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Abstract: Samples of the feed, underflow and overflow from water-based separations conducted
using a continuous REFLUXTM Classifier involving inclined channels with a 3 mm spacing have
been fractionated. Another REFLUXTM Classifier operating in a semi-batch configuration using
a dense fluidising medium of lithium heteropolytungstates (LST) was used to determine the density
distributions of the three streams. The partition surface of the separator was quantified, and the
technique was validated against sink/float data for a −300 + 38 µm chromite ore separation. It was
found that the LST flow fractionation determined the D50 with remarkable accuracy across the entire
size range, with the Ep values also very good above 75 µm. For water-based continuous separations
involving a gold ore covering the size range −1.0 + 0.090 mm, the D50 varied with particle size to
the power −0.22 and the Ep remained relatively constant at approximately 170 kg/m3 for each of the
narrow particle size ranges. These results were consistent with the partition surface validated based
on the much finer size range of the higher density chromite ore. The performance of the continuous
system was then modelled, with the results shown to agree well with separations conducted on the
feed. This approach has been developed as an alternative to using the sink/float test, thus offering
a new option with both a lower cost and minimal health and environmental risk. The findings from
this study can in turn be used to assess the amenability of a given ore to gravity pre-concentration.

Keywords: REFLUXTM Classifier; dense minerals; gravity separation; pre-concentration; process
modelling; characterisation

1. Introduction

Successful recovery and concentration of valuable minerals from gangue requires adequate
liberation of the minerals for separation. To achieve this, the run-of-mine ore often undergoes several
orders of magnitude size reduction through crushing and grinding before the valuable mineral is
recovered and concentrated, typically at a P80 of around 75 µm. The energy required for comminution
increases significantly as the P80 decreases. Rather than accepting the reality of higher operating
costs due to increasingly lower grade ores and finer liberation sizes, one option is to implement
pre-concentration strategies which target the removal of liberated gangue at the coarsest size possible,
a concept referred to as coarse particle or early gangue rejection. The aim is to selectively reject
gangue prior to fine grinding and downstream concentration without compromising the recovery
of the valuable metal. Success here can significantly improve the economic and environmental
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sustainability of an operation [1–4], though the response to separation varies so not all ores are
amenable to pre-concentration [2].

To assess amenability, one option is to perform a campaign of laboratory-scale separations with
a given technology at a range of operating conditions, typically varying the yield to examine the
grade and recovery achievable. However, as this can be time-consuming and resource-intensive,
a far more rapid approach is to perform the necessary feed characterisation and process modelling to
predict performance and make quick decisions with respect to feasibility and process selection. For
gravity separation, the density distribution of the feed is critical to understanding the potential for
pre-concentration, through process modelling via the partition surface. The partition curve varies
directly with the separation cut point, D50, and Ecart Probable, Ep, for each particle size [5]. Ultimately,
once the partition surface of the separator is known, the density distributions of the output streams
can be predicted using the density distribution of the feed being separated [5,6].

Irrespective of the technique applied, the density distribution is obtained by fractionating a sample,
the assumption being that grade is intrinsically linked with density. The sink/float test is a very reliable
and well-established method, based on performing discrete separations in heavy liquids prepared to
specific densities. However, many of the liquids involved are toxic and carcinogenic, particularly where
high-density separations of minerals require the use of Clerici solution at elevated temperature [7,8].
Although inorganic lithium tungstate solutions provide a safe alternative, for densities up to 2950
kg/m3 at room temperature [9], costs are significant, meaning consistent analysis is rarely economic,
and in many cases, it may be necessary to analyse densities higher than this. Thus, as the undesirable
properties of sink/float testing have become widely recognised, so has the need for alternative
fractionation techniques.

A hydrodynamic fractionation technique has been developed based on the density-based
separation, which can be promoted in a system of inclined channels [10,11]. A separator consisting
of a vertical section below a set of inclined channels, known as a REFLUXTM Classifier, is operated
in a semi-batch mode by applying varying degrees of fluidisation to the system. Galvin and Liu [11]
provide an in-depth description of the hydrodynamics of particle transport in this system. Particles
are conveyed into the system of inclined channels where they experience strong velocity gradients
and high shear rates near the channel wall, in turn generating a hydrodynamic lift force [12]. A
particle experiences physical lift once the magnitude of the lift force exceeds the net weight force
acting on the particle in the normal direction. At low flow rate, lower density (and also finer) particles
experience lift as they migrate away from the channel wall and convey with the higher velocity fluid.
Conversely, higher density particles settle onto the inclined surface and slide back into the vertical
section. Increasing the fluidisation velocity then increases the shear rate, allowing larger and denser
particles to lift and convey to the overflow. The overflow samples are collected independently at each
flow rate to form a series of flow fractions.

The technique was initially validated for low-density coal, with excellent agreement with sink/float
data obtained for particles up to 16 mm in diameter using water and aqueous glycerol as the fluidising
medium [13–15]. Following this, Iveson et al. [16] established accurate yield-ash and density-based
partition curves for coal separations over the size range −2.0 + 0.125 mm using a 70 wt.% glycerol
solution as the fluidising medium. More recently, Galvin et al. [17] reported the first study examining
the partitioning of dense minerals in a REFLUXTM Classifier with 3 mm inclined channel spacing,
involving separation of a chromite ore over the size range −300 + 38 µm and sink/float analysis to
quantify the partition surface of the separator. Further, their work established that a recently developed
interpolation and mass balancing algorithm [18] produced accurate partition parameters (D50, Ep)
when applied to good-quality fractionation data. Galvin et al. [19] then examined the efficacy of
the water-based batch fractionation technique in producing partition curves, comparing the results
obtained using a system with z = 1.77 mm spaced channels with the sink/float data. A viscous glycerol
medium was not used due to the high shear rates required to convey the dense particles. Although
they found that the D50 values were determined relatively accurately by applying the algorithm to the
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raw data, there was significant error in the Ep values. Thus, an alternative approach based on higher
quality fractionation data is needed.

A recent study by Lowes et al. [20] demonstrated the powerful separation which can be produced
in a system of inclined channels using dense liquids to amplify the dependence of segregation on the
basis of density. Using a REFLUXTM Classifier with z = 6 mm channels and a fluidising medium of
aqueous lithium heteropolytungstates (LST), excellent agreement with sink/float data was achieved on
a mineral ore over the size range −2.0 + 0.090 mm. Conversely, using water and a 70 wt.% glycerol
solution, effectively no separation was produced, and the results were poor, as expected.

This new study examines the application of the LST flow fractionation technique to produce the
partition surface of the REFLUXTM Classifier, based on the fractionation of steady-state samples of
the feed, underflow and overflow from gravity separations. This paper extends the initial findings
presented at a recent conference [21], by introducing a comprehensive dataset in order to expand
the particle size range, and in turn produce a robust partition surface. First, samples from the
−300 + 38 µm chromite separation were subjected to LST flow fractionation, comparing the partition
parameters produced with the sink/float data [17] to validate the method. The validated partition
surface was then compared to the result obtained based on applying equivalent analysis to samples
from a −1.0 + 0.090 mm gold-bearing ore separation, aiming to develop a deeper understanding of
the separations by considering a range of feed conditions. The performance of the continuous system
was then assessed through modelling, based on the partition surface, and validated against a set of
separations conducted on the feed [22]. Thus, the approach outlined in this study provides a way
forward for routinely assessing the benefits of varying levels of liberation on so-called early gangue
rejection through gravity separation.

2. Experimental

2.1. REFLUXTM Classifier Fractionation

The laboratory-scale REFLUXTM Classifier, shown in Figure 1, had a horizontal cross-section of
0.10 × 0.08 m. The upper section, which was 1 m long, was inclined at an angle of 70◦ to the horizontal
and interchangeable to adjust the inclined channel spacing depending on the top size of the material.
Typically, a 3:1 channel spacing to top size ratio would be employed in recognition of previous work
examining the influence of channel spacing on fractionation performance [13,14]. The fluidising
medium was an aqueous solution of lithium heteropolytungstates (LST) which had been diluted using
a 25 wt.% glycerol solution. The density of the LST solution was measured as 2442.5 kg/m3 at 26.8 ◦C
using water pycnometry. Lowes et al. [20] provided a more detailed analysis of the solution properties
and a theoretical background of the effect of applying the dense liquid as the fluidising medium.

The experiments were initiated by partially filling the vertical section of the REFLUXTM Classifier
with the LST fluidising medium. A quantity of sample, typically 1.0–2.5 kg depending on the size
range, was then added and fluidised at a low rate to ensure full wetting of the particles. The fluidisation
rate was then increased to convey particles into the inclined channels, the finest and least dense of
which were elutriated. At this point, the rate was maintained constant and the overflowing solids
were collected in a filter bag. The aperture size of the filter bag was always considerably finer than the
lower size limit of the material, typically 20–50 µm. The filtrate was returned to a 60 L stock solution
tank, allowing recycling of the fluidising liquid in a closed-circuit configuration to ensure the overall
loss of liquid throughout experiments was negligible. Once the overflow of particles subsided, the
particles in the filter bag were collected, dried and denoted “Flow 1”. As this procedure was repeated
with an incremental increase in the rate of fluidisation, subsequent flow fractions were produced
containing larger and denser particles. The particles which remained in the unit at the completion of
the experiment also formed a final flow fraction referred to as the remains. It was important to ensure
the initial (Flow 1) and final (remains) fractions contained a small mass relative to the overall sample
mass to properly describe the limits of the density distribution.
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Figure 1. (a) Photograph of the RC80 REFLUXTM Classifier used for particle fractionation experiments
and (b) schematic diagram of a semi-batch REFLUXTM Classifier with fluidisation supplied through
the underflow value.

Samples from two continuous separations were analysed in this work. The first was a chromite
ore of nominal top size 350 µm which had been subjected to sink/float analysis [17]. A system with a z
= 1.77 mm channel spacing was used for the fractionation experiments conducted on these samples.
The second ore, which was the primary focus of the modelling, was a porphyry copper-gold ore of
nominal top size 1.0 mm and head grade of the order 1.3 g/t Au. This feed had previously been subject
to continuous steady-state separation in a laboratory-scale REFLUXTM Classifier with a 3 mm inclined
channel spacing [22]. For the fractionation experiments on the gold ore sample, a marginally wider
z = 3.0 mm channel spacing was used to accommodate the coarser top size. The channel spacing
arrangements used for the continuous gravity separations (indicated as RC separation) and semi-batch
flow fractionations (indicated as RC flow fractionation) are provided in the relevant figure captions
for clarity. Samples of the feed, underflow and overflow from these separations were subjected to
semi-batch fractionation, following de-sliming, to varying degrees. Water pycnometry was conducted
on the flow fractions to measure their average density, followed by sieving using a

√
2 series. For

the chromite ore, this involved 0.30, 0.212, 0.150, 0.106, 0.075, 0.063, 0.053 and 0.038 mm sieves. For
the gold-bearing ore, the sieve series consisted of 1.0, 0.71, 0.50, 0.355, 0.25, 0.18, 0.125 and 0.090 mm
sieves. Further pycnometry measurements on these size fractions produced the density distributions
for narrow size intervals. The mass and average density data for the sized fractionation samples of the
chromite and gold ore separations are shown in Appendix A. Note that the difference in the number of
flow fractions in these respective experiments is arbitrary.

2.2. Extraction of Partition Data

Having established the density distributions of the three streams, the interpolation and mass
balancing algorithm recently presented by Galvin et al. [18], here referred to simply as ”the algorithm”,
was applied to extract the partition curves from the steady-state separations. A comprehensive
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description and analysis of the algorithm was provided by Galvin et al. [18,19], while only a relatively
brief overview is provided here.

The interpolation rule was applied to the raw fractionation data to discretise the mass in each
sample into a consistent set of density intervals using a resolution of ∆50 kg/m3. The major assumption
is that the mass in each flow fraction is distributed evenly either side of the average density of the
flow fraction. The interpolated density distributions for the three streams were then established on
a cumulative yield versus incremental density basis.

Initial guess conditions for the partition parameters (D50, Ep) were used in Equation (1) [23] to
generate partition numbers as a function of density. It has become well established that the partitioning
of the REFLUXTM Classifier is well described by this functional form which observes symmetry about
the cut point [17,24,25]. A symmetrical partition function is reasonable for the REFLUXTM Classifier,
where the output streams exist far apart from the feed, thus there is an absence of short-circuiting or
bypass flow and the tails of the partition curve asymptote to 0 and 100 wt.%. Note that the algorithm
actually uses a mathematically equivalent form of Equation (1), shown in Equation (2), based on the
definitions D50 = (D75 + D25)/2 and Ep = (D75 − D25)/2. Here, D75 and D25 are the density of particles
with a 75% and 25% probability of reporting to the underflow, respectively. That is,

Pi =
1

1 + exp
[
ln(3) (D50−Di)

Ep

] (1)

Pi =
1

1 + exp
[
ln(3) (D75+D25−2Di)

D75−D25

] (2)

where P is the partition number, D50 is the density of a particle with equal probability of reporting
to the underflow or overflow, D is the average density, Ep is the Ecart Probable, and the subscript i
denotes a given density interval.

These partition numbers were applied to the feed density distribution to produce a pair of overflow
and underflow density distributions, termed the reconciled dataset, which would typically differ
significantly from the interpolated data. An objective function was formed based on the squared
relative error between the interpolated and reconciled cumulative yield values, with additional terms
included to preserve the overall stream average density and provide smoothing of the final distributions.
By varying the partition parameters and the feed density distribution, the algorithm seeks to converge
on a final solution subject to minimisation of the objective function. As often the final solution of
a numerical search routine is dependent on the initial conditions, a total of 66 trials covering 6 initial
D50 and 11 initial Ep values were conducted, with the final solution being based on the average of the
trials which converged. The uncertainty in these values was then taken as the 95% confidence interval
on the mean values. It is noted that these uncertainties do not give an indication of how accurate the
algorithm solution is in relation to the true values. However, Galvin et al. [17] have demonstrated high
accuracy in the algorithm solutions when applied to good-quality fractionation data.

3. Results and Discussion

3.1. Partition Surface of the REFLUXTM Classifier

3.1.1. Sink/Float versus LST Flow Fractionation

The algorithm outlined in Section 2.2 was applied to the sized density distributions generated by
the sink/float test and LST flow fractionation, extracting the partition curves for narrow size intervals
summarised in Table 1. Note that the sink/float data were taken from Galvin et al. [17]. The sink/float
dataset represents the true partition parameters, from which the performance of the flow fractionation
technique can be assessed. In a flow fractionation, particle size influences the elutriation of particles.
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Thus, the goal is to promote hydrodynamic conditions for minimising the effect of particle size, in
turn promoting segregation on the basis of density to produce close agreement with the true partition
data. Therefore, it is worth considering the applicable flow regime, as laminar flow is beneficial in
promoting the strong velocity gradients and inertial lift forces necessary for achieving density-based
separation [11]. For a system of channels in which the width is far greater than the channel spacing,
and the hydraulic diameter is given by 2z, the flow Reynolds number is Ref = (2ρfUz)/µ. The superficial
fluid velocity, U, was estimated based on the flow rate measured using a beaker and stopwatch at each
fluidisation rate. Using ρf = 2443 kg/m3 and µ = 0.005 Pa s after Lowes et al. [20], the maximum flow
Reynolds number in the chromite fractionation experiments was 51.4. For the gold ore fractionation
experiments outlined in Section 3.1.2, the maximum flow Reynolds number was estimated as 57.2,
both safely in the laminar regime.

Table 1. Algorithm solutions comparing the results based on the sink/float and lithium
heteropolytungstates (LST) flow fractionation data. The partition parameters (D50, Ep) are shown for
the narrow particle size ranges.

Sink/Float LST Flow Fractionation

Size Range D50 Ep D50 Ep
(µm) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

−300 + 212 3090 379 3151 348
−212 + 150 3477 347 3518 301
−150 + 106 3828 318 3821 284
−106 + 75 4096 296 4128 234
−75 + 53 4389 276 4352 169
−53 + 38 4573 336 4539 145

The D50 and Ep values in Table 1 are plotted as a function of particle size in Figures 2 and 3,
respectively. Note that particle size, S, refers to the geometric average size of a given size interval. As
the algorithm uncertainties were so small for these datasets, they were not included in these figures.
The power law dependency of cut point on particle size varied to the power −0.22 according to the
sink/float data. It is evident that the LST flow fractionation has determined the D50 values with
remarkable accuracy across the entire size range, with a power law exponent of −0.21 in excellent
agreement with the sink/float result. The largest deviation in cut point between the sink/float and LST
results is just 2%.

In Figure 3, the variation in Ep as a function of particle size comparing the data produced by
both fractionation techniques is shown. The sink/float data points observe no clear trend, rather some
scatter with an average value of around 325 kg/m3. Typically, it would be expected that the Ep follows
a similar power law trend to the D50, with the Ep scaling directly with cut point [23,26,27]. However,
this constant variation for minerals appears to be specific to the 3 mm channel spacing REFLUXTM

Classifier system [19]. This phenomenon, along with less drift in the cut point with particle size, was
the reason why the continuous system with 3 mm channels outperformed the 6 mm system in the work
of Galvin et al. [17]. The Ep values determined based on the LST flow fractionation agree very well
with the sink/float data down to 106 µm, and reasonably well down to 75 µm. Below this, the Ep values
tend to be under-predicted more significantly as particle size decreases. This decline in performance is
not surprising given that size becomes more dominant in particle settling as size decreases (i.e., Stokes
settling, where terminal velocity scales with the square of diameter). In the context of the present
work, however, analysis down to a particle size of 100 µm, and even 75 µm, is sufficient for assessing
early gangue rejection. Thus, there is confidence in the Ep values determined based on the LST flow
fractionation above approximately 75 µm.



Minerals 2020, 10, 545 7 of 20
Minerals 2020, 10, 545 7 of 20 

 

 

Figure 2. Variation in separation cut point, D50, as a function of particle size. The algorithm was 

applied to raw data based on the sink/float test and LST flow fractionation data. The LST method has 

determined the cut point values with remarkable accuracy across the entire size range. RC separation 

z = 3 mm; RC flow fractionation z = 1.77 mm. 

 

Figure 3. Ecart Probable, Ep, values as a function of particle size generated by applying the algorithm 

to the raw data from both fractionation techniques. The Ep values based on the LST flow fractionation 

are in close agreement with the sink/float data above 75 µm, and excellent above 106 µm. RC 

separation z = 3 mm; RC flow fractionation z = 1.77 mm. 

As a further level of analysis, the density distributions based on the sink/float and LST flow 

fractionation on the +106 µm material were combined and ordered as a function of increasing density. 

This produced a set of feed, underflow and overflow density distributions for the –300 + 106 µm size 

range, allowing the composite partition curves to be determined by applying the algorithm to the 

Figure 2. Variation in separation cut point, D50, as a function of particle size. The algorithm was
applied to raw data based on the sink/float test and LST flow fractionation data. The LST method has
determined the cut point values with remarkable accuracy across the entire size range. RC separation z
= 3 mm; RC flow fractionation z = 1.77 mm.
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Figure 3. Ecart Probable, Ep, values as a function of particle size generated by applying the algorithm
to the raw data from both fractionation techniques. The Ep values based on the LST flow fractionation
are in close agreement with the sink/float data above 75 µm, and excellent above 106 µm. RC separation
z = 3 mm; RC flow fractionation z = 1.77 mm.

As a further level of analysis, the density distributions based on the sink/float and LST flow
fractionation on the +106 µm material were combined and ordered as a function of increasing density.
This produced a set of feed, underflow and overflow density distributions for the −300 + 106 µm
size range, allowing the composite partition curves to be determined by applying the algorithm to
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the raw data. The interpolated and reconciled density distributions as well as the partition curves
generated by both fractionation techniques are shown on the same plot in Figure 4. The true partition
curve based on the sink/float data is described by D50 = 3544 kg/m3 and Ep = 364 kg/m3, while the
LST partition curve is governed by D50 = 3550 kg/m3 and Ep = 318 kg/m3. The separation cut point
has been determined with high accuracy, differing by only 0.2%. The Ep values are also in very close
agreement, deviating by only 13% between the two techniques. Given there was an absence of an
autogenous dense medium and strong hindered settling effects which contribute to the separation
mechanism of the continuous system, this further highlights the powerful fractionation produced in
the inclined channels using LST. It is the strong buoyancy force provided by the LST which reduces
the net weight force and terminal settling velocity of the dense particles, promoting a mechanism for
achieving inertial lift and density-based separation, which is not possible under the more turbulent
conditions in a water-based experiment.
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Figure 4. Cumulative yield as a function of incremental density for the –300 + 106 µm portion of the
feed, product and reject. The algorithm was applied to the sink/float (S/F) and LST flow fractionation
(LST) interpolated datasets to generate reconciled cumulative yield versus density datasets for each
stream which are linked by underlying partition curves. The sink/float partition curve is described by
D50 = 3544 kg/m3 and Ep = 364 kg/m3, while the LST partition curve is governed by D50 = 3550 kg/m3

and Ep = 318 kg/m3. The partition curves produced by the two methods are in excellent agreement. RC
separation z = 3 mm; RC flow fractionation z = 1.77 mm.

Although the accuracy of the D50 values has been found to be relatively insensitive to the quality of
the fractionation [19], a clear benefit of the LST approach is the accuracy of the Ep. The Ep values were
excellent above 106 µm, and reasonable down to 75 µm, certainly within a degree of accuracy suitable
for modelling the performance of the continuous system. Previously, data of this quality was only
available by performing costly and hazardous sink/float testing, so this new option offers a valuable
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alternative. As it is thought that the average Ep value as a function of particle size likely varies with
the separation cut point, it should now be possible to examine this relationship more rapidly and cost
effectively using additional datasets to produce a holistic model of the REFLUXTM Classifier.

3.1.2. Partition Surface for Gold-Bearing Ore based on LST Flow Fractionation

The work in this section is based on water-based separations conducted using the REFLUXTM

Classifier under continuous conditions. The partition curves governing the separations can be
characterised based on a composite overall size range or on the basis of narrow size intervals. For
the work in this section, where the ratio of the upper to lower particle size limits is roughly 11:1, the
applicability of a composite Ep describing the overall separation is questionable due to the breadth of
the size range. Thus, a better approach is to quantify the partition curves for narrow size intervals.
Figure 5 shows the variation in D50 as a function of the particle size based on LST flow fractionation data.
The D50 is shown to vary as a function of decreasing particle size to the power of −0.22 when the outlier
in the coarsest size fraction was omitted (open triangle in Figure 5). Given that the −1000 + 710 µm size
interval for the overflow stream contained only 2.5 wt.% of the overall sample mass, some uncertainty
in obtaining a cut point value is not surprising. The settling of finer particles is much more heavily
influenced by the particle size; thus, the general trend is that the cut point increases sharply at fine sizes.
This is why gravity separators are less effective processing over broad size ranges, as the significant
increase in cut point leads to the misplacement of fine particles, even when operated at relatively
high yield.
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Figure 5. Variation in D50 as a function of particle size based on applying the algorithm to the LST flow
fractionation data. The D50 varied with particle size to the power −0.22 when the clear outlier (open
triangle) was omitted. RC separation z = 3 mm; RC flow fractionation z = 3 mm.

The generalised scaling law describing the variation in D50 with particle size can be expressed in
a dimensionless form by introducing the parameters D0 and S0, as shown in Equation (3). Note that the
n value in Equation (3) is not equivalent to the exponent shown in the equations in Figure 2 or Figure 5,
a direct result of introducing the (D0 − 1000) term. This equation then describes the variation in
(D50 − 1000) with particle size and is useful for process modelling, because by eliminating the constant
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of the generalised scaling law, changes in the REFLUXTM Classifier set point can be reflected by simply
varying the parameter D0, shifting the partition surface up and down.

D50 − 1000
D0 − 1000

=

(
S
S0

)−n

(3)

Based on the sink/float data in Figure 2, Galvin et al. [17] found that for the system with 3 mm
inclined channel spacing, the (D50 − 1000) varied to the power −0.28 over the size range −300 + 38 µm.
Figure 6 shows the variation in D50 with particle size comparing the results of the present study
with those of Galvin et al. [17], represented by the discrete data points. The solid curves represent
Equation (3), with n = 0.28 and S0 = 300 µm. A simple least squares curve fit was used to find D0

for both datasets, determined as 3148 and 3204 kg/m3 for the data of Galvin et al. [17] and this study,
respectively. Note the particle size axis on Figure 6 was limited to 500 µm to highlight the region of the
plot most important for comparison between the two datasets. The strong agreement between the
model and experimental values, despite differences in the ore type and size range, is promising from
the perspective of creating a robust model, given that a model which features consistent parameters for
a range of feed conditions is desirable over one which is subjective.
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Figure 6. D50 as a function of particle size comparing the experimental values from this study as well
as those of Galvin et al. [17] with the model shown in Equation (3). Here, n = 0.28 and S0 = 300 µm. A
least squares curve fit was used to find D0 for each dataset. There is strong consistency between the
model and experimental values. RC separation z = 3 mm.

Figure 7 shows the algorithm results for the variation in Ep as a function of particle size. Again,
there is no visible trend in the data, rather some scatter with an average Ep of approximately 170 kg/m3.
The higher average value in the previous section likely reflects the finer particle sizes and higher
particle densities. This result is further evidence of the REFLUXTM Classifier with 3 mm channel
spacing operating with an almost fixed Ep as a function of particle size, rather than the power law
dependency which may be expected.
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Inertial lift forces develop using more closely spaced inclined channels, which in turn improves the
tendency for lower density coarse particles to re-suspend and convey to the overflow. In the coarsest
size fractions where the cut points are typically lowest, inertial lift shifts more of the low-density
particles, though not necessarily all, to the overflow, increasing the Ep, in turn reducing both the
variation of the D50 and Ep with particle size. Given that these lower density particles which now report
to the overflow contain little value, the performance on a grade/recovery basis is actually improved
despite the increase in Ep.

3.2. Process Modelling

This section outlines an approach to modelling the performance of the continuous REFLUXTM

Classifier based on the partition surface. As application of the partition surface to the feed density
distribution generates a set of underflow and overflow density distributions—Figure 8 was used to
infer the grade based on density. This relationship was established using density data from samples
of the continuous separations which were sent for assay determination. Similar approaches have
been implemented by other authors to relate grade and density for modelling purposes [1,28]. In
practice, these data would be generated by sending the sized feed fractionation samples for assay, also
allowing the washability of the feed to be established, providing a useful benchmark based on the
optimum theoretical performance. To reconcile the scatter in the data above roughly 3000 kg/m3, the
modelled grade was based on the average of the values calculated using the linear regression and two
95% confidence intervals either side of the slope of the trend line (broken lines in Figure 8), a total
of five values. These inconsistencies at high density are a reality of gold ores where there is often
a heterogeneous distribution of gold particles within a sample. However, it is noted that the material
with a density above 3000 kg/m3 contributes only 2.5 wt.% of the feed, as can be seen in Table A2.
Therefore, the contribution of the data which is based on the high-scatter region of Figure 8 to the
modelling is likely to be minimal, though in the case of gold, not always.
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Figure 8. Correlation established between gold assay and average density established based on assay
data for samples which has been measured for their average density using water pycnometry [21]. The
broken lines represent two 95% confidence intervals either side of the slope of the trend line.

A feed basis of F = 1000 kg was assumed and applied to the particle size distribution to distribute
the mass into narrow size intervals. The grade distribution of the feed was then inferred based on
the density distributions for narrow size intervals and Figure 8. Applying a D0 value in Equation (3)
produced a set of D50 values which, along with a constant Ep of 170 kg/m3 as a function of size based
on the previous section, were used to generate partition numbers using Equation (1). The partition
numbers were applied to the feed density distribution, simulating the partitioning of the solids and
a separation at a given cut point with a product grade and recovery.

Figure 9 shows the experimental data of Lowes et al. [22], where a gold-bearing ore with a nominal
top size of 1.0 mm was pre-concentrated. Here, the solids throughput was 13 t/m2/h at a feed solids
concentration of 40 wt.% and the controller density set point was varied to examine the influence of
mass rejection on gold recovery. To quantify the uncertainty in the recovery values, a Monte Carlo
simulation technique was applied to examine the standard deviation in the grade based on the linear
regression in Figure 8. By performing 5000 iterations, the average values returned the experimental
data. The uncertainties in Figure 9 represent the 95% confidence interval of the mean values. This is an
alternative to sending multiple samples for assay, which would be a very costly process, particularly
when the overall recoveries are derived based on the sized sample assay data, as was the case in the
work of Lowes et al. [22]. The obvious trend is that the recovery of gold is compromised as more mass
is rejected, a relationship which summarises the trade-off which exists when assessing amenability, as
clearly there exists a point where the reduction in operating costs is outweighed by losses in valuable
minerals to tailings. Evaluation of the various scenarios and the impact of a pre-concentration stage on
economic parameters such as Net Present Value (NPV) and Net Smelter Return (NSR) are important
factors which can be considered based on process modelling.
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Figure 9. Gold recovery as a function of mass rejection comparing the experimental data [22] with
model predictions based on applying the partition surface to the feed density distribution. The partition
surface was described by Equation (3), with n = 0.28, S0 = 300 µm and Ep = 170 kg/m3, with the
parameter D0 varied to simulate changes in the controller density set point of the REFLUXTM Classifier.

Also shown in Figure 9 are the model predictions based on applying the partition surface described
by Equation (3), with n = 0.28, S0 = 300 µm and Ep = 170 kg/m3, to the feed density distribution. The
parameter D0 was varied to simulate changes in the set point, allowing the recovery to be modelled as
a function of mass rejection. The model predictions agree very well with the experimental separations.
The recovery tends to be under predicted at low mass rejection, though the most significant deviation
between the model and experimental data is only ~10 wt.% Au Recovery. This deviation is likely due
to some unavoidable variation in the density distribution between samples or feed grade between
experiments. It is noted that the analysis was based on the samples from the highest mass rejection
separation, a result where there is excellent agreement between the model and experimental data. This
result supports the validity of performing process modelling based on data derived directly from the
LST flow fractionation, an approach which has significant benefits over the conventional approach
utilising sink/float analysis. This approach is also very rapid, requiring only characterisation of the
feed being separated, rather than the extensive campaign of separations which were conducted to
produce the experimental data.

3.3. Sensitivity Analysis on Ep and n

To examine the sensitivity in the model, the partition surface described by Equation (3) was
applied to the feed density distribution using varying Ep and n values, as shown in Figures 10 and 11.
These figures have been adapted from Lowes et al. [21]. Higher Ep values result in more misplaced
material either side of the cut point, while higher n values correspond to more drift in the cut point as
a function of particle size. Shown in both figures is the model prediction for Ep = 0 kg/m3 and n = 0,
corresponding to a perfect separation with no variation in the D50 with particle size, fundamentally
the concept of density-based fractionation as would be produced using the sink/float test. These data
suggest that a maximum gold recovery of 90 wt.% Au could be achieved by roughly halving the initial
feed mass, a promising result given the comparatively low cost of gravity separation in relation to
grinding. However, Figure 10 also shows the results based on various Ep values and n = 0.28, showing
a significant deviation from the washability, even for Ep values as low as 100 kg/m3, which would be
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considered sharp in dense mineral separations. This significant deviation reflects the poor liberation of
the feed and impact of the relatively coarse gangue which makes it difficult to recover fine liberated
mineral particles. The modelling is then valuable because it reflects the effect of particle size, liberation
and separator efficiency, rather than being based on a perfect separation independent of particle size
(i.e., sink/float), which is extremely unlikely to occur in reality.
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Figure 10. Recovery as a function of mass rejection comparing a set of model predictions with the
experimental data [22]. The model results are based on a perfect separation with Ep = 0 kg/m3 and
n = 0, as well as Ep values of 100, 170, 325 and 500 kg/m3, where the (D50 – 1000) varied with particle
size to the power –0.28.
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Figure 11. Recovery modelled as a function of mass rejection for varying n values using Ep = 170 kg/m3.
The model predictions are compared to the experimental data [22].
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Figure 10 also shows the model predictions for Ep values of 100, 170, 325 and 500 kg/m3, with
n = 0.28. Unsurprisingly, as Ep increases, the recovery for a given mass rejection decreases as more
material is misplaced. The model results are relatively insensitive to minor variations in Ep, as the
predictions based on Ep values of 100 and 170 kg/m3 are very close, of the order of only a few wt.%
Au recovery. This supports the validity of modelling based on partition parameters derived from
LST flow fractionation data, as very close agreement with the true values has been demonstrated
for particle sizes relevant to this work in Section 3.1.1. Figure 11 shows results for different n values
with an Ep value of 170 kg/m3, covering separations based on different levels of variation in the D50

with particle size. For higher n values, there is more misplacement of fine particles and hence a lower
recovery. Interestingly, the model predictions converge as the wt.% mass rejection approaches zero.
This convergence reflects the formation of an underflow dominated by almost pure gangue, with the
majority of the feed reporting to the underflow. Here, there is little selectivity in the separation and the
variation in D50 with particle size has little influence on the separation. This is also why there is less
sensitivity to even a five-fold increase in Ep at the low mass rejection in Figure 10.

3.4. Final Discussion

Partition curves are generated by analysing samples of the feed, underflow and overflow from
a steady-state separation. The standard method involves application of the sink/float technique, and
then mass balance reconciliation. The limitations of the sink/float technique have previously been
mentioned. Clearly, alternative approaches are needed from both an economic and safety perspective.
One such method has been presented here, based on LST flow fractionation and application of the
mass balancing algorithm of Galvin et al. [18] to the raw data. The technique was shown to produce
high-quality data above 75 µm, suitable for directly modelling the performance of the continuous
REFLUXTM Classifier. Thus, the applicability of this new approach to particle sizes relevant to gravity
separation is a firm conclusion of this paper.

There are several benefits to applying this method as an alternative to the sink/float technique.
Firstly, the method is desirable because fractionation at higher densities is achieved by increasing
the flow rate, with no need for preparation, handling and recycling of corrosive organic liquids. The
number of separations is very flexible, requiring only adjustment of the fluidisation rate. Further,
although not really necessary in characterising the ores in this work, in principle, it is possible to
achieve separations in excess of the 4400 kg/m3 limit performed at most commercial laboratories.
Although there is initially a significant cost associated with obtaining a sizable quantity of LST, the loss
of fluidising liquid across experiments is negligible.

There was strong consistency between the partition surface validated by Galvin et al. [17] and
this work on a much coarser and lower density mineral ore. Process modelling based on applying
the partition surface to the feed density distribution was found to agree well with experimental
separations conducted on the feed. In the future, fractionation and additional sizing conducted on
any de-slimed feed could produce the necessary model inputs. Those inputs include the particle
size distribution, density distributions for narrow size intervals and grade distribution following
pycnometry measurements and assay analysis. Applying the modelling approach outlined here
then predicts the expected separation performance, allowing the response to pre-concentration to be
assessed without having to perform a campaign of material separations. As the variation in D50 and
Ep with particle size is characteristic of a given separator, in principle, this general approach should be
suitable for modelling the performance of other gravity separators, for example spirals [16]. However,
it is noted that alternate functional forms to Equation (1) may be required to describe other technologies.
For example, it might be appropriate to include additional parameters to account for short-circuiting
or bypass flow, as can be the case in dense medium cyclones [5].
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4. Conclusions

This study has validated the LST flow fractionation technique for quantifying the partition curves
for a gravity separation. The technique was first validated against sink/float data for a −300 + 38 µm
chromite ore separation, conducted in a REFLUXTM Classifier with 3 mm inclined channels [17].
Accurate D50 and Ep values were obtained for particle sizes above 106 µm, though the agreement
remained satisfactory down to 75 µm. For a −1.0 + 0.090 mm gold ore separation, the D50 varied with
particle size to the power −0.22, while the Ep was relatively constant at around 170 kg/m3. Model
predictions based on the partition surface were then shown to agree well with the results of experimental
separations conducted on the feed. Thus, this new approach provides a valuable alternative to the
sink/float test method which is suitable for assessing gravity pre-concentration amenability.

5. Patents

The University of Newcastle holds international patents on the REFLUXTM Classifier and has
a Research and Development Agreement with FLSmidth Pty Ltd. (Copenhagen, Denmark). The
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Appendix A

Table A1. Raw-sized pycnometry data for chromite ore LST flow fractionation of samples of the feed,
underflow and overflow.

Feed Underflow Overflow

Flow
Fraction

Size
Interval Mass Average

Density Mass Average
Density Mass Average

Density

(-) (µm) (g) (kg/m3) (g) (kg/m3) (g) (kg/m3)

1

−300 + 212 11.0 2753.0 10.0 2837.8 5.7 2706.8
−212 + 150 19.8 2751.3 6.4 2951.0 10.5 2700.2
−150 + 106 28.4 2750.6 4.0 3124.3 13.7 2692.6
−106 + 75 30.7 2762.9 4.1 3277.0 23.7 2698.6
−75 + 53 35.1 2794.7 3.8 3403.2 18.6 2702.3
−53 + 38 29.0 2851.5 3.0 3840.5 14.3 2712.6

2

−300 + 212 11.7 2945.1 24.4 3233.8 10.7 2748.9
−212 + 150 20.6 2993.6 28.3 3295.9 26.4 2756.3
−150 + 106 27.3 3067.2 18.0 3332.1 33.0 2756.7
−106 + 75 50.0 3220.7 5.0 3393.4 42.3 2787.8
−75 + 53 42.0 3285.9 6.3 4302.7 29.5 2688.2
−53 + 38 31.1 3316.2 15.9 4472.5 25.1 2979.6
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Table A1. Cont.

Feed Underflow Overflow

Flow
Fraction

Size
Interval Mass Average

Density Mass Average
Density Mass Average

Density

(-) (µm) (g) (kg/m3) (g) (kg/m3) (g) (kg/m3)

3

−300 + 212 16.1 3231.8 41.0 3368.6 18.9 2968.5
−212 + 150 28.8 3274.8 38.0 3387.5 46.3 3017.2
−150 + 106 33.2 3301.7 17.8 3442.8 57.9 3075.0
−106 + 75 44.4 3349.8 10.3 4199.9 51.0 3159.2
−75 + 53 27.6 3430.9 46.0 4504.9 43.1 3237.4
−53 + 38 18.4 3692.5 18.5 4517.8 29.4 3303.6

4

−300 + 212 25.0 3358.6 7.3 3643.4 20.7 3295.6
−212 + 150 43.6 3366.8 8.8 3912.6 53.6 3314.5
−150 + 106 46.3 3376.3 17.9 4337.2 69.4 3327.3
−106 + 75 36.5 3486.2 62.2 4497.0 67.3 3343.8
−75 + 53 30.4 3985.5 58.2 4520.5 45.5 3365.9
−53 + 38 25.0 4245.9 12.6 4516.5 17.3 3427.0

5

−300 + 212 22.2 3621.5 32.0 4457.2 24.0 3383.9
−212 + 150 27.7 3753.5 72.9 4494.0 75.4 3389.4
−150 + 106 33.1 4028.7 125.7 4507.5 72.7 3409.9
−106 + 75 68.4 4373.0 86.4 4519.2 78.8 3547.8
−75 + 53 45.9 4449.1 26.0 4529.3 52.9 3793.1
−53 + 38 20.2 4434.4 5.4 4491.7 33.6 4088.5

6

−300 + 212 18.3 4437.8 58.3 4514.8 4.1 3467.4
−212 + 150 52.8 4495.1 93.0 4514.1 10.7 3654.7
−150 + 106 76.1 4508.8 76.1 4518.0 19.7 3909.8
−106 + 75 46.8 4515.2 24.2 4520.1 33.9 4277.9
−75 + 53 21.1 4509.0 6.0 4494.8 30.0 4426.2
−53 + 38 6.6 4461.4 1.0 4487.4 16.2 4475.2

7

−300 + 212 38.8 4518.9 18.1 4515.6 1.0 2804.1
−212 + 150 42.9 4515.7 26.1 4524.9 3.1 4108.7
−150 + 106 34.7 4514.4 23.8 4534.8 8.4 4344.1
−106 + 75 13.3 4518.9 7.8 4572.8 12.2 4407.2
−75 + 53 6.0 4462.5 2.8 4394.0 13.1 4453.5
−53 + 38 1.9 4315.0 0.8 10.4 4446.7

Table A2. Raw sample mass and pycnometry data for the gold-bearing ore feed, underflow and
overflow sized LST flow fractionation samples.

Feed Underflow Overflow

Flow
Fraction

Size
Interval Mass Average

Density Mass Average
Density Mass Average

Density

(-) (µm) (g) (kg/m3) (g) (kg/m3) (g) (kg/m3)

1

−1000 +
710 0.1 5.6 2611.1 0.2

−710 + 500 0.6 2583.2 23.1 2625.1 0.8 2514.9
−500 + 355 1.1 2546.7 25.2 2639.9 1.8 2668.3
−355 + 250 3.0 2562.5 24.4 2656.8 4.2 2586.3
−250 + 180 7.5 2582.9 10.1 2677.2 9.5 2603.8
−180 + 125 22.1 2603.5 2.6 2693.7 27.3 2614.7
−125 + 90 35.5 2606.3 0.6 2724.7 55.5 2623.2
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Table A2. Cont.

Feed Underflow Overflow

Flow
Fraction

Size
Interval Mass Average

Density Mass Average
Density Mass Average

Density

(-) (µm) (g) (kg/m3) (g) (kg/m3) (g) (kg/m3)

2

−1000 +
710 0.1 8.0 2624.6 0.3

−710 + 500 0.8 2610.1 35.4 2643.5 3.8 2612.6
−500 + 355 3.6 2631.6 30.7 2659.3 12.0 2633.1
−355 + 250 13.4 2629.2 15.6 2685.3 23.2 2639.9
−250 + 180 22.6 2631.4 3.3 2723.4 36.0 2641.6
−180 + 125 37.2 2639.8 0.6 2820.4 65.7 2647.6
−125 + 90 41.6 2650.5 0.1 80.2 2662.1

3

−1000 +
710 0.3 20.7 2643.6 0.1

−710 + 500 3.0 2625.8 79.0 2659.9 1.7 2623.9
−500 + 355 11.6 2628.7 47.4 2674.5 5.9 2631.5
−355 + 250 25.7 2637.9 17.4 2708.6 16.2 2633.3
−250 + 180 30.6 2646.8 3.4 2807.5 26.8 2639.5
−180 + 125 35.2 2652.4 1.0 3072.2 40.3 2651.0
−125 + 90 25.6 2668.5 0.5 2991.7 35.0 2670.2

4

−1000 +
710 1.3 2640.7 40.4 2592.2 0.1

−710 + 500 17.1 2634.1 100.1 2672.6 1.0 2616.6
−500 + 355 47.8 2644.2 39.2 2694.6 4.0 2619.2
−355 + 250 64.6 2650.9 9.5 2748.4 12.0 2622.2
−250 + 180 50.0 2657.2 1.5 2867.9 15.4 2625.4
−180 + 125 48.1 2665.2 0.6 3118.6 16.6 2644.4
−125 + 90 30.7 2686.5 0.2 3482.7 12.3 2666.3

5

−1000 +
710 1.1 2617.3 89.6 2671.8 0.2

−710 + 500 13.4 2641.1 154.0 2685.5 3.8 2631.5
−500 + 355 31.5 2654.3 45.0 2721.4 14.6 2626.0
−355 + 250 33.3 2664.2 10.0 2797.7 30.5 2640.
−250 + 180 24.9 2669.2 2.1 3060.6 32.9 2647.4
−180 + 125 25.5 2681.1 1.1 3032.9 31.7 2657.3
−125 + 90 13.4 2710.8 0.5 2804.9 18.0 2677.3

6

−1000 +
710 3.5 2638.3 115.4 2677.7 3.4 2639.1

−710 + 500 33.1 2649.4 146.9 2700.0 37.5 2648.8
−500 + 355 52.1 2659.8 33.9 2745.3 70.5 2654.4
−355 + 250 42.0 2670.3 7.5 2822.6 73.1 2662.1
−250 + 180 31.4 2677.8 2.2 2895.7 49.9 2655.9
−180 + 125 29.9 2692.1 1.2 3199.3 35.3 2671.9
−125 + 90 13.3 2730.6 0.8 3136.3 14.5 2699.7

7

−1000 +
710 16.6 2640.6 164.6 2706.5 2.6 2655.3

−710 + 500 72.2 2657.6 148.4 2748.0 32.2 2654.6
−500 + 355 59.6 2673.3 32.8 2809.5 61.0 2662.0
−355 + 250 44.8 2687.6 8.4 2916.7 64.4 2667.1
−250 + 180 31.9 2696.1 3.4 3055.9 42.3 2671.4
−180 + 125 23.5 2718.1 1.7 3213.4 31.0 2681.6
−125 + 90 11.6 2764.7 0.7 3209.6 12.8 2714.5

8

−1000 +
710 21.7 2657.9 75.3 2731.4 2.7 2650.6

−710 + 500 83.9 2674.9 80.4 2798.3 31.7 2662.0
−500 + 355 65.2 2693.4 20.5 2892.1 56.6 2669.2
−355 + 250 56.0 2715.4 6.8 3018.0 51.6 2675.9
−250 + 180 43.5 2733.1 3.1 3178.6 34.1 2680.1
−180 + 125 27.3 2766.0 1.5 3464.4 27.8 2689.3
−125 + 90 7.6 2849.3 0.9 3901.3 11.8 2729.3
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Table A2. Cont.

Feed Underflow Overflow

Flow
Fraction

Size
Interval Mass Average

Density Mass Average
Density Mass Average

Density

(-) (µm) (g) (kg/m3) (g) (kg/m3) (g) (kg/m3)

9

−1000 +
710 25.4 2673.1 46.0 2756.7 16.5 2663.8

−710 + 500 91.1 2702.0 37.0 2838.4 102.8 2675.1
−500 + 355 62.4 2733.1 9.1 2965.0 92.3 2686.6
−355 + 250 39.6 2772.0 3.9 3131.8 62.6 2700.3
−250 + 180 22.2 2813.9 1.8 3305.2 39.7 2704.8
−180 + 125 13.6 2862.0 1.1 3548.6 26.9 2715.6
−125 + 90 4.6 2949.6 0.8 4077.6 11.0 2757.1

10

−1000 +
710 24.4 2690.9 32.8 2790.6 17.4 2681.8

−710 + 500 74.9 2732.6 24.0 2925.1 100.6 2700.9
-500 + 355 34.6 2791.9 9.4 3055.3 96.3 2685.6
−355 + 250 15.2 2867.2 5.8 3193.1 87.4 2732.9
−250 + 180 7.2 2927.6 2.9 3413.7 67.9 2742.7
−180 + 125 4.8 3012.4 2.9 3870.2 50.2 2758.8
−125 + 90 2.7 3157.2 3.1 4333.0 16.1 2820.1

11

−1000 +
710 45.2 2703.3 24.3 2851.0 10.0 2701.3

−710 + 500 41.6 2787.3 14.3 3049.9 51.5 2743.8
−500 + 355 13.0 2900.5 7.2 3214.7 47.7 2783.3
−355 + 250 6.4 2996.8 5.0 3372.7 36.4 2814.0
−250 + 180 3.2 3141.6 2.8 3761.9 27.6 2836.7
−180 + 125 2.7 3376.3 3.9 4231.7 25.4 2858.2
−125 + 90 2.2 3651.7 3.4 4635.9 11.7 2923.5

12

−1000 +
710 32.1 2743.7 11.0 2946.1 5.0 2736.6

−710 + 500 11.3 2869.8 8.3 3177.2 18.8 2785.5
−500 + 355 2.5 3018.1 4.4 3400.7 14.4 2843.3
−355 + 250 2.0 3104.7 4.5 3759.6 10.1 2911.5
−250 + 180 1.0 3181.9 5.7 4255.3 6.6 2979.3
−180 + 125 1.5 3399.1 9.1 4594.3 5.4 3042.3
−125 + 90 1.5 3512.4 5.1 4717.4 3.4 3165.2

13

−1000 +
710 16.2 2905.4 7.5 3282.4 5.2 2770.5

−710 + 500 9.6 3233.5 9.3 3786.9 10.8 2819.0
−500 + 355 4.5 3708.1 8.1 4234.0 8.0 2891.2
−355 + 250 5.1 4033.6 12.3 4453.3 5.7 2978.1
−250 + 180 4.0 4279.1 11.6 4670.2 3.5 3087.4
−180 + 125 3.8 4447.7 10.6 4758.6 3.4 3193.9
−125 + 90 2.1 4333.0 3.9 4793.4 2.8 3374.5
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