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Abstract: The flotation of bastnaesite, as a major mineral source of rare earth elements, attracting much
attention in the mineral processing field, is challenging owing to the natural flotability of
calcium-bearing minerals. To promote the application of flotation, we systematically investigated
the flotation behavior of bastnaesite, barite, and calcite, with salicylhydroxamic acid (SHA) as
the collector through micro-flotation experiments, zeta-potential measurements, Fourier transform
infrared (FT-IR) analyses, X-ray photoelectron spectroscopy (XPS) analyses, and solution chemistry
analyses. Micro-flotation experiments confirm that the flotability of bastnaesite is high at pH 6.5–8.5,
while calcite floats at pH 8.0–9.5, and barite has little flotation response. The results of FT-IR, XPS,
and zeta-potential measurements indicate that there is chemical adsorption of SHA on the bastnaesite
surface, and physical adsorption also occurs. However, as for barite and calcite, there is only physical
adsorption of SHA on the surfaces. The solution chemistry results show that SHA anions can interact
with RE3+, REOH2+, and RE(OH)2

+ on bastnaesite surfaces in aqueous suspensions, resulting in
bastnaesite flotation.
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1. Introduction

Rare earth elements (REEs) are a group of 15 elements of the lanthanide series together with
Sc and Y. Based on the ionic radii of elements, REEs can be classified into light rare earth elements
(LREEs) from La to Sm, and heavy rare earth elements (HREEs) from Eu to Lu [1,2]. REEs are
crucial to manufacturing of many advanced products and have broad commercial applications,
such as new catalysts for automotive exhaust systems, permanent magnets for computer equipment,
medical diagnosis equipment, and almost all military systems [3,4]. A semi-soluble salt mineral with
the characteristics of ionic bonding and limited solubility in water, bastnaesite, (Ce, La)FCO3, is a
complex rare earth fluoride and carbonate salt and contains the cerium subgroup or the lighter rare earth
elements. Bastnaesite is considered as one of the most important sources of rare earth elements because
of its richness in the light rare earth elements and its large global reserves [5]. Bastnaesite deposits are
located in the Mountain Pass deposit in San Bernardino County, California (USA), Boyan Obo deposit
in Inner Mongolia (China), and Mianning deposit in Mianning, Sichuan (China) [2,6].

Minerals 2020, 10, 282; doi:10.3390/min10030282 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
http://www.mdpi.com/2075-163X/10/3/282?type=check_update&version=1
http://dx.doi.org/10.3390/min10030282
http://www.mdpi.com/journal/minerals


Minerals 2020, 10, 282 2 of 11

In China, the Mianning rare earth deposit is an alkaline pegmatite carbonate-type rare earth
deposit with total industrial reserve of 1.3 Mt at an average grade of REO 3.7 wt % [7,8]. Froth flotation
is applied for the separation of the bastnaesite ore [9,10]. After the raw ore is crushed and ground,
the salicylhydroxamic acid or sodium oleate can be used as a collector for separating bastnaesite from
associated gangue minerals (calcium-bearing minerals) [11–13]. According to the X-ray diffraction
(XRD) pattern of the raw ore collected from the Mianning deposit (Figure 1), the major gangue minerals
are barite, calcite, fluorite, and quartz [14]. The calcium-bearing minerals (such as calcite, fluorite) have
chemical properties and hydrophilicity, which makes it difficult to separate these minerals [15–18].
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Figure 1. X-ray diffraction (XRD) pattern of the raw ore collected from Mianning deposit in Sichuan 
province, China. 
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chelate ring with metallic ions [20–23]. This mechanism shows that chemical adsorption takes place 
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Figure 1. X-ray diffraction (XRD) pattern of the raw ore collected from Mianning deposit in Sichuan
province, China.

The flotation reagents play a vital role in the development of rare earth beneficiation technology,
and hydroxamate collectors have been successfully applied to the flotation of rare earth minerals because
of their high selectivity and strong collective capabilities. The study of the 1-hydroxyl-2-naphthyl
hydroxamic acid (H203) collector claimed chemical adsorption between oxygen atoms of H203 and
rare earth ions, generating five-element chelate rings, and physical adsorption [6,19]. A study
of salicylhydroxamic acid collectors suggested the rare earth cation hydrolysis of major surface
components of bastnaesite, followed by chemical reaction with salicylhydroxamic to form five elements
chelate rings [11]. Electrostatic charge calculationindicated that the alkyl hydroxamic acid, as an
O–O chelating agent, could form O–O five elements chelate ring with metallic ions, and it is also
O–N chelating agent, which can form O–N four elements chelate ring with metallic ions [20–23].
This mechanism shows that chemical adsorption takes place between bastnaesite and octylhydroxamic,
with five elements chelate rings forming on the surface of bastnaesite [3,17,24–28].

To our best knowledge, although the flotation behaviors of bastnaesite using salicylhydroxamic
acid (SHA) as the collector has been researched, it is also important to further research the flotation
behaviors of the main gangue minerals, such as barite and calcite. The results of this paper are of
practical significance for understanding and grasping the flotation nature of valuable minerals and
gangue minerals in bastnaesite ores and guiding the development and utilization of rare earth deposits.
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2. Experimental

2.1. Materials

The samples of bastnaesite, barite, and calcite were obtained from the Maoniuping rare earth
concentrator, located in Mianning, Sichuan province, China. After manual selection, ginding, sieving,
the repeated purification by using gravity and magnetic separation, purified bastnaesite, barite,
and calcite samples were obtained. These were dry-ground in a ball mill. Subsequently, powder sample
of −0.10 mm fractions was used in the micro-flotation tests.

The chemical composition of the purified bastnaesite is listed in Table 1. The results show the
REO content is 72.52 wt %, and the main rare earth elements are Ce, La, and Nd. The content of the
other impurity element is very low. The diffraction peaks of the XRD pattern [29,30] was well matched
with the standard diffraction peaks of bastnaesite (pdf: 11-0340). The chemical composition and XRD
analyses indicate that the purity of the purified bastnaesite was high, and the sample was suitable for
the experiments.

Table 1. Chemical compositions of the purified bastnaesite (mass fraction, wt %).

Element REO CeO2 La2O3 Nd2O3 Pr6O11 Sm2O3 Gd2O3 Eu2O3 Dy2O3
Content 72.52 35.55 25.43 7.33 3.22 0.59 0.17 0.08 0.06

Element Y2O3 Tb4O7 F SiO2 Al2O3 Fe2O3 TiO2 CaO LOI
Content 0.05 0.04 6.68 0.36 0.22 1.43 0.09 0.16 19.90

The BaO content of the purified barite was 64.66 wt %. The CaO content of the purified calcite
was 55.88 wt %. According to the theoretical element composition of each mineral, the sample purities
exceed 95 wt %. The diffraction peaks of the barite, and calcite matched well with the pattern of
standard diffractions peaks (barite pdf 24-1035; calcite pdf 05-0586). The XRD analysis confirm that the
purities of the gangue minerals was sufficient for further experimentation.

2.2. Reagents

The salicylhydroxamic acid (SHA, HOC6H4CONHOH, purity 95 wt %) was obtained from Aladdin
Chemical Reagent Co. (Shanghai, China) and was used as the collector for flotation experiments.
Sulfuric acid (H2SO4) and sodium hydroxide (NaOH) were of analytical grade and used to adjust the
pH of the flotation suspensions. The pine oil of industrial grade was used as the frother. The water
used for all the experiments was deionized water with resistivity of 18.25 MΩ·cm [31].

2.3. Micro-Flotation Experiments

Micro-flotation experiments were carried out in an XFG-40 mL type flotation machine. The purified
mineral particles (2.0 g) were placed in a Plexiglas cell, which was then filled with 35 mL of deionized
water, the pH of the suspension was adjusted by H2SO4 or NaOH for 3 min. Subsequently, SHA collector
was added and agitated for 3 min. The foaming agent (pine oil) was added and agitated for 1 min.
Before flotation, the pH of the suspension was measured and recorded. Flotation was conducted for
4 min. The flotation product was weighed after filtering and drying, and the recoveries were calculated
based on the dry weight. Three measurements of each micro-flotation experiment were carried out,
and the average value was taken as the result.

2.4. Zeta-Potential Measurements

The zeta-potential was measured using a Zetasizer Nano Zs90 (Malvern Instruments, Worcestershire,
UK). The conductivity and pH of the suspension were monitored continuously during the measurement,
and the temperature was maintained at 25 ◦C. The purified mineral particles were ground to <2 µm
using an agate mortar. The suspension was prepared by adding 30 mg of the purified mineral particles
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to 50 mL deionized water. The prepared suspension was conditioned by magnetically stirring for 5 min,
during which the pH of the suspension was measured. After settling for 10 min, the supernatant of the
dilute fine particle suspension was obtained for zeta-potential measurements. The zeta potential was
measured three times and the average value was taken as the final result.

2.5. FT-IR Spectroscopy Measurements

FT-IR spectra were measured using a Spectrum One FT-IR (PerkinElmer, Waltham, MA, USA)
spectrometer to characterize the interaction between the collector and minerals. The wave number
range of the spectra was 4000 to 400 cm−1. The purified mineral particles were first ground to−200 mesh
using an agate mortar. The purified mineral particles (2.0 g) were placed in a Plexiglas cell. After the
pH of the suspension was adjusted to 7.5, the purified samples were conditioned for another 3 min
with 2 × 10−4 M SHA. Subsequently, the solid samples were washed three times using ultrapure water
with the same pH value. The washed samples for FT-IR analysis were dried at 35 ◦C.

2.6. XPS Analysis

Total of 2.0 g purified mineral particles were placed in a Plexiglas cell with H2SO4 or NaOH as the
pH-regulating reagent. Subsequently, the purified samples were conditioned for another 3 min with
SHA. The solid samples were washed three times using deionized water. Then the samples for XPS
analysis were vacuum-dried at 50 ◦C. XPS analyses were performed by a Kratos AXIS Ultra XPS system
(Shimadzu, Kyoto, Japan), which was equipped with a monochromatic Al X-ray source operated at
150 W. The energy resolution is 0.48 eV (Ag 3d5/2) with error of 0.05 eV. Survey scans were conducted
in a single sweep from 0 to 1350 eV, with a dwell time of 8 s, pass energy of 150 eV, and 1 eV step size.
For high-resolution scanning, the number of scans was increased, the dwell time was reduced to 0.5 s,
and the bandpass energy was adjusted to 30 eV in steps of 50 meV. The purified mineral particles
(2.0 g) were placed in a Plexiglas cell. Subsequently, the purified samples were conditioned for another
3 min with SHA. The solid samples were washed three times using deionized water. The washed
samples for XPS analysis were vacuum-dried at 50 ◦C.

3. Results

3.1. Micro-Flotation Tests

Figure 2 shows the flotation recoveries of bastnaesite, barite, and calcite as a function of pH
using SHA as the collector (2 × 10−4 M), pine oil as the frother (14 mg·L−1). The results show that the
flotability of bastnaesite is better than that of barite or calcite at pH 5.5−9.5. The flotability of bastnaesite
reaches its maximum at pH 6.5−8.5, while calcite floating at pH 8.0–9.5, but barite, showing little
flotation response, is almost unaffected with pH value.Minerals 2020, 10, x FOR PEER REVIEW 5 of 11 
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Figure 3 shows the relationship between SHA concentrations and the flotation recoveries of
bastnaesite, barite, and calcite at pH 7.5. The flotation recovery of bastnaesite rises with the increasing
SHA concentration. Compared to the apparently increased trend of bastnaesite recovery, the flotation
recoveries of barite, and calcite grow slowly with increasing SHA concentration.
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3.2. Zeta-Potential Tests

Figure 4 shows the zeta-potentials of bastnaesite, barite, and calcite in the absence and presence of
SHA as a function of pH. In the absence of SHA, the results show that the isoelectric points (IEP) of
bastnaesite, and barite are at pH 8.1 and 8.3, respectively. The IEP of calcite may be located around
pH 8.0 [32,33]. In the presence of SHA, the zeta-potentials of bastnaesite, barite, and calcite are all
negative at pH 5.0–12.0. Compared with barite and calcite, the significant decrease in zeta-potential of
bastnaesite can be attributed to the grater adsorbed amount of SHA ions onto the bastnaesite surface
indicating that SHA may more selectively interact with the bastnaesite surface than on the barite and
calcite surfaces.Minerals 2020, 10, x FOR PEER REVIEW 6 of 11 
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Figure 4. Zeta-potential of bastnaesite, calcite, and bariteas a function of pH in the absence and presence
of SHA.
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3.3. FT-IR Analysis

Figure 5a shows the FT-IR spectra of SHA, bastnaesite, barite, and calcite. Figure 5b shows the
FT-IR spectra of the bastnaesite, barite, and calcite with 2× 10−4 M SHA. The main bands corresponding
to the relevant chemical bond is displayed in Table 2. Several characteristic bands of bastnaesite were
observed. Characteristic bands of barite, calcite were aslo observed [34,35]. After the bastnaesite
treated with SHA, the characteristic band of CO3

2− anti-symmetric stretching vibration is at 1436 cm−1,
off set 10 cm−1, and other bands shift to the higher frequencies. In addition, the band at 1035 cm−1 and
912 cm−1 belong to the N–O stretching vibration adsorption peak, while the characteristic peak of the
N–O stretching vibration in SHA is at 1031 cm−1 and 903 cm−1. These two bands were characteristic of
adsorption peaks of SHA, indicating chemical adsorption of the SHA onto the surface of bastnaesite.
But there were no characteristic adsorption peaks of SHA on barite or calcite.
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Table 2. The bands corresponding to the relevant chemical bond in FT-IR spectra of the minerals.

FTIR Spectrum Band (cm−1) Chemical Bond

SHA

3283 O–H stretching vibration
3050 –CH3 stretching vibration
1574 C=O stretching vibration
1521 C–C stretch vibration
1153 C–O stretching vibration
1031 N–O stretch vibration
903 N–O stretching vibration

Bastnaesite

1446 CO3
2− anti-symmetric stretching vibration

1086 CO3
2− symmetric stretching vibration

866 CO3
2− plane bending vibration

728 CO3
2− in-plane bending vibration

Bastnaesite + SHA

1436 CO3
2− anti-symmetric stretching vibration

1087 CO3
2− symmetric stretching vibration

1035 N–O stretch vibration
912 N–O stretching vibration
868 CO3

2− plane bending vibration
729 CO3

2− in-plane bending vibration

As can be seen in Figures 2–5, the decrease in the zeta-potential of bastnaesite on SHA adsorption
was more than that of barite and calcite, and the flotability of bastnaesite was much better than that of
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barite or calcite. These observations indicate that the adsorption of SHA with bastnaesite is stronger
than with barite and calcite. It is concluded that the interaction of SHA with the surface of bastnaesite
occurs by chemical adsorption, while the surfaces of barite and calcite interact with SHA through
physical adsorption.

3.4. Solution Chemistry Analysis

The solution chemistry of SHA and metallic ion can be calculated to obtain the concentration log
diagram of each component at different pH [36]. Figure 6 shows the pulp SHA and metallic ions exist
in different forms at different pH. The forms of SHA and metallic ions can affect the flotation behaviors
of the minerals.
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Figure 6a shows the SHA hydrolysis components as a function of pH for SHA concentration
of 2 × 10−4 M. The pKa of SHA was found to be 6.4. When the pH was less than 6.4, the main
component present is CH3(CH2)6C=ONHOH. When pH was more than 6.4, the main component is
CH3(CH2)6C=ONHO−. Figure 6b–d show the hydrolysis components of bastnaesite with as a function
of pH with metallic ion concentration of 2 × 10−4 M. The pKa of cerium, lanthanum, and neodymium
was found to be 8.37, 8.23, and 8.0, respectively. When pH was less than 8.0, the components are RE3+

> REOH2+ > RE(OH)2
+ > RE(OH)3(aq.) > RE(OH)4

−. These observations indicate that the hydrolysis
components (CH3(CH2)6C=ONHO−) can interact with metallic ions (RE3+, REOH2+, and RE(OH)2

+)
on bastnaesite surfaces at pH 6.4−8.4. The interactions result in the flotation behavior of bastnaesite
(Figure 2).
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3.5. XPS Analysis

To further determine the interaction mechanism between SHA and the minerals, XPS analyses
were conducted. The relative contents of the elements on the surface of the minerals in the absence and
presence of SHA, as measured by XPS, are listed in Table 3. The N content can be taken to represent the
amount of SHA adsorbed on the mineral surface. After bastnaesite was treated with SHA, the relative
content of N reached 1.51 at%. However, on the surface of barite and calcite treated by SHA the relative
contents of N were only 0.88 at%, and 0.53 at%, respectively. This result indicates that the adsorption
of SHA on bastnaesite and barite are stronger than the adsorption onto calcite. This is in accordance
with the results of micro-flotation, zeta-potential, FT-IR, and solution chemistry measurements.

Table 3. Elemental compositions of minerals surfaces, as determined via X-ray photoelectron
spectroscopy (XPS).

Samples Elemental Composition (at%)

C O F Ca N S Ba Nd La Ce

Bastnaesite 42.93 41.66 8.79 0.00 0.00 0.00 0.00 1.57 2.43 2.62
Bastnaesite + SHA 46.50 38.47 7.74 0.00 1.51 0.00 0.00 1.28 2.19 2.31

Barite 28.90 47.55 0.00 0.00 0.00 13.45 10.10 0.00 0.00 0.00
Barite + SHA 30.52 47.09 0.00 0.00 0.88 13.22 8.29 0.00 0.00 0.00

Calcite 46.05 40.31 0.00 13.64 0.00 0.00 0.00 0.00 0.00 0.00
Calcite + SHA 47.81 38.96 0.00 12.70 0.53 0.00 0.00 0.00 0.00 0.00

Table 4 shows the binding energies of the main elements on the mineral surface before and after
the treatments with SHA. After SHA treatment, the chemical shifts of Ce, La, and Nd in bastnaesite
were obvious being −0.35 eV, −0.38 eV, and −0.74 eV, respectively. This indicates the transformation
of the chemical environment on the bastnaesite surface and that the SHA was chemisorbed on the
surface of bastnaesite. Upon treatment of barite and calcite by SHA, chemical shifts were not obvious,
indicating the transformation of the physical environment on these mineral surfaces. This result
indicates that SHA probably adsorbs on the surface of these minerals through physical interaction.

Table 4. Binding energies of elements on the minerals surface, as determined via XPS.

Samples C O F Ca N S Ba Nd La Ce

Binding
Energy (eV)

Bastnaesite 284.58 531.37 684.39 - - - - 978.61 836.52 885.00
Bastnaesite + SHA 284.42 531.27 684.10 - 399.49 - - 977.87 836.14 884.65

Barite 284.50 531.64 - - - 168.60 779.66 - - -
Barite + SHA 284.48 531.62 - - 399.44 168.60 779.85 - - -

Calcite 284.38 530.84 - 346.39 - - - - - -
Calcite + SHA 284.38 530.86 - 346.38 399.27 - - - - -

Chemical
Shift (eV)

Bastnaesite + SHA −0.16 −0.10 −0.29 - - - - −0.74 −0.38 −0.35
Barite + SHA −0.02 −0.02 - - - - 0.19 - - -
Calcite + SHA - 0.02 - -0.01 - - - - - -

3.6. Discussion

According to the experimental results and analyses, SHA can be chemisorbed on the bastnaesite
surface resulting in enhanced flotability; the interaction between SHA and barite and calcite is mainly
by physical adsorption. The previous works of Rao and Wang also reported that the chemisorption
occurred between bastnaesite and salicylhydroximic acid, octyl hydroximic acid, modified alkyl
hydroximic acid or sodium oleate, while physisorption occurred between sodium dodecyl sulfate and
bastnaesite [11,37].

The results of the micro-flotation tests indicate that the flotability of bastnaesite is better than that
of barite and calcite across a wide pH range. The zeta-potential analysis shows that adsorption of SHA
on the bastnaesite, barite, and calcite surfaces can occur. The zeta potential of bastnaesite decreased
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most obviously on SHA adsorption, consistent with the results of the micro-flotation tests. The FT-IR
results give further evidence that SHA can chemisorb onto the surface of bastnaesite, but is physically
adsorbed onto the surfaces of barite and calcite. The solution chemistry results show that SHA anions
(CH3(CH2)6C=ONHO−) can interact with RE3+, REOH2+, and RE(OH)2

+ on bastnaesite surfaces at
pH 6.4−8.4, resulting in bastnaesite flotation. XPS analysis shows that the RE electronically interacts
with SHA on the surface of the bastnaesite. After bastnaesite was treated by SHA, the chemical
shifts of Ce, La, and Nd were −0.35 eV, −0.38 eV, and −0.74 eV, respectively. After barite and calcite
were treated by SHA chemical shifts of the main element of these minerals were not obvious, hence,
no transformation of the electronic environment on these mineral surfaces was observed. The shifts in
RE of XPS provide evidence of electronic perturbation which may be due to the changes in chemical
bonding, consistent with the results of the zeta-potential, solution chemistry, and FT-IR.

Based on the results of the FT-IR and XPS analyses, it is concluded that RE can chemically interact
with SHA to promote bastnaesite flotation. Barite and calcite react with SHA via physical interaction.
It can be considered that this is the reason for the significantly better flotability of bastnaesite than
barite and calcite.

4. Conclusions

(1) The results of micro-flotation experiments using SHA as the collector molecule indicate that
bastnaesite exhibits good flotability around pH 6.5–8.5. Calcite possesses low flotability at pH
8.0–9.5. Barite has little flotation response across the whole pH range used in the experiments.

(2) The decrease in the zeta-potential of bastnaesite, barite, and calcite can be attributed to the
adsorption of SHA anions. SHA can more selectively interact with the bastnaesite surface than
the barite and calcite surface.

(3) The FT-IR, XPS, and solution chemistry results indicate that SHA anions can react with RE3+,
REOH2+, and RE(OH)2

+ on the surface of bastnaesite, and SHA molecule may be chemically
adsorbed on the surface. The adsorption between SHA and barite or calcite may be physical.
This is the reason for the significantly better flotability of bastnaesite than barite and calcite.
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