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Abstract: The new mineral richardsite occurs as overgrowths of small (50–400 µm) dark gray,
disphenoidal crystals with no evident twinning, but epitaxically oriented on wurtzite–sphalerite
crystals from the gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara
Region, Tanzania. Associated minerals also include graphite, diopside, and Ge,Ga-rich wurtzite.
It is brittle, dark gray in color, and has a metallic luster. It appears dark bluish gray in reflected
plane-polarized light, and is moderately bireflectant. It is distinctly anisotropic with violet to
light-blue rotation tints with crossed polarizers. Reflectance percentages for Rmin and Rmax in air at
the respective wavelengths are 23.5, 25.0 (471.1 nm); 27.4, 28.9 (548.3 nm); 28.1, 29.4 (586.6 nm); 27.7,
28.9 (652.3 nm). Richardsite does not show pleochroism, internal reflections, or optical indications
of growth zonation. Electron microprobe analyses determine an empirical formula, based on 8
apfu, as (Zn1.975Cu0.995Ga0.995Fe0.025Mn0.010Ge0.005Sn0.005)Σ4.010S3.990, while its simplified formula is
(Zn,Cu)2(Cu,Fe,Mn)(Ga,Ge,Sn)S4, and the ideal formula is Zn2CuGaS4. The crystal structure of
richardsite was investigated using single-crystal and powder X-ray diffraction. It is tetragonal, with
a = 5.3626(2) Å, c = 10.5873(5) Å, V = 304.46(2) Å3, Z = 2, and a calculated density of 4.278 g·cm−3.
The four most intense X-ray powder diffraction lines [d in Å (I/I0)] are 3.084 (100); 1.882 (40); 1.989 (20);
1.614 (20). The refined crystal structure (R1 = 0.0284 for 655 reflections) and obtained chemical formula
indicate that richardsite is a new member of the stannite group with space group I42m. Its structure
consists of a ccp array of sulfur atoms tetrahedrally bonded with metal atoms occupying one-half
of the ccp tetrahedral voids. The ordering of the metal atoms leads to a sphalerite(sph)-derivative
tetragonal unit-cell, with a ≈ asph and c ≈ 2asph. The packing of S atoms slightly deviates from the
ideal, mainly due to the presence of Ga. Using 632.8-nm wavelength laser excitation, the most
intense Raman response is a narrow peak at 309 cm−1, with other relatively strong bands at 276, 350,
and 366 cm−1, and broader and weaker bands at 172, 676, and 722 cm−1. Richardsite is named in
honor of Dr. R. Peter Richards in recognition of his extensive research and writing on topics related to
understanding the genesis of the morphology of minerals. Its status as a new mineral and its name
have been approved by the Commission of New Minerals, Nomenclature and Classification of the
International Mineralogical Association (No. 2019-136).
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1. Introduction

In addition to tanzanite, the blue-purple gem variety of zoisite that is famous from the region,
the gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara Region, Tanzania,
are host to several other unusually well-crystallized minerals, including tsavorite, the green gem
variety of grossular, diopside, prehnite, fluorapatite, and even graphite [1–5]. The mines are also
host to well-formed and uncommonly large crystals of pyrite, alabandite, and wurtzite as well as
several rare sulfides, including clausthalite (PbSe), germanocolusite (Cu13VGe3S16), and merelaniite
(Mo4Pb4VSbS15) [5–7]. A detailed study of the chemistry of intergrown sphalerite and wurtzite,
which included samples the Merelani mines and from the Animas-Chocaya Mine complex, Quechisla
district, Bolivia, was recently published [8]. The Merelani sphalerite and wurtzite are Mn-rich, and were
found to contain several trace elements (e.g., Fe, Cu, Se, and Cd) with concentrations greater than
500 ppm and a discernable differentiation between the sphalerite and wurtzite. Noteworthy, 1450 ppm
Ga in the wurtzite and 1750 ppm in the sphalerite phases were also reported [8], with estimated
standard deviations of 30 and 80 ppm, respectively. In both the sphalerite and wurtzite phases, trace
Ga and Cu concentrations were consistent with the coupled substitution Cu+ + Ga3+

↔ 2Zn2+ .
In the course of our ongoing project dealing with the characterization of the Merelani

mineralization [2,5–7], we recovered a specimen containing an exceptionally Ga-enriched stannite,
with the Ga content indicating a new mineral species. This paper deals with the description of
this mineral as new independent species, which was named richardsite. Richardsite is the first
gallium-essential sulfide to be described from the Merelani area, joining a very short list of accepted
Ga-defined species, of which only three others are sulfides: gallite CuGaS2, ishiharaite (Cu,Ga,Fe,In,Zn)S,
and zincobriartite Cu2(Zn,Fe)(Ge,Ga)S4.

The new mineral and its name have been approved by the Commission of New Minerals,
Nomenclature and Classification of the International Mineralogical Association (No. 2019-136). It is
named in honor of Dr. R. Peter Richards (b. 1943), retired water-quality researcher at Heidelberg
College (Tiffin, OH, USA) and consulting editor of the journal Rocks & Minerals, in recognition of his
research and writing, spanning over four decades, on topics related to understanding the genesis of
the morphology of minerals. Dr. Richards was a major contributor to the discovery and description of
the new minerals carlsonite and huizingite-(Al), and the previously unknown 2H and 3R polytypes
of sabieite, all from the Huron River shale fire in Huron County, Ohio, USA [9]. Holotype material
is deposited in the collections of the Museo di Storia Naturale, Università degli Studi di Firenze,
Via La Pira 4, I-50121, Firenze, Italy, catalogue number 3555/I, and the A. E. Seaman Mineral Museum,
1404 E. Sharon Ave., Houghton, Michigan 49931-1659, USA, catalogue number DM 31876.

2. Occurrence

Richardsite occurs on the faces of a cluster of dark orange-brown wurtzite–sphalerite crystals
(to ~2.5 cm across) on a single-known specimen (4.2 cm × 2.6 cm × 1.5 cm) (Figure 1) from the Merelani
gem mines. The specimen was obtained in November 2019 through the secondary mineral market,
and its precise origin from among the numerous mine workings is unknown. In addition to the
primary wurtzite–sphalerite, associated minerals include a second generation of epitaxic sphalerite
on the earlier wurtzite–sphalerite, grains of Ge,Ga-rich wurtzite, minor hexagonal graphite crystals,
and minor transparent, pale green crystals of diopside. The order of crystallization appears to be
(wurtzite–sphalerite)/sphalerite/(richardsite + Ge,Ga-rich wurtzite)/(diopside + graphite).

Numerous studies and reviews are available in the literature on the geology of the Merelani gem
deposits and models of formation of the gem crystals, particularly for zoisite (tanzanite) and grossular
(tsavorite) (see, for example, [1,4,10–13] and references therein). However, despite the significance of
the large sulfide crystals [6] and associated sulfide deposits at the Merelani gem mines, we are not
aware of any studies to date of their geological extent, significance, or formation.
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Figure 1. (a) Richardsite coating a wurtzite–sphalerite crystal cluster with oriented terraces of 

secondary sphalerite crystals (not coated by richardsite). Minor diopside is present at the lower right. 

(b) Nearly parallel growth of richardsite crystals showing disphenoidal forms with stepped surfaces. 

(c,d) Apparent epitaxic overgrowth of richardsite on selective facets of primary wurtzite–sphalerite 

crystals. 

3. Analytical Methods  

Reflectance values were measured in air using an MPM-200 Zeiss microphotometer (Zeiss, Jena, 

Germany) equipped with an MSP-20 system processor on a Zeiss Axioplan ore microscope. The 

filament temperature was approximately 3350 K. An interference filter was adjusted, in turn, to select 

four wavelengths for measurement (471.1, 548.3, 586.6, and 652.3 nm). Readings were taken for the 

Figure 1. (a) Richardsite coating a wurtzite–sphalerite crystal cluster with oriented terraces of secondary
sphalerite crystals (not coated by richardsite). Minor diopside is present at the lower right. (b) Nearly
parallel growth of richardsite crystals showing disphenoidal forms with stepped surfaces. (c,d) Apparent
epitaxic overgrowth of richardsite on selective facets of primary wurtzite–sphalerite crystals.

3. Analytical Methods

Reflectance values were measured in air using an MPM-200 Zeiss microphotometer (Zeiss, Jena,
Germany) equipped with an MSP-20 system processor on a Zeiss Axioplan ore microscope. The filament
temperature was approximately 3350 K. An interference filter was adjusted, in turn, to select four
wavelengths for measurement (471.1, 548.3, 586.6, and 652.3 nm). Readings were taken for the specimen
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and the standard (SiC) maintained under the same focus conditions. The diameter of the circular
measuring area was 0.05 mm.

Unpolarized micro-Raman spectra were obtained in nearly back-scattered geometry with a
Jobin-Yvon Horiba LabRAM HR800 instrument (HORIBA Jobin Yvon, Edison, NJ, USA) equipped with
a motorized x–y stage, an Olympus BX41 microscope (Olympus, Tokyo, Japan) with a 100× objective,
polarized incident HeNe laser radiation (632.8 nm), and a neutral density filter (D0.3). Spectra were
collected through multiple acquisitions with single counting times of 10 s, and repeated on natural and
broken surfaces (not polished) of several crystal grains. No damage from the laser was observed on
the samples under these conditions.

Quantitative chemical analyses were carried out using a JEOL 8200 microprobe (JEOL, Akishima,
Japan), WDS mode, 20 kV, 20 nA, 1 µm beam size, with counting times of 20 s for peak and 10 s for
background). For the WDS analyses, the following lines (standards in parentheses) were used: SKα

(sphalerite), FeKα (pyrite), CuKα (synthetic Cu2S), ZnKα (sphalerite), GaKα (synthetic Ga2S3), GeKα
(synthetic Ge2S3), MnKα (synthetic MnS), and SnLβ (synthetic SnS).

Single-crystal X-ray studies were carried out using a Bruker D8 Venture Photon 100 CMOS
(Bruker, Billerica, MA, USA) equipped with graphite-monochromatized MoKα radiation (λ = 0.71073
Å) operating at 60 kV. The detector-to-crystal distance was 50 mm. Data were collected using ω and ϕ
scan modes, in 0.5◦ slices, with an exposure time of 45 s per frame. Single-crystal X-ray diffraction
intensity data were integrated and corrected using the software package APEX3 (Bruker AXS Inc.,
Madison, WI, USA, [14]). A total of 955 unique reflections was collected.

X-ray powder diffraction data were collected with a Bruker D8 Venture Photon 100 CMOS
using copper radiation (CuKα, λ = 1.54138 Å). The observed diffraction rings were converted to a
conventional powder diffraction pattern using APEX3 [14].

4. Appearance and Physical Properties

Richardsite occurs as overgrowths of small crystals that appear to be epitaxically oriented on
the crystal faces of a cluster of wurtzite–sphalerite crystals that is approximately 2.5 cm in maximum
dimension (Figure 1). Second-generation sphalerite crystals are crystallographically oriented on
the faces of the primary wurtzite–sphalerite. The richardsite appears to selectively occur more
richly on some faces of the wurtzite–sphalerite than others, and does not to occur at all on the
faces of the second-generation sphalerite. Richardsite crystals exhibit subhedral morphology with
pseudo-tetrahedral dispenoidal habit and stepped surfaces. No twinning has been observed. The typical
size of richardsite crystals is about 50 to 150 µm, while the maximum size observed is about 400 µm.
The physical properties of richardsite are summarized in Table 1.

Table 1. Physical properties of richardsite.

Physical Property Observation

Color Dark gray
Streak Black
Luster Metallic

Fluorescence Non-fluorescent
Hardness (Mohs) 3

Hardness (microindentation) Not measured
Cleavage None observed
Parting None observed
Tenacity Brittle
Fracture Irregular
Density Could not be measured due to the small grain size

Density (calculated) 4.278 g·cm−3 using the ideal formula and X-ray
single-crystal data

Magnetic properties Not measured



Minerals 2020, 10, 467 5 of 10

5. Optical Properties

In reflected plane-polarized light, richardsite appears dark bluish gray in color and is moderately
bireflectant. Between crossed polarizers, it is distinctly anisotropic with violet to light-blue rotation tints.
Richardsite shows neither pleochroism nor internal reflections, and no optical indications of growth
zonation are evident. Reflectance data of richardsite at four wavelengths are summarized in Table 2.

Table 2. Reflectance data for richardsite.

Rmax Rmin λ (nm)

25.0 23.5 471.1
28.9 27.4 548.3
29.4 28.1 586.6
28.9 27.7 652.3

6. Raman Spectroscopy

The Raman spectrum of richardsite is shown in Figure 2. The most distinct Raman bands occur at
276, 309, 350, and 366 cm−1, with the peak at 309 cm−1 being the narrowest and most intense. Broader
and less intense bands occur at 172, 676, and 722 cm−1. The second-most intense peak in most spectra
taken is that at 366 cm−1, however, the relative intensities of the 366 and 350 cm−1 peaks tend to vary in
spectra taken across the crystal grain and can reach the intensity of the 309 cm−1 peak in some spectra.
Overall, the Raman spectrum of richardsite is similar to that of renierite, (Cu1+,Zn)11Fe4(Ge4+,As5+)2S16

(RRUFF ID: 050428 514 nm [15]). The peak at 350 cm−1 may be due to the presence of a Ge,Ga-rich
Cu–Zn sulfide (also containing Fe, Al, Sn, Mn, and Sn) that is sometimes intermixed with richardsite
and has a very intense Raman response at this frequency shift.

Minerals 2020, 10, 467 5 of 10 

5. Optical Properties 

In reflected plane-polarized light, richardsite appears dark bluish gray in color and is 

moderately bireflectant. Between crossed polarizers, it is distinctly anisotropic with violet to light-

blue rotation tints. Richardsite shows neither pleochroism nor internal reflections, and no optical 

indications of growth zonation are evident. Reflectance data of richardsite at four wavelengths are 

summarized in Table 2. 

Table 2. Reflectance data for richardsite. 

Rmax Rmin λ (nm) 

25.0 23.5 471.1 

28.9 27.4 548.3 

29.4 28.1 586.6 

28.9 27.7 652.3 

6. Raman Spectroscopy 

The Raman spectrum of richardsite is shown in Figure 2. The most distinct Raman bands occur 

at 276, 309, 350, and 366 cm−1, with the peak at 309 cm−1 being the narrowest and most intense. Broader 

and less intense bands occur at 172, 676, and 722 cm−1. The second-most intense peak in most spectra 

taken is that at 366 cm−1, however, the relative intensities of the 366 and 350 cm−1 peaks tend to vary 

in spectra taken across the crystal grain and can reach the intensity of the 309 cm−1 peak in some 

spectra. Overall, the Raman spectrum of richardsite is similar to that of renierite, 

(Cu1+,Zn)11Fe4(Ge4+,As5+)2S16 (RRUFF ID: 050428 514 nm [15]). The peak at 350 cm−1 may be due to the 

presence of a Ge,Ga-rich Cu–Zn sulfide (also containing Fe, Al, Sn, Mn, and Sn) that is sometimes 

intermixed with richardsite and has a very intense Raman response at this frequency shift. 

Based on factor group analysis, richardsite, as a stannite-group mineral, may be expected to have 

14 Raman-active modes [16,17]. The two A1-symmetry modes, which involve vibrations of the S 

atoms, are expected to be the most intense. Definitive symmetry assignments of the Raman peaks 

would require more detailed experimental studies, such as polarized Raman spectroscopy, checking 

for resonance effects, and infrared spectroscopy, which are beyond the scope of this paper.  

 

Figure 2. Representative Raman spectrum of a crystalline grain of richardsite in the region 110–800 

cm−1 using incident laser excitation with a 632.8-nm wavelength. 

7. Chemical Composition and X-ray Crystallography 

A preliminary chemical analysis using energy-dispersive X-ray spectrometry performed on 

several crystal fragments, including the one used for the structural study, did not indicate the 

presence of elements (Z > 9) other than Cu, Zn, Ga, S, and minor amounts of Mn, Sn, Fe, and Ge. 

Subsequent electron microprobe analyses (n = 4) revealed the fragment used for the structural study 

Raman Shift (cm-1)

200 400 600100 300 500 700 800

In
te

n
si

ty
 (

ar
b

it
ra

ry
u

n
it

s)

Figure 2. Representative Raman spectrum of a crystalline grain of richardsite in the region 110–800
cm−1 using incident laser excitation with a 632.8-nm wavelength.

Based on factor group analysis, richardsite, as a stannite-group mineral, may be expected to
have 14 Raman-active modes [16,17]. The two A1-symmetry modes, which involve vibrations of the
S atoms, are expected to be the most intense. Definitive symmetry assignments of the Raman peaks
would require more detailed experimental studies, such as polarized Raman spectroscopy, checking
for resonance effects, and infrared spectroscopy, which are beyond the scope of this paper.

7. Chemical Composition and X-ray Crystallography

A preliminary chemical analysis using energy-dispersive X-ray spectrometry performed on several
crystal fragments, including the one used for the structural study, did not indicate the presence of
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elements (Z > 9) other than Cu, Zn, Ga, S, and minor amounts of Mn, Sn, Fe, and Ge. Subsequent electron
microprobe analyses (n = 4) revealed the fragment used for the structural study to be homogeneous
within analytical error. Microprobe data are presented in Table 3. Detection limits are <0.01 wt.% for
the major elements (Ga, Zn, Cu, S), and <0.02 wt.% for the minor elements (Mn, Sn, Fe, Ge).

Table 3. Electron microprobe data (means and ranges in wt.% of elements) for richardsite.

Constituent Mean Range Standard Deviation (σ)

Mn 0.10 0.07–0.14 0.03
Sn 0.15 0.10–0.21 0.03
Fe 0.41 0.31–0.55 0.04
Ga 17.60 17.22–17.92 0.16
Ge 0.08 0.05–0.12 0.04
Zn 32.85 32.11–33.24 0.22
Cu 16.08 15.68–16.48 0.15
S 32.55 32.08–33.11 0.31

Total 99.81 98.03–101.11

The empirical formula, based on 8 atoms per formula unit, is:
(Zn1.975Cu0.995Ga0.995Fe0.025Mn0.010Ge0.005Sn0.005)Σ4.010S3.990. The simplified formula is
(Zn,Cu)2(Cu,Fe,Mn)(Ga,Ge,Sn)S4, and the ideal formula is Zn2CuGaS4, which requires Zn
33.34, Cu 16.20, Ga 17.77, and S 32.69, totaling 100 wt.%.

Single-crystal X-ray diffraction indicates that richardsite is tetragonal, with a = 5.3626(2) Å,
c = 10.5873(5) Å, V = 304.46(2) Å3, and Z = 2. It belongs to space group I42m (#121) and point group
42m. Least squares refinement of X-ray powder diffraction data (Table 4) give the tetragonal unit
cell-parameter values as a = 5.3622(3) Å, c = 10.5844(10) Å, and V = 304.33(3) Å3.

Table 4. Observed and calculated1 X-ray powder diffraction data (d-spacings in Å) for richardsite.
The strongest four estimated relative intensities I are given in bold type.

Miller Indices Observed Calculated 1

h k l dobs Iest dcalc Icalc

1 1 2 3.084 100 3.0827 100
2 0 0 - - 2.6813 8
0 0 4 - - 2.6468 4
2 2 0 1.898 20 1.8960 19
2 0 4 1.882 40 1.8837 36
3 1 2 1.614 20 1.6150 23
1 1 6 1.600 10 1.5998 11
4 0 0 - - 1.3406 5
3 3 2 - - 1.2294 4
3 1 6 - - 1.2227 7
4 2 4 1.092 10 1.0923 9
2 2 8 - - 1.0852 4
5 1 2 - - 1.0315 4
5 3 2 - - 0.9061 3
5 1 6 - - 0.9034 3
3 1 10 - - 0.8981 3

1 Calculated values obtained with the atom coordinates and Zn2CuGaS4 stoichiometry as reported in Table 5 (only
reflections with Irel ≥ 3 are listed).

The observed tetragonal unit-cell together with the obtained chemical formula suggests that
richardsite is a new member of the stannite group. However, two closely related models have been
proposed by Hall et al. [18] for the structure of these quaternary chalcogenides, which are topologically
equivalent, but differ in the distributions of metals among the positions at (0,0,0), (0, 1

2 , 1
4 ), and (0, 1

2 , 3
4 ) [19].
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In particular, the structure of stannite (Cu2FeSnS4) is consistent with the I42m symmetry, having Fe
located at the origin (2a), Sn located at 2b (0,0, 1

2 ), and Cu at 4d (0, 1
2 , 1

4 ). In this structure, the Fe and Sn
atoms alternate in a chessboard fashion within the layers at z = 0 and 1

2 , whereas the layers at z = 1
4

and 3
4 have only Cu [20]. The structure of kësterite (Cu2ZnSnS4), on the other hand, has one Cu atom

at the 2a (0,0,0) position, and Sn located at 2b (0,0, 1
2 ). Zn and the remaining Cu atom are ordered at

2c (0, 1
2 , 1

4 ) and 2d ( 1
2 ,0, 1

4 ) [equivalent to (0, 1
2 , 3

4 )] positions, respectively. This leads to both the Cu,Sn
layers (at z = 0 and 1

2 ) and the Zn,Cu layers (at z = 1
4 and 3

4 ) having the metal atoms alternating in a
chessboard fashion [20]. With different atoms occupying the 2c and 2d positions in kësterite, the mirror
plane parallel to (110) is lost, giving a structure with space group I4. In both structural models, S lies
on the (110) mirror plane at 8i (x,x,z) for stannite, or on the general position 8g (x,y,z) for kësterite.

In order to determine the distribution of metal atoms in richardsite without symmetry constraints,
the structure was refined in both space groups, and better agreement was obtained in I42m. The crystal
structure was refined using the program SHELXL-97 [21] up to R1 = 0.0284 for 655 reflections with Fo

> 4σ(Fo) and 14 parameters. The refined mean electron number at the metal sites, using scattering
curves for neutral atoms taken from the International Tables for Crystallography [22], was 30 (Wyckoff

position 4d), 31 (2a), and 29 (2b); thus, given also the observed mean bond distances and the chemical
data, Zn, Ga, and Cu were assigned, respectively, to the three tetrahedral sites. Of course, due to
the iso-electronic nature of its constituent elements (Cu = 29, Zn = 30, Ga = 31) together with the
ambiguity in their valence states, the metal partitioning in richardsite is, however, not straightforward.
According to Brese and O’Keeffe [23], the ideal distance (in Å) in a regular tetrahedron decreases
following the sequence: 2.370/Cu+, 2.346/Zn2+, 2.288/Ga3+, 2.116/Cu2+, and this distribution is in
keeping with the site-assignment proposed here for richardsite (Table 6). Furthermore, the chemical
data clearly point to a new mineral species, regardless of the site distribution. Final atomic coordinates
and equivalent isotropic displacement parameters are given in Table 5, and selected metal-sulfur
(Me–S) bond distances are shown in Table 6. The Crystallographic Information File (CIF) is available as
Supplementary Material.

Table 5. Atoms, Wyckoff positions, atom coordinates, and isotropic displacement parameters (Uiso in
Å2) for richardsite.

Atom Wyckoff x/a y/b z/c Uiso

Zn 4d 0 1
2

1
4 0.01187(13)

Ga 2a 0 0 0 0.00993(13)
Cu 2b 0 0 1

2 0.02108(12)
S 8i 0.75389(6) 0.75389(6) 0.87356(4) 0.01009(11)

Table 6. Me–S bond distances for richardsite.

Bond Type Bond Distance (Å)

Cu–S 2.3451(5) (×4)
Zn–S 2.3037(3) (×4)
Ga–S 2.2969(5) (×4)

The structure of richardsite consists of a cubic close packing (ccp) array of sulfur atoms tetrahedrally
bonded with metal atoms occupying one half of the ccp tetrahedral voids (Figure 3). The ordering of
the metal atoms leads to a sphalerite(sph)-derivative tetragonal unit-cell, with a ≈ asph and c ≈ 2asph.
The packing of the S atoms slightly deviates from the ideal, however, primarily due to the presence
of Ga.
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Figure 3. The crystal structure of richardsite. Cu, Zn, Ga, and S atoms are given as light blue, dark
blue, orange, and yellow circles, respectively. The unit cell of the structure is outlined in black, and its
orientation is indicated at the top left.

8. Discussion

Minerals of the stannite group are quaternary chalcogenides, typically with the general formula
T12T2T3X4, where T1, T2, and T3 correspond to tetrahedrally coordinated cations, and X corresponds to
monatomic anions [24]. Among the mineral species, including richardsite, accepted by the Commission
of New Minerals, Nomenclature and Classification of the International Mineralogical Association,
T1 = Ag, Cu, Zn; T2 = Ag, Cu, Cd, Fe, Hg, Zn; T3 = As, Ga, Ge, In, Sb, Sn; and X = S, Se. Group
members are generally tetragonal but can also be orthorhombic, and their structures can be considered
derivatives of the sphalerite (or chalcopyrite) structure type [20,25], with the types of cations and their
ordering in the tetrahedral sites affecting the resulting overall symmetry of the structures.

Richardsite is the Ga-analogue of UM1985-23-S:CuFeInZn (CuZn2InS4) described by
Cantinolle et al. [26] and by Kieft and Damman [27] as the end-member of the kësterite–sakuraiite series.
A similar phase to UM1985-23-S:CuFeInZn (same stoichiometry) but possibly with the sphalerite-type
structure, has been reported by Ohta [28] and Semenyak et al. [29].

A wide variety of ternary (I–III–VI2) and quaternary (I2–II–IV–VI4) chalcogenides (I = Cu, Ag;
II = Zn, Cd, Mn; III = Al, Ga, In; IV = Ge, Sn; VI = S, Se, Te) have been the subject of recent
interest for their potential applications in photovoltaic devices, thermoelectric devices, and solar energy
conversion materials [30]. The difficultly of distinguishing between the kesterite and stannite structures,
particularly with the high potential for (Cu + Zn) disorder, has been noted for the (Cu,Zn)-containing
quaternary phases (see [30] and references therein). Quaternary chalcogenides containing Ga do not
appear to have been synthesized until more recently, as in a study of wurtzite and stannite phases of
Cu2ZnAS4−x and CuZn2AS4 (A = Al, Ga, In) nanocrystals [31]. These nanocrystals were synthesized
using the colloidal hot-injection method as disordered-wurtzite phases. Upon annealing for 2–2.5 h
in an N2 atmosphere at temperatures of 400–450 ◦C for Cu2ZnAS4−x and 500 ◦C for CuZn2AS4,
the nanocrystals transformed to ordered stannite phases. Single-crystal X-ray studies and structure
refinements have not been carried out on these synthetic materials, however.

First-principles calculations for both Cu2ZnAS4−x [31] and CuZn2AS4 [31,32] materials indicate that
they are direct band gap materials with high absorption coefficients for visible light and, as such, they
show initial promise as radiation-absorbing materials for solar cells. First-principles calculations [32]
also show the CuZn2AS4 materials to be p-type semiconductors, and that the stannite-type structure is
energetically more stable than the kesterite- and wurtzite-type structures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/5/467/s1,
CIF File S1: richardsite.
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