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Abstract: Many cold seeps and gas hydrate areas have not been discovered beside the Beikan basin
in the southern South China Sea (SCS), and their characteristics and histories also remain poorly
known. Here we describe authigenic minerals and the carbon and oxygen isotopic composition of
planktonic foraminifera Globigerinoides ruber from sediment core 2PC, recovered from the gas hydrate
zone of the Nansha Trough, southern SCS, to elucidate its history of dynamic cold seepage. We infer
that the occurrence of authigenic gypsum crystals and pyrite concretions, and anomalously negative
δ13C values of Globigerinoides ruber, reflect paleo-methane seepage. Two major methane release events
were identified, based on remarkable excursions in foraminifera δ13C at depths of 150–250 cm and
350–370 cm. Euhedral gypsum crystals and tubular pyrite concretions co-occur with extremely
negative planktonic foraminifera δ13C values, indicating a shift in the sulfate methane transition zone
and a change in the methane flux. Our data suggest that authigenic mineral assemblages and δ13C
values of planktonic foraminifera provide a valuable tool in elucidating the characteristics of dynamic
methane seepage in a marine environment.

Keywords: authigenic gypsum; authigenic pyrite; cold seep; planktonic foraminifera; southern South
China Sea

1. Introduction

The seepage of fluids containing methane associated with gas hydrate dissociation and free gas
release is widely observed on the seafloor at a global scale [1–7]. At cold seeps, more than 80% of
the methane is oxidized by pore-water sulfate in the sulfate–methane transition zone (SMTZ) in the
sediment; this process is well known as the sulfate-driven anerobic oxidation of methane (AOM) is
mediated by a consortium of methanotrophic archaea and sulfate-reducing bacteria (Equation (1)
CH4 + SO4

2−
→HS− + HCO3

2− + H2O) [8–11]. Furthermore, bio-irrigation related to the activity of
benthic organisms is a key control on the turnover rates of reduced and oxidized carbon and sulfur
components between anoxic sediment and oxygenated bottom water [12].
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In addition, the organic matter (CH2O) within sediments can be oxidized by pore-water sulfate via
microbial sulfate reduction: the so-called organiclastic sulfate reduction (OSR, Equation (2): 2(CH2O) +

SO4
2−
→H2S + 2HCO3

−) [13–17]. These processes can induce the precipitation of authigenic carbonate
concretions, gypsum (CaSO4·2H2O), and pyrite (FeS2) within sediment [13–16].

Methane seepage activity varies temporo-spatially, leading to significant changes in sedimentary
redox conditions [18,19], diagenetic conditions within seepage areas, and the composition of
local microbial communities [20–28]. Even though gypsum is a classical evaporite mineral that
is undersaturated in seawater, calcium sulfate minerals (e.g., gypsum and bassanite) and pyrite have
been found in modern and ancient methane-seep environments (e.g., southwest African Margin,
South China Sea (SCS)) [15,17,29–36]. Pyrite usually formed in sulfidic environments, which indicates
hydrogen sulfide formed by AOM, and the precipitation of authigenic gypsum at cold seep is caused
by an enrichment in sulfate derived from pyrite re-oxidation after cold seepage ceased [12,17,29,37].
Therefore, the occurrence of gypsum indicates the intermittent characteristics of cold seeps.

The δ13C composition of foraminifera is a common proxy for reconstructing changes in
paleoceanographic and paleo-climate conditions, because foraminifera are sensitive to these changes
and ubiquitous in marine settings [38,39]. In cold-seep areas, owing to the prokaryote food source
for foraminifera and cemented authigenic carbonate or the incorporation of dissolved inorganic
carbon (DIC) with negative d13C values into the shells, the foraminifera δ13C values can be depleted
extremely in 13C in the stratigraphic record, with more negative δ13C values (−4%� to −25%�) than
those found in typical marine settings (0 < δ13C < 1.5%�) [38–49]. Hence, it can be interpreted as
an indicator of methane seepages over geological time [40,41,50–62]. Furthermore, the abundances
and diversities of the foraminiferal assemblages at cold seeps are generally lower than those of typical
marine settings (non-seep areas) [42,43,63–66]. Several studies investigated the correlation between
benthic foraminiferal communities (composition, abundance, diversity and dominant species) and
hydrocarbon emissions [43,59,67–70]. Therefore, it is necessary to combine multiple indices to better
describe the active characteristics and histories of cold seeps.

In recent years, many cold seeps have been discovered in the northern South China Sea, but active
cold seeps have been found only in the Beikang basin in the southern South China Sea [71]. Therefore,
besides the Beikang Basin, are cold seeps developed elsewhere, such as the Nansha Trough in the
southern South China Sea? Additionally, what about the characteristics and histories of cold seeps?
Here we describe the stable carbon isotopic composition of planktonic foraminifera Globigerinoides
ruber and detailed microscopic observations of authigenic gypsum and pyrite in gas hydrate areas of
the Nansha Trough in the southern SCS, with the aim of reconstructing methane flux at past cold seeps
and their dynamic characteristics.

2. Materials and Methods

2.1. Study Area

The study area lies in the Nansha Trough at the southeastern margin of the Nansha Islands
(Figure 1). The Nansha Trough is the largest trough developed along a SW–NE fault depression in the
southern SCS. It has a sedimentary thickness of up to 2000 m, and lies on the edge of the NW–SE Nansha
compressional belt. It contains NE–SW normal faults, thrust faults and NW–SE secondary strike-slip
faults [72]. Since the early Miocene, the trough has undergone complex processes of collisional, tensional
and compressional deformation, with hydrocarbon gas formation and migration via leakage forces and
transport channels [73], forming and storing rich oil and gas resources. The tectonic background of the
trough is also conducive to the movement of biogenic gas to shallow layers, which provide a favorable
site for the accumulation and storage of natural gas hydrate. In addition, bottom-simulating reflectors
were recognized in the southern SCS, indicating gas hydrate accumulation [74].
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Figure 1. Maps showing the locations of the study area (red rectangle) and sediment core 2PC
(yellow dot) in the southern South China Sea (SCS).

2.2. Sampling and Analyses

Sedimentary core 2PC, studied here, was retrieved from the Nansha trough at a water depth
of 2796 m by the RV Haiyang-4 of the Guangzhou Marine Geological Survey, Guangzhou, China.
The sediment core was 808 cm long, and samples were taken at 2 cm intervals, weighed and freeze-dried.
Dry samples were weighed and wet-sieved with a mesh size of 63 µm to separate carbonate, gypsum
and pyrite crystals from the sediment. The remaining sediment was dried at 60 ◦C for carbon and
oxygen isotopic analyses of planktonic foraminifera.

The gypsum and pyrite aggregates from the coarse fraction were identified using a high-power
stereoscopic microscope and a Hitachi TM3030 Scanning Electron Microscope (SEM) in Energy
Dispersive Spectrum (EDS) mode at the Guangzhou Marine Geological Survey, Guangzhou, China.

Stable isotopic compositions of planktonic foraminifera Globigerinoides ruber were determined
after picking up a 63–250 µm fraction from the sediment and cleaning it by a standard method [75].
The first step cleans the specimens mechanically by rinsing in distilled water and reagent grade methanol
repeatedly, and by washing ultrasonically to remove adhering detrital material [75]. The second step
removes the organic matter by soaking the specimens in 15% hydrogen peroxide for 15 min, followed by
rinsing with methanol [75]. Globigerinoides ruber were broken using a metal probe and then treated with
anhydrous phosphoric acid at 73 ◦C. The carbon and oxygen isotopic compositions of the foraminifera
were determined using a Finnigan 253 mass spectrometer equipped with an automatic carbonate
preparation device (Kiel III) at SunYat-Sen University, Guangzhou, China. Isotopic compositions were
reported as an average of two analyses and normalized to Vienna Pee Dee Belemnite (VPDB), using
International atomic energy agency (IAEA) reference materials 18 and 19, with standard deviations of
±0.07%� for δ18O and ±0.04%� for δ13C. In addition, we did not analyze the benthic foraminifera due
to the lack of benthic foraminifera in the sediment core 2PC.

3. Results

3.1. Morphological Characteristics of Authigenic Pyrite and Gypsum Aggregates

Authigenic gypsum crystals and pyrite are two major authigenic minerals in sediment from
core 2PC, and are found at depth intervals of 199–200, 221–222, 249–250, and 299–300 cm below
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seafloor (bsf) (Figure 2). There are also small amounts of quartz, plagioclase, K-feldspar, and so
on. The morphology of authigenic gypsum and pyrite is shown in Figures 2 and 3. Pyrite may be
present alone, but gypsum can only occur with pyrite in the cold seeps [33]. Gypsum is dark-yellow
in color, and translucent to opaque. The dark-gray, black, or brown gypsum aggregates partly or
completely enveloped pyrite (Figure 2), which is similar to that developed on the slopes of the
southwest Atlantic [12]. Gypsum crystals are about 1–2 mm in size, are euhedral, and variable in
shape with more or less prismatic or lenticular forms that are generally isolated and rarely twinned
(Figure 2A–D). The gypsums are transparent, dark-yellow or dull, with etched surfaces and commonly
contain inclusions of sedimentary particles. Pyrite occurs as aggregates of framboids on the surfaces of
planktonic foraminifera (Figure 2E), and as micrometer-sized octahedral crystals that form tubular
structures of about 10 mm long (Figure 2F).

SEM observations revealed that gypsum crystals are most commonly rhombic and trapezoidal in
shape (Figure 3A–E), with some microcrystals occurring in radiating gypsum clusters. The individual
crystals in such clusters show a range of morphologies (Figure 3A–C). Euhedral trapezoidal
morphologies have enlarged {111} and {110} faces (Figure 3D). Clusters of gypsum crystals are
commonly euhedral, with no obvious paragenetic sequence (Figure 3E).
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Figure 2. Microscopic observations of authigenic gypsum and pyrite. (A) Gypsum with prismatic,
transparent and dull forms (249–250 cm depth); (B) prismatic gypsum crystals enclosing pyrite
(249–250 cm depth); (C) prismatic, transparent and dull gypsum (299–300 cm); (D) prismatic gypsum
crystals enclosing pyrite (299–300 cm); (E) A planktonic foraminifer coated with framboidal pyrite
(299–300 cm); (F) tubular pyrite (221–222 cm).
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Figure 3. Scanning electron microscopy (SEM) observations and Energy Dispersive Spectrum (EDS)
analysis of gypsum and pyrite aggregates from core 2PC. (A) Clusters of bladed gypsum microcrystals;
(B) clusters of bladed gypsum microcrystals with framboidal pyrite; (C) clusters of bladed gypsum
microcrystals; (D) gypsum crystal with trapezoidal shape and with clay minerals on its surface;
(E) euhedral gypsum crystals; (F) tubular pyritized structure with secondary gypsum on its surface;
(G) gypsum crystal growth on planktonic foraminifera (G. ruber); (H) EDS spectra of the gypsum
indicated in (G).
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Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrum (EDS) analyses indicate that
gypsum microcrystals adhere to the surface of planktonic foraminifera (Figure 3G,H). Pyrite aggregates
have a black appearance, and occur in the shape of straight and irregular tubes of ~40 µm length,
or in chambers of foraminifera tests (Figure 3F).

3.2. Stable Isotopic Compositions of Planktonic Foraminifera

Stable isotopic compositions (indicated by δ18O and δ13C values) of planktonic foraminifera
Globigerinoides ruber are plotted against depth in Figure 4. δ13C values vary within a range from −4.46%�

to +1.77%�, with most values being lower than those of the typical marine environment in the late
Quaternary SCS [60–62]. The δ18O values of planktonic foraminifera generally show a trend opposite
to the δ13C values (Figure 4), with values from −2.91%� to +0.27%�. Negative δ13C values correspond
to positive δ18O values along the profile (Figure 4).
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Figure 4. Stable isotopic compositions of planktonic foraminifera Globigerinoides ruber in core 2PC.
Two major methane emission events (MEEs) were found. The black rectangles indicate three depth
intervals of authigenic gypsum crystals and pyrite (199–200, 221–222, 249–250 and 299–300 cm bsf).
The gray rectangle indicates the range of planktonic foraminifera 13C of typical marine settings [60–62].
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4. Discussion

4.1. Paleo-Methane Release in the Nansha Trough

Extreme 13C depletion of planktonic and benthic foraminifera, caused by overgrowths of
AOM-derived authigenic carbonate or the assimilation of methane-derived DIC produced by AOM in
the sediment core, can be used as an indicator of methane emission events (MEEs) in the geological
records [40,41,51–57,76]. Two major MEEs (MEE-1 and MEE-2) are evident in core 2PC, as indicated by
the anomalous δ13C values that are well beyond the normal marine range (Figures 4 and 5). MEE-1, in the
range of 150–250 cm bsf is characterized by a remarkable δ13C excursion (Figure 4), while MEE-2 is
characterized by negative δ13C values at 350–370 cm bsf (Figure 4). Planktonic foraminifera negative
δ13C values correspond to the negative δ13C of sediment DIC at the same depth, indicating that
planktonic foraminifera shells inherit the negative δ13C values of authigenic carbonate cementation.
In addition, the positive δ18O excursions of planktonic foraminifera may be affected by several reasons,
such as gas hydrate decomposition [52], higher δ18O value of the sediment pore water where the
carbonate rocks formed than that of the surface seawater [44], or the low temperature of the bottom
seawater [77]. Overall, our δ13C isotopic records of planktonic foraminifera in core 2PC reveal that the
two major MEEs may have distinct characteristics in terms of timing, duration and intensity.
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Figure 5. δ13C vs. δ18O diagram for planktonic foraminifera Globigerinoides ruber and sediment
inorganic carbon. The white circles represent the stable isotopic records of planktonic foraminifera
from core 2PC; black circles represent the stable isotopic records of sediment inorganic carbon from the
core [78]. The gray rectangle indicates the range of planktonic foraminifera Globigerinoides ruber δ13C
values of typical marine settings of the South China Sea [60,62].

4.2. Authigenic Gypsum and Pyrite as Indicators of the Paleo-SMTZ

Although seawater is largely undersaturated with respect to gypsum, it is the most common
source of Ca2+ and SO4

2−, which combine to form gypsum when saturation is reached [79]. In modern
marine sediment environments with a lack of evaporation of pore fluids, the only way to achieve
gypsum saturation is to add Ca2+ and/or SO4

2− ions to pore water [79], with several possible sources of
Ca2+ and SO4

2− ions being available [17]. The most straightforward source is brine fluid arising from
the dissolution of evaporite deposits, as in the Eastern Mediterranean [80] and Gulf of Mexico [81].
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Another is the alteration of volcanic material, which increases the concentration of Ca2+ in pore
solutions to supersaturation levels.

In a methane-rich, cold-seep environment, biogeochemical processes that control the cycling of
reduced and oxidized carbon and sulfur components can significantly increase pore-water SO4

2−

concentrations to enable the precipitation and dissolution of authigenic minerals in anoxic sediment.
Examples include the oxidation of sedimentary sulfide minerals [82], the anerobic re-oxidation of
authigenic sulfides [83], and the disproportionation reactions of sulfide oxidation intermediates [84,85]
in interstitial waters, as observed in the porewaters of a giant cold-water coral mounds on the Pen
Duick Escarpment, Gulf of Cadiz [30,85]. The dissolution of calcium carbonate minerals (calcite or
aragonite) precipitated by AOM or the oxidation of sulfide can also increase Ca2+ concentrations in
pore-water [15,17,30,86].

The morphology of gypsum crystals in core 2PC indicates an authigenic origin. Differences in
the crystal morphology of authigenic gypsum may be controlled by precipitation rates or chemical
variations in the pore-water environment [86–88]. In SEM and stereoscopic images, all gypsum crystals
appear euhedral, with sizes of a few millimeters and smooth surfaces (Figures 2 and 3), suggesting
in-situ formation in a burial setting, similar to authigenic gypsum in the northern South China Sea and
the southwest African Margin [12,17]. Furthermore, gypsum encloses pyrite (Figure 2), indicating its
formation was related to the oxidation or re-oxidation of sedimentary sulfide minerals. Therefore, the
presence of gypsum in the sediment core indicates the intermittency of cold seeps and the dynamic
characteristics of methane activity.

Sedimentary pyrite is generated from dissolved sulfide ions reacting with reactive detrital iron
minerals [89], as in the northern Gulf of Mexico continental slope [32]. The formation of tubular
pyrite is related to hydrogen sulfide diffusion in sediments, bioturbation, or tubeworms in the
sediment [16,17,90]. Framboids including tube pyrite in core 2PC were generated from sulfide ions in
the pore-water by rapid nucleation and crystal growth via the pyrite precursors mackinawite (FeS) or
greigite (Fe3S4) [16,89–94].

Euhedral gypsum crystals are usually produced directly from supersaturated solutions in
hypersulfidic and anoxic conditions within the sediment [7]. Authigenic gypsum is abundant in
three intervals (221–222, 249–250 and 299–300 cm bsf), each of which is also a pyrite enrichment
zone (Figure 4). Furthermore, the enrichment zones of authigenic gypsum and pyrite correspond
to extreme 13C depletions of planktonic foraminifera, indicating that gypsum is only formed after
pyrite is formed, and the establishment of more oxidizing conditions, probably caused by waning
seepage [17]. However, no gypsum or pyrite occurs at 350–370 cm bsf, although the negative δ13C
value of planktonic foraminifera is beyond the normal marine range. The occurrence of authigenic
gypsum in the sediment core thus indicates that the past methane-releasing events ceased.

5. Conclusions

In this study, authigenic minerals (gypsum and pyrite) and stable carbon and oxygen isotopes of
planktonic foraminifera from cold-seep sediments of the Nansha Trough were used to identify dynamic
methane-release events. Two extremely negative δ13C values of planktonic foraminifera, lower than
those of the typical marine environment, were found in sediment core 2PC. Such anomalous δ13C
values are caused by the assimilation of methane-derived DIC produced by AOM with a very low
δ13C signature, which can be interpreted as representing historic MEEs. Authigenic gypsum and pyrite
occur at three levels in core 2PC, and are the products of biogeochemical redox reactions. Their profile
positions correspond to those of the extremely negative δ13C values of planktonic foraminifera,
indicating that the decreased methane-release flux can cause the SMTZ to migrate downward. MEE-1,
characterized by extreme 13C depletion relative to MEE-2, is likely the stronger and longer-lasting MEE.
Overall, our results provide evidence of dynamic methane emissions, with the depth of the SMTZ and
methane-emission fluxes varying in the past.
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