peaks at 510 Ma, 454 Ma, 441 Ma,
428 Ma and 410 Ma [94–110], and metamorphic events with peaks at 453 Ma, 426 Ma and 416 Ma in the
NQiOB [94,95,99,111–114] (Figure 8i). Of all magmatic and metamorphic events ages, the zircons of the
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Paleozoic ages have variable εHf(t) values from −18.1 to 8.6 (average −3.3, most of εHf(t) < 0, Figure 9a)
and the TDM2 of 742–2597 Ma (average 1559 Ma, most of TDM2 between 0.8–2.4 Ga), indicating a juvenile
crust generation and reworking of Paleo-Neoproterozoic crust materials. Besides, the metamorphisms
aged at ~500–400 Ma are widely found in the NQiOB and are regarded as representing the earliest
oceanic subduction and later continental subduction [139].

5.3. Yinshan Block (YB)

The Yinshan Block is a micro-continental block that is closely adjacent to the north of the
Khondalite Belt (Figure 1b) [140]. The Paleozoic magmatic events widely occurred during 350–260 Ma
and 480–400 Ma (Figure 8j) [141–143]. The magmatism was recorded by a variety of zircon εHf(t) values
from −25.5 to 6.8 (average −5.2, most of εHf(t) < 0) and the TDM2 of 954–2470 Ma (average 1624 Ma,
most of TDM2 between 1.0–2.3 Ga), indicating an arc magmatism related to oceanic subduction.

6. Discussion

6.1. The provenance of 520–378 Ma Zircons.

The 520–378 Ma zircon ages of all samples in the study area display two peaks at ~440–430 Ma and
~400–390 Ma (Figure 8f). The 15 (Shan 1 Member) and 21 (He 8 Member) detrital zircon grains of the
520–378 Ma concordant ages were detected except for the samples of 16HC-03 and Yi24-03, accounting
for 2.2% and 3.3% of the total, respectively. Most of the zircons have the Th/U ratios > 0.4, eight
grains with ratios of 0.1–0.4 and three grains with ratios < 0.1 (Table S1 and Figure 7), indicating main
magmatic origin and with minor metamorphic origin. Twelve zircons’ Lu-Hf isotopic compositions
in the Shan 1 Member samples were analyzed which yielded the TDM2 of 679–1843 Ma, and most of
the TDM2 were from 1.2 Ga to 1.85 Ga. Of these, eight zircons yielded negative εHf(t) values from
−12.32 to −1.88 (average −6.71), with the TDM2 of 1322–1843 Ma (Table S2 and Figure 9). The other
four grains provided positive εHf(t) values of 0.22–11.37, with the TDM2 of 679–1209 Ma. In contrast,
twelve Lu-Hf isotopic data of the He 8 Member samples yielded the TDM2 of 1125–1821 Ma. Of which,
eleven zircon grains yielded negative εHf(t) values from −11.72 to −2.8 (average −7.47), with the TDM2

of 1364–1821 Ma (Table S2 and Figure 9). The remaining one zircon provided a positive εHf(t) value of
1.88, with a TDM2 of 1125 Ma, indicating a Mesoproterozoic crustal component. The εHf(t) values of
520–378 Ma in the NQinOB, NQiOB and Yinshan Block are −27.56–14.6 (average −2.11, most of εHf(t)
between −15–10), −18.06–8.6 (average −3.3, most of εHf(t) between −15–8) and −6.11–6.8 (average 1.03,
most of εHf(t) >0), and the TDM2 are 551–2759 Ma (average 1391 Ma, most of TDM2 between 0.8–2.0 Ga),
742–2597 Ma (average 1557 Ma, most of TDM2 between 0.8–2.4 Ga ) and 1000–1793 Ma (average 1361
Ma, most of TDM2 between 1.0–1.8 Ga), respectively (Table 2).

It can be infered that the provenance of 520–378 Ma detrital zircons might mainly come from both
the NQinOB and NQiOB. Firstly, the crystallization age distribution, Lu-Hf isotope, and Hf model ages
of the 520–378 Ma detrital zircons in the SOB agree well with that of the NQiOB and NQinOB, but they are
obviously different from that of the Yinshan Block (Figures 8 and 9). Besides, it is difficult to distinguish
the provenance contribution between the NQiOB and NQinOB using this information. Secondly, there
are many magmatic zircons with ages from 400 Ma to 520 Ma, and they show several distinct age peaks
at ~430–410 Ma, ~450 Ma and ~500 Ma in both the NQiOB and the NQinOB (Figure 8h,i). Furthermore,
there are also some metamorphic and magmatic zircons’ ages between 400 Ma and 350 Ma in the
NQinOB, but few in the NQiOB (Figure 8h,i). Of all samples, three metamorphic origin zircons have
ages of 443 Ma, 404.4 Ma, and 391.6 Ma. The ~450 Ma and ~430–400 metamorphic events widely
occurred both in the NQinOB [78,144] and the NQiOB [111,145–147], and ~390 Ma metamorphic ages
were reported in the NQinOB [74,79]. Therefore, we suggest that the provenance of 520–378 Ma
zircons was from the NQinOB, and it is impossible to judge whether the NQiOB had provided any
materials. Thirdly, although the εHf(t) and TDM2 values from the SOB and the surrounding orogenic
belts have a wide range, the Yinshan Block lacks the distribution of εHf(t) < −6.2 and > 10, and TDM2
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< 1.0 Ga and > 1.8 Ga, while the NQinOB and NQiOB have such a distribution (Figure 9). Finally,
the source studies of the SOB by sedimentological methods show that the NQiOB provided some
materials for the Southwestern Ordos Basin [4–11]. Therefore, we infer that the provenance of 520–378
Ma detrital zircons likely derived from both the NQinOB and the NQiOB, while the NQiOB provided
material only for the local area (e.g., Southwestern Ordos Basin). The 520–378 Ma ages are considered
to be a representative attributed to continental collision and accretion in the NQinOB and NQiOB
during the Paleozoic. The ages of 480–400 Ma are consistent with the Ordovician–Early Devonian
tectonic events resulted from continental collision and accretion occurred in both the NQinOB and the
NQiOB (Figure 8h,i). Whereas, the five zircons’ ages between 400 Ma and 378 Ma represent the Middle
Devonian tectonothermal events occurred in NQinOB.

In summary, we suggest that the detrital zircons of 520–378 Ma in the SOB likely derived from
both the NQinOB and the NQiOB.

Table 2. Summarized the characters of Hf isotopic compositions.

Ages (Ma) Parameters NQinOB NQiOB YB SOB

520–370

eHf(t) value −27.56–14.6 a
−18.06–8.6 −6.11–6.8 −12.32–11.37

−2.11 b (522 c) −3.3 (184) 1.03 (35) −4.62 (20)

eHf(t) feature 90% between
−15–10

97% between
−15–8

60% > 0, all
between −6.2–7

50% < −6.2, 5% >
10

TDM2 value 551–2759 Ma d 742–2597 Ma 1000–1793 Ma 679–1843 Ma
1391 Ma e (522 c) 1557 Ma (184) 1361 Ma (35) 1465 Ma (20)

TDM2 feature 94% between
0.8–2.0 Ga

90% between
0.8–2.4 Ga

all between
1.0–1.8 Ga

90% between
1.1–1.85 Ga, 5% <

1.0 Ga

350–320

eHf(t) value −7.9–(−5.8)
/

−9.81–3.2 −15.13–2.92
−6.7 (13) −2.6 (141) −7.05 (30)

eHf(t) feature all between
−8–(−5) /

all between
−10–3.2, 73% <

0
90% < 0, 33% < −10

TDM2 value 1440–1540 Ma
/

1131–1953 Ma 989–1908 Ma
1485 Ma (13) 1505 Ma (141) 1498 Ma (30)

TDM2 feature all between
1.4–1.55 Ga /

91% between
1.2–1.85 Ga, all

> 1.1 Ga

80% between
1.13–1.77 Ga, 10% <

1.1Ga

320–285

eHf(t) value / /
−25.49–(−3.97) −20.84–5.18
−7.85 (37) −8.65 (56)

eHf(t) feature / /
81% between
−8.5–(−4)

95% < 0, 16.1% >
−4.4, 52% < −8.5,

79% between
−15–(−5)

TDM2 value / /
1529–2046 Ma 859–2178 Ma
1746 Ma (37) 1557 Ma (56)

TDM2 feature / /
84% between

1.55–1.85 Ga, all
> 1.52 Ga

42% < 1.52Ga, 89%
between 1.1–1.85

Ga

285–260

eHf(t) value / /
−22.04–5.44 −13.88–4.3
−7.14 (250) −6.92 (7)

eHf(t) feature / /
94% between
−16–5

86% between
−14–(−5)

TDM2 value / /
954–2470 Ma 877–1804 Ma
1772 Ma (250) 1450 Ma (7)

TDM2 feature / /
95% between

1.0–2.3 Ga
86% between
1.35–1.81 Ga

“a” and “d” are numerical ranges of eHf(t) and TDM2, respectively; “b” and “e” are numerical averages of eHf(t) and
TDM2, respectively; “c” is the number of data.

6.2. The Provenance of ~350–260 Ma Zircons

The ~350–260 Ma zircon ages in the SOB show peaks at ~320 Ma, ~310–300 Ma and ~290 Ma
(Figure 8a,b,f). The ~350–260 Ma detrital zircon grains from the Shan 1 Member (42 grains) and
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He 8 Member (91 grains) account for 10.4% and 14.1% of the total, respectively. Most zircons have
dark or blurry oscillatory zoning and Th/U ratios > 0.4 (Table S1, Figures 6 and 7), indicating main
magmatic zircons. Two zircons may be of metamorphic origin (Figure 6m) and yielded the ages of
301.1 ± 2.6 Ma and 284.2 ± 3.3 Ma. Thirty-one zircon Lu-Hf isotopic compositions from the Shan 1
Member were analyzed and yielded the TDM2 of 1046–2178 Ma, and most of the TDM2 range from
1.3 Ga to 1.8 Ga. Of which, 29 zircons yielded negative εHf(t) values from −20.84 to −0.19 (average
−9.07), with the TDM2 of 1152–2178 Ma (Table S2 and Figure 9). The remaining two grains provided
positive εHf(t) values of 1.46 and 1.51, with the TDM2 of 1063 Ma and 1046 Ma. In contrast, 61 zircons
from the He 8 Member yielded εHf(t) values from −16.6 to 5.18 (average −7.77, most of εHf(t) < 0),
with the TDM2 of 859–1948 Ma (average 1515 Ma, most of TDM2 between 1.2–1.85 Ga). Of which,
56 zircons yielded negative εHf(t) values ranging from −16.6 to −0.78 and with the TDM2 of 1164–1948
Ma (average 1564 Ma, Table S2 and Figure 9). The others five grains provided positive εHf(t) values of
1.28–5.18, with the TDM2 of 859–1068 Ma (average 969 Ma).

Huge magmatism occurred in the Yinshan Block during the 350–230 Ma, due to the orogenesis of the
Central Asia Orogenic Belt [141–143]. However, in contrast to the Yinshan Block, few contemporaneous
magmatism events occurred in the other regions surrounding the Ordos Basin (Figure 8h–j). The ~350–260
Ma detrital zircons of the Shan 1 and He 8 Member are very common in the Northern Ordos Basin [3]
(Figure 8c–e). Luo et al. argued that the provenance of the ~350–260 Ma zircons in the Northern Ordos
Basin was from the Yinshan Block [3].

In terms of the ~350–260 Ma detrital zircons’ Hf isotopic compositions (Figure 9) and crystallization
age distribution (Figure 8) in the Yinshan Block and SOB, they have obvious differences. Firstly, huge
magmatism occurred in the Yinshan Block mainly dated ~340–320 Ma and ~285–260 Ma (Figure 8j),
but the age populations in the SOB are dominantly distributed in ~320–285 Ma (Figure 8a,b,f). In addition,
the proportion of ~320–285 Ma detrital zircons preserved in the Northern Ordos Basin (6.8%) [3] is lower
than that of in the SOB (10%), which may have two possibilities: one is that the provenance of the above
two regions derived from different sources, and another possibility is that the sources of the two regions
came from the same provenance, but the supplying source direction was from south to north, which is just
opposite to the previous research result that the source supplying directions for the Shan 1–He 8 Member
in the SOB were from southwest to northeast, southeast to northwest and south to north [4–11]. Therefore,
we speculate that the provenance of ~320–285 Ma detrital zircons in the Northern Ordos Basin and SOB
was different. Secondly, the εHf(t) of 350–320 Ma and 320–285 Ma in the Yinshan Block are from −9.81 to
3.2 (average −2.6, all εHf(t) > −10) and −25.49 to −3.97 (average −7.86, most of εHf(t) between −8.5 to −4),
and that in the SOB are from −15.13 to 2.92 (average −7.05, 33% of εHf(t) < −10) and −20.84 to 5.18 (average
−8.65, 52% of εHf(t) < −8.5), respectively (Table 2). The TDM2 of 350–320 Ma and 320–285 Ma zircons in
the Yinshan Block are 1131–1953 Ma (average 1505 Ma, most of TDM2 between 1.2–1.85 Ga, all TDM2 >

1.1 Ga) and 1529–2046 Ma (average 1746 Ma, most of TDM2 between 1.55–1.85 Ga, all TDM2 > 1.52 Ga),
and that in the SOB are 989–1908 Ma (average 1498 Ma, most of TDM2 between 1.13–1.77 Ga, 10% of TDM2

< 1.1 Ga) and 859–2178 Ma (average 1557 Ma, 42% of TDM2 < 1.52 Ga), respectively (Table 2). Instead of the
Yinshan Block, there are 33% of εHf(t) < −10 and 10% of TDM2 < 1.1 Ga of the 350–320 Ma zircons in the
SOB. Besides, there is 79% of εHf(t) from −15 to −5, 52% of εHf(t) < −8.5, and 42% of TDM2 < 1.52 Ga of the
320–285 Ma zircons in the SOB, but it is significantly different from the Yinshan Block (Table 2). Therefore,
it can be infered that the provenance of ~350–260 Ma detrital zircons is not coming from the Yinshan Block.

Thus we suggest that the provenance of ~350–260 Ma zircons is from the NQinOB. Firstly, an age
group of ~350–260 Ma of the detrital zircons from the Carboniferous–Triassic sandstones also presented
in the Liuyehe Basin [13,14] (Figure 8g). Besides, the ~350–260 Ma detrital zircon content (23.2%) in
the Liuyehe Basin [13,14] is higher than that of in the SOB (12.7%). Gao et al. and Li et al. indicated
that the provenance of Carboniferous–Triassic (~350–260 Ma) zircons in the Liuyehe Basin was from
the NQinOB, and the Liuyehe Basin and SOB have the same source [13,14]. Secondly, there are a few
reports about metamorphic ages between 350 Ma and 260 Ma in the NQinOB (Figure 8d), such as
the ages of 324 Ma by U-Pb isotopic ratios titanite dating [68], 335–345 Ma [85], 341.7 ± 3 Ma [85]
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and 330–348 Ma [65] by LA–ICP–MS zircon dating, and 347 ± 6 Ma by SHRIMP zircon dating [70].
Moreover, Zhang et al. obtained 312 Ma and 263 ± 2 Ma ages in the NQinOB amphibolite by the
method of mineral Rb-Sr isochron [148]. These indicate that tectonothermal events may have occurred
in the NQinOB during 350–260 Ma, particularly during ~320–260 Ma. Finally, the source supplying
directions of the Shan 1 and He 8 Member in the SOB show that the clastic sources were from the
southwestern, southeastern and southern orogenic belts surrounding the SOB [4–11].

In summary, the ~350–260 Ma zircons of the Upper Paleozoic in the SOB might originate from the
NQinOB. Besides, there are both magmatic origin and metamorphic origin zircons of ~320–260 Ma in
the Shan 1–He 8 Member. Furthermore, the magmatism and metamorphism of ~320–260 Ma possibly
occurred in the NQinOB, even though, to date, there have been few reports on tectonothermal events of
the ~320–260 Ma period. Therefore, we tentatively speculate that the ~320–260 Ma age records tracing the
Carboniferou–Permian tectonothermal events might be preserved in some geologic bodies in the NQinOB,
unfortunately, few records have been found due to the intensified denudation during the later orogenic uplift.

7. Conclusions

The 520–378 Ma detrital zircons preserved in the Upper Paleozoic in the Southern Ordos Basin are
representatives of source contribution from both the NQinOB and the NQiOB. While the ~350–260 Ma
detrital zircons in the Southern Ordos Basin are agree very well to those coeval zircons recognized
from the Carboniferous–Triassic sandstones in Liuyehe intermountain basin, which suggested that not
only the NQinOB turn into the major source for the Southern Ordos Basin during the Late Paleozoic,
but important tectonothermal events also occurred from ~320 Ma to 260 Ma in the NQinOB after
oceanic subduction and continental collision during Early Paleozoic.
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