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Abstract: The oxidation state of the mantle plays an important role in many chemical and
physical processes, including magma genesis, the speciation of volatiles, metasomatism and
the evolution of the Earth’s atmosphere. We report the first data on the redox state of the
subcontinental lithospheric mantle (SCLM) beneath the Komsomolskaya–Magnitnaya kimberlite
pipe (KM), Upper Muna field, central Siberian craton. The oxygen fugacity of the KM peridotites
ranges from −2.6 to 0.3 logarithmic units relative to the fayalite–magnetite–quartz buffer (∆logf O2

(FMQ)) at depths of 120–220 km. The enriched KM peridotites are more oxidized (−1.0–0.3 ∆logf O2

(FMQ)) than the depleted ones (from −1.4 to −2.6 ∆logf O2 (FMQ)). The oxygen fugacity of some
enriched samples may reflect equilibrium with carbonate or carbonate-bearing melts at depths
>170 km. A comparison of well-studied coeval Udachnaya and KM peridotites revealed similar
redox conditions in the SCLM of the Siberian craton beneath these pipes. Nevertheless, Udachnaya
peridotites show wider variations in oxygen fugacity (−4.95–0.23 ∆logf O2 (FMQ)). This indicates
the presence of more reduced mantle domains in the Udachnaya SCLM. In turn, the established
difference in the redox conditions is a good explanation for the lower amounts of resorbed diamonds
in the Udachnaya pipe (12%) in comparison with the KM kimberlites (33%). The obtained results
advocate a lateral heterogeneity in the oxidation state of the Siberian SCLM.

Keywords: lithospheric mantle; craton; oxidation state; redox state; diamond; xenolith; peridotite;
kimberlite; diamond; Siberian craton; mantle metasomatism

1. Introduction

The redox state of the mantle is essential for understanding processes occurring in the Earth’s
interior. The fugacity of oxygen (f O2) is a thermodynamic variable that indicates chemical potential
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of the oxygen in reactions where both reagents and products contain the same element (s), but with
different valence states. In the lithospheric mantle, the oxygen fugacity affects not only the relative
abundances of Fe3+ and Fe3+ in minerals, but also the stability of carbon which can exist in reduced
(CH4–H2O fluid, diamond and graphite) or oxidized (CO2–H2O fluid, carbonate melt and carbonates)
forms [1–6]. The composition of C–O–H-bearing fluids coexisting with mantle rocks affects their
solidus temperature and, hence, the depth of mantle magma generation [4,7,8]. The fugacity of oxygen
is a measure of the amount of oxygen available to react with multiple valence elements (e.g., Fe, Cr,
V, Ti, Ce, Eu and C) that can be components of mantle minerals of fluids/melts [1–9]. Among these
elements, iron is the most abundant in the upper mantle of the Earth and the Fe3+/ΣFe(tot) ratio in
minerals can be used as an indicator of the redox conditions. In mantle peridotites, garnet may contain
significant amounts of Fe3+ and, therefore, Fe-rich end-members—skiagite (Fe2+

3Fe3+
2(SiO4)3) and

andradite (Ca3Fe3+
2(SiO4)3)—act as redox sensors in the oxybarometric reactions [10–12].

To date, comprehensive studies of the redox state of the lithospheric mantle underlying the
ancient Archean cratons have been carried out on the Kaapvaal (South Africa) and Slave (Canada)
cratons [13–17]. These studies have shown that the subcontinental lithospheric mantle (SCLM) is
laterally and vertically heterogeneous in terms of its oxidation state (logarithmic units relative to the
fayalite–magnetite–quartz buffer; ∆logf O2 (FMQ)). The main processes, governing the observed f O2

variations in the SCLM are melt extraction from the mantle during SCLM formation and subsequent
reactions with mantle fluids or melts (i.e., due to mantle metasomatism) [5,15,18].

Redox conditions for the Siberian cratonic mantle have been constrained based on peridotite
xenoliths from the Udachnaya kimberlite pipe only [19–21]. In this paper, we report the first data on the
oxygen fugacity (f O2) of peridotite xenoliths from the diamondiferous Komsomolskaya–Magnitnaya
(KM) kimberlite pipe (Upper Muna field). According to Rosen et al. [22], the Udachnaya and KM
pipes are coeval, although they are located 150 km apart on different tectonic terrains of the Siberian
craton (Figure 1 based on Figure 1 from [23]).Thus, our study provides the first insight into the spatial
variations in redox conditions in the SCLM of the Siberian craton in the Upper Devonian–Lower
Carboniferous time. We also discuss the f O2 in the context of different abundances of rounded
(i.e., resorbed) diamonds in the KM and Udachnaya pipes.
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Figure 1. Schematic map (A) of the Siberian craton showing boundaries of the craton (1), its basement 
structure with boundaries of tectonic provinces (2) and (B) terranes (3) within the provinces and 

Figure 1. Schematic map (A) of the Siberian craton showing boundaries of the craton (1), its basement
structure with boundaries of tectonic provinces (2) and (B) terranes (3) within the provinces and
locations of Mesozoic (4) and Paleozoic (5) kimberlite fields (modified after [22]). The kimberlite pipes
Udachnaya (Daldyn field, Markha terrane) and Komsomolskaya–Magnitnaya (Upper Muna, Daldyn
terrane) described in this study are shown by red stars (6) in panel (B). The Anabar Province consists
of the Daldyn, Markha and Magan terranes and the Olenek Province is composed of the Hapschan,
Birekte and Aekit terranes.
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2. Materials and Methods

2.1. Geological Setting

The Siberian craton is a collage of Archean granulite–gneiss and granite–greenstone blocks and
Proterozoic orogenic belts consolidated into a single stable unit at 2.1–1.8 Ga [24–26]. Different terrains
of the Siberian craton are grouped into larger units—tectonic provinces: Tungus, Anabar, Olenek,
Aldan and Stanovoy (Figure 1). The Anabar province is composed of the three terranes: Daldyn
(granulite–gneiss), Markha (granite–greenstone) and Magan (granulite–gneiss) (Figure 1). The faults
separating the terranes indicate tectonic compression and are recognized as zones of collision
(sutures) [27]). Another key piece of evidence of the collisional boundaries between the terranes is the
synchronism of local metamorphism and granitization. U–Pb and Hf-isotope studies of zircons from
crustal xenoliths of the Anabar province (Upper Muna, Daldyn, Alakit and Nakyn kimberlite fields)
revealed the Archean age (from 3.65 to 3.11 Ga) of the basement rocks. This Paleoarchean crust was
significantly reworked during several tectonothermal events, including a Neoarchean stage (2.9–2.5 Ga)
and multiple Paleoproterozoic metamorphisms (1.98, 1.9 and 1.8 Ga) [28–30].

A Yakutian kimberlite province occupies the northeastern part of the Siberian craton and
includes five diamondiferous fields: Mirny, Nakyn, Daldyn, Alakit and Upper Muna (Figure 1).
Kimberlite magmatism within the Siberian craton is related to four distinct episodes: Silurian–Early
Devonian (420–400 Ma), Late Devonian–Early Carboniferous (350–380 Ma), Triassic (215–235 Ma) and
Early Cretaceous–Jurassic (140–170 Ma) [31–35]. Diamond-rich kimberlites are overwhelmingly
Late Devonian–Early Carboniferous in age. The KM diamondiferous kimberlite is one of the
19 kimberlite bodies in the Upper Muna field. The KM pipe was discovered in the middle of
the last century, but mining operations only started in 2019. The pipe consists of two ore bodies
(south and west) comprising three types of kimberlite rocks: kimberlite breccia, monticellite-bearing
porphyritic kimberlite and monticellite-free porphyritic kimberlite. According to the terminology
proposed in [36], kimberlite breccia is defined as kimberlite rocks containing >10 vol% of country rocks,
whereas porphyritic kimberlite hosts <10% of country rocks. The KM pipe contains mantle xenoliths,
but eclogites are rare [37].

U–Pb macrocrystic zircon or perovskite age data for the KM pipe is not available yet. Recently
obtained U–Pb perovskite and macrocrystic zircon ages for six kimberlite pipes from the Upper
Muna field showed a narrow range from 367 to 345 Ma [34,38–42], corresponding to the Upper
Devonian–Lower Carboniferous time. The emplacement age of the KM pipe is roughly estimated as
334–382 Ma based on the bulk groundmass K–Ar data of kimberlite breccia [43,44]. The Rb–Sr ages of
phlogopite megacrysts from the pipe yielded 400–402 Ma [45].

2.2. Samples

The samples were collected in 2012 (TKM ones) and 2018 (AKM ones) from the kimberlites in the
small quarries that remained after the bulk sampling of the pipe. Nine xenoliths investigated in this
study are within 5–10 cm in the longest dimension and four samples are represented by small (less than
3 cm in diameter) fragments of larger xenoliths. The samples were selected in order to demonstrate a
range of metasomatic re-enrichment from dunites and harzburgites to lherzolites.

2.3. Analytical Methods

The major and minor element compositions of the minerals were determined by using a JEOL
JXA-8100 microprobe at the Analytical Center for Multi-Elemental and Isotope Research of Siberian
Branch of the Russian Academy of Sciences (SB RAS), V.S. Sobolev Institute of Geology and Mineralogy,
Novosibirsk, Russia. The analytical conditions were a 20-kV voltage and 100-nA beam current.
The counting times were 10 s at the peak and 5 s in the background on each side of the peak for the
main elements (Mg, Ti, Ca, Si, Fe, Mn, Ni) and 20 s at the peak and 10 s in the background on each side
of the peak for minor elements (Na, Cr, K, Al). Elemental calibration was performed on a range of
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well-characterized natural and synthetic in-house standards. The detection limits (3σ) did not exceed
(in wt%) 0.01 for CaO and K2O, 0.02 for Al2O3, Cr2O3, FeO, MnO, NiO and Na2O, 0.03 for TiO2, 0.04 for
SiO2 and 0.14 for MgO.

Trace elements in garnets were measured with an ELEMENT XR (Thermo Fisher Scientific)
ICP-SF-MS coupled with a 193-nm (ArF) resonetics RESOlution M-50 laser ablation system in the State
Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences. The laser conditions were set as follows: repetition rate—6 Hz; energy density—~4 J·cm−2;
spot size 60 µm in diameter. A smoothing device (The Squid, Laurin Technic) was used to smooth the
sample signal. Each spot analysis consisted of a 20-s gas blank collection with the laser off and a 30-s
sample signal detection with the laser on. The calibration line for each element was constructed by
analyzing the three USGS reference glasses, BCR-2G, BHVO-2G and GSD-1G. The detailed experimental
procedure and data reduction strategy are described in Zhang et al. [46]. A USGS reference glass,
TB-1G, was measured as an unknown sample. Thirty analyses of TB-1G indicate that most of the
elements are within 8% of the reference values, and the analytical precision (2RSD) was better than
10% for most elements.

The valence state of the iron and the Fe3+/
∑

Fe ratio in garnets were determined using an SM-1201
Mössbauer spectrometer at the Institute of Precambrian Geology and Geochronology, Saint-Petersburg,
Russia. Measurements were made at room temperature in a constant acceleration mode with a nominal
50 mCi57Co source in a Cr matrix. Analyses were applied to the 40–80 mg samples of clean, inclusion-
and alteration-free garnet fragments, which were separated from crushed portions of the xenoliths put
in ethanol for better observation by hand-picking under a binocular microscope. The spectra were
collected with a multichannel analyzer over a velocity range of ±7 mm/s. The velocity was calibrated
relative to the metal iron. The spectra were approximated by the sum of Lorentzian form lines using
the MOSSFIT© (Mössbauer group, Chemical department of the SPbU) software. The relative amounts
of Fe2+ and Fe3+ were determined using the integral intensities of corresponding doublets attributed
to ferrous and ferric iron. The probabilities of the Mössbauer effect were assumed to be equal for Fe2+

and Fe3+ and at different sites. The ratio of Fe3+/
∑

Fe in the minerals was estimated with an error of
±0.005–0.01.

3. Results

3.1. Petrography

The IUGS systematics of igneous rocks [47] are commonly used by researchers for the classification
of ultramafic mantle samples. However, these rock types often show substantial alterations in their
olivine and pyroxene phases. Although peridotite with a ≤5% clinopyroxene content is classified sensu
stricto as harzburgite [47], it is often the convention in mantle petrology to refer to rocks with any
clinopyroxene as lherzolites and to rocks without evident clinopyroxene as harzburgite. The second
described approach is accepted in the present study, in order to be consistent with other works on
mantle peridotites. We classified the KM samples according to the nomenclature proposed by Pearson
and Brooks [48], i.e., clinopyroxene-free peridotite was defined as harzburgite or dunite (Table 1).
Six samples in our collection were classified as harzburgites, six as lherzolites and one as dunite
(Figure 2a,b). The dunite xenolith did not contain orthopyroxene.
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Table 1. Data derived from the studied peridotites.

Sample No. AKM 5c AKM 14 AKM 29l AKM 36 AKM 45◦ AKM 52 AKM 54p AKM 56 AKM 58 TKM 10/11 TKM 13/11 TKM 26/11 TKM 16/11

Rock type L H H H L D L L H L H H L

Texture C C C C C C P P C C C C C

Ol 91 92 90 94 89 97 84 80 93 89 92 92 81

Grt 2 6 4 4 4 3 5 10 3 6 3 3 7

Opx 5 2 6 2 6 – <1 6 4 1 5 5 2

Cpx <1 – – – 1 – 10 4 – 4 – – 10

Sp/Phl –/– –/– –/<1 1/<1 –/– –/– –/– –/– –/– –/– –/– –/– –/–

Garnet class G9 G10 G10 G10 G9 G10 G9 G9 G9 G9 G10 G10 G9

REEN pattern SIN HUM HUM SIN NOR SIN SIN NOR NOR HUM SIN SIN NOR

Fe3+/ΣFe 0.070 0.104 0.104 0.024 0.104 0.050 0.124 0.140 0.112 0.095 0.055 0.037 0.120

TOW79 (◦C) P fix 982 974 1010 823 1208 1062 1249 1475 1185 1142 949 979 1158

TNG10/T98 (◦C) 944 878 958 853 1174 1127 1312 1394 1277 1052 979 989 1118

PNG85 (GPa) 4.4 4.3 5.4 3.8 6.0 5.8 6.9 6.7 6.2 5.0 4.5 4.6 5.7

logf O2
(∆FMQ)M16

−1.05 0.26 −1.03 −1.53 −1.98 −2.34 −2.64 −1.95 −1.93 −1.37 −1.40 −2.00 −1.47

logf O2 (∆FMQ)S13 −1.87 −0.91 −1.77 −2.65 −2.44 −2.72 −2.82 −2.22 −2.27 −1.99 −2.17 −2.90 −1.98

TOW79 (◦C) 995 1146 1037 810 1215 1065 1214 1499 1149 1160 941 975 1216

PNG85 (GPa) 4.3 5.1 5.7 3.3 6.5 4.1 5.7 7.8 5.2 5.4 3.7 4.0 6.1

logf O2
(∆FMQ)M16

−1.44 −1.31 −1.48 −1.16 −2.14 −1.85 −2.37 −1.78 −1.39 −2.00 −1.13 −1.91 −1.88

Mg# Grt 82.3 84.5 84.2 84.52 84.4 86.8 82.4 83.6 82.2 85.0 83.7 84.4 83.2

Mg# Ol 92.1 92.4 92.4 93.1 92.6 93.5 91.4 90.6 91.5 91.8 92.7 92.5 92.1

Note: lherzolite (L), harzburgite (H), dunite (d), sinusoidal (SIN), humped (HUM), normal (NOR). Abbreviations for the thermometers and barometers are given in Section 3.4. TOW79—the
olivine–garnet thermometer (the estimated error is 60 ◦C at T < 1300 ◦C) [49], TNG10—the orthopyroxene–garnet thermometer (the estimated error is 36 ◦C at T = 900–1200 ◦C and 25 ◦C at
T > 1200 ◦C) [50], TT98—the clinopyroxene–orthopyroxene thermometer (the estimated error is 35 ◦C at T = 900–1200 ◦C and 25 ◦C at T > 1200 ◦C) [51], PNG85—the orthopyroxene–garnet
barometer (the estimated error is ±0.3 GPa) [52]. Oxygen fugacity was additionally estimated using the oxybarometers of Miller et al. [12] and Stagno et al. [11], M16 and S13, respectively.
olivine (Ol), garnet (Grt), orthopyroxene (Opx), clinopyroxene (Cpx), spinel (Spl) and phlogopite (Phl)—modal abundances in (vol%).
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coarse harzburgite xenolith (AKM 36) in contact with the kimberlite. Symbols: olivine (Ol), garnet 
(Grt), orthopyroxene (Opx), clinopyroxene (Cpx), spinel (Spl). 

The classification proposed by Pearson and Brooks [48] corresponds to the garnet Ca–Cr 
systematic because the garnet composition in peridotite depends on the presence/absence of 
clinopyroxene and/or orthopyroxene [53,54]. Garnet from the six samples belongs to the G10 
harzburgitic/dunitic group by [54] (Figure 3). The other garnets are plotted within the G9 lherzolite 
field [54] (Figure 3). However, one (AKM 58) of them neither contains clinopyroxene in the examined 
thin sections nor in the hand specimen and, thus, should be classified as a harzburgite according to 
[48]. 

 
Figure 3. Cr2O3 vs. CaO diagram for garnets from the Komsomolskaya–Magnitnaya peridotite 
xenoliths. G0–G12 fields are after Grütter et al. [54]: G3—eclogitic garnets; G4, G5—pyroxenitic 
garnets; G9 (overlaps with G5—gray field; the Komsomolskaya–Magnitnaya kimberlite pipe (KM) 
garnet in the G5 field does not match this field in terms of its TiO2 content and can be also attributed 
to the G9)—lherzolitic garnets; G10—harzburgitic garnets; G12—wehrlitic garnets; G0—unclassified 

Figure 2. Thin sections of the peridotite xenoliths from the Komsomolskaya–Magnitnaya pipe (visible
light scans). (a) Coarse-grained lherzolite xenolith (AKM 45) in contact with the kimberlite; (b) The
coarse harzburgite xenolith (AKM 36) in contact with the kimberlite. Symbols: olivine (Ol), garnet (Grt),
orthopyroxene (Opx), clinopyroxene (Cpx), spinel (Spl).

The classification proposed by Pearson and Brooks [48] corresponds to the garnet Ca–Cr systematic
because the garnet composition in peridotite depends on the presence/absence of clinopyroxene and/or
orthopyroxene [53,54]. Garnet from the six samples belongs to the G10 harzburgitic/dunitic group
by [54] (Figure 3). The other garnets are plotted within the G9 lherzolite field [54] (Figure 3). However,
one (AKM 58) of them neither contains clinopyroxene in the examined thin sections nor in the hand
specimen and, thus, should be classified as a harzburgite according to [48].
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Figure 3. Cr2O3 vs. CaO diagram for garnets from the Komsomolskaya–Magnitnaya peridotite
xenoliths. G0–G12 fields are after Grütter et al. [54]: G3—eclogitic garnets; G4, G5—pyroxenitic garnets;
G9 (overlaps with G5—gray field; the Komsomolskaya–Magnitnaya kimberlite pipe (KM) garnet in
the G5 field does not match this field in terms of its TiO2 content and can be also attributed to the
G9)—lherzolitic garnets; G10—harzburgitic garnets; G12—wehrlitic garnets; G0—unclassified category.
Fields separated by dashed lines are after Sobolev et al. [53] and denote different mantle parageneses:
I—wehrlitic; II—lherzolitic; III—harzburgitic/dunitic; IV—diamondiferous harzburgitic/dunitic.
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Eleven samples are coarse and two are porphyroclastic (Table 1, Figure 4a,b), based on the
terminology of Harte [55], where textures are defined based on the presence and abundance of
olivine porphyroclasts and neoblasts. The coarse peridotites contain granular olivine (up to 1.5 cm),
orthopyroxene (0.1–3 mm), rounded garnets (1–5 mm) and irregularly shaped clinopyroxene (Figure 4b).
The modal abundance of clinopyroxene in the studied peridotites is usually≤1 vol% (Table 1). However,
the TKM 16/11 sample has around 10 vol% of clinopyroxene (Figure 2a). Two coarse samples show
that primary-textured equilibrated phlogopite occurred as large tabular grains (AKM 29l and AKM 36)
(Figure 4d).
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Figure 4. Photomicrographs of mantle xenoliths from the Komsomolskaya–Magnitnaya pipe
in (a,b) cross-polarized light and in (c,d) plane-polarized light. Symbols: olivine (Ol), garnet
(Grt), orthopyroxene (Opx), clinopyroxene (Cpx), phlogopite (Phl); (a) lherzolite AKM 54p with
porphyroclastic texture. Three types of olivine grains were observed: Ol1—large porphyroclasts,
Ol2—small neoblasts and Ol3—euhedral tabular grains; (b) coarse texture of the harzburgite AKM
58 with large olivine crystals (up to 1 cm); (c) harzburgite TKM 26/11 with coarse olivine up to
0.5 cm, orthopyroxene and garnet with black kelyphitic rim; (d) phlogopite grains observed in the
coarse-grained harzburgite AKM 29l.

Generally, phlogopite is considered to be a product of the modal metasomatism in mantle
peridotites [56]. “Primary-textured” or “primary-metasomatic” refers to phlogopite that was formed
during mantle metasomatic events that clearly preceded eruption and do not relate to the host magma.
Such phlogopite is unzoned and usually represented as large disseminated or clustered grains [57–59].
All studied xenoliths also contain secondary-textured phlogopite as a part of the keliphytic rims
around garnets.

Samples AKM 54p and AKM 56 show porphyroclastic textures, where more than 50% of
olivine grains are porphyroclasts. Three types of olivine were found in the AKM 54p peridotite:
large porphyroclasts, small polygonal neoblasts and a tabular olivine. The last one is known as a
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tablet olivine. The tablet olivine is formed during annealing, postdating the deformation by replacing
strained olivine porphyroclasts [60] (Figure 4a). The proportion of olivine neoblasts is higher in AKM
56 than AKM 54p.

All peridotite samples were serpentinized to varying degrees (10–30%).

3.2. Major- and Minor-Element Mineral Composition

Garnets are pyropes with Mg# (Mg#(molar) = 100 × Mg/(Mg + Fe2+)) ranging from 82.2 to
86.8 (Table 1). Seven garnets are lherzolitic (G9) in composition (Figure 3), with CaO concentrations
from 4.42 to 7.32 wt% (Table S1) and Cr2O3 content from 2.6 to 11.4 wt%. Another six garnets are
identified as harzburgitic/dunitic (G10) with CaO and Cr2O3 ranging from 1.42 to 3.74 wt% and form
2.24 to 9.48 wt%, respectively. Two samples fall into the sub-calcic harzburgitic garnet field with
CaO < 2 wt%. Total iron, expressed as FeO, in garnets from the KM peridotites, ranges from 6.63 to
7.82 wt%. The garnet Fe3+/ΣFe measured using Mössbauer spectroscopy spans from 0.024 to 0.140
(Table 1 and Table S2).

Olivine is forsterite with Mg# ranging from 90.5 to 93.6 (Table S3). Orthopyroxene is identified
as enstatite with Mg# = 91.4–93.5, Cr2O3 = 0.21–0.41 wt%, Al2O3 = 0.40–0.88 wt% and Na2O =

0.03–0.23 wt% (Table S4). Clinopyroxene is a diopside with Ca# (Ca#(molar) = 100 × Ca/(Ca + Mg +

Fe)) = 34.3–43.5, Mg# = 90.5–92.4, Cr2O3 = 0.67–2.45 wt% and Al2O3 = 1.78–3.42 wt% (Table S4).

3.3. Trace Element Composition of Minerals

The trace element abundances in the KM garnets are provided in Table S1. Three different
chondrite-normalized rare earth element (REEN) patterns are observed for the xenolith garnets:
(1) sinusoidal; (2) humped; and (3) normal (Figure 5) [13,61].
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Figure 5. Chondrite-normalized rare earth element (REEN) patterns of peridotite garnets from the
KM xenoliths. CI chondrite values are from [62]. (a) Sinusoidal patterns; (b) normal (red) and humped
(green) patterns.

Sinusoidal patterns have two peaks—a positive peak at either Nd (samples AKM 52, TKM 26/11,
AKM 54p) or Sm (TKM 13/11, AKM 5c) and a negative one at Er or Tb (TKM 26/11 and AKM 36)
(Figure 5a). Humped patterns show a steep positive slope from La to Sm, an almost flat plateau from
Sm to Tb at approximately 10–15 chondritic concentrations and a negative MREE to HREE slope
(samples AKM 14, 29l and TKM 10/11) (Figure 5b). Garnets with humped REEN patterns are relatively
enriched in Ti, Y and Zr compared to garnets with sinusoidal patterns (Figure 6). Four samples (AKM
14, 45, 56 and 58) have normal REEN patterns. They look similar to the humped garnets, but with
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nearly flat MREEN–HREEN. These garnets show high Y (up to 20 ppm), Ti (up to 2300 ppm) and
moderate Zr (180 ppm) concentrations (Figure 6).
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3.4. Oxythermobarometry

Equilibrated pressures and temperatures were calculated for the mantle xenoliths using
conventional tools recommended by Nimis and Grütter [50] for mantle peridotites. We used the
orthopyroxene–garnet barometer of Nickel and Green [52] (PNG85), the clinopyroxene–orthopyroxene
geothermometer of Taylor [51] ((TT98) and the olivine–garnet geothermometer of O’Neill and
Wood [49] (TONW79). Temperatures for clinopyroxene (Cpx)-free samples were obtained with the
orthopyroxene–garnet geothermometer proposed by Nimis and Grütter [50] (TNG10). Pressures and
temperatures were calculated using the PTQuick software programmed by Dolivo-Dobrovolsky [64].

The geothermometers for mantle-derived garnet peridotites are not internally consistent and
may diverge by over 200 ◦C for the well-equilibrated samples [50]. To assess whether the minerals
were in equilibrium, we: (i) studied the core–rim zonation of the samples (only the core compositions
were used for P–T calculations); (ii) calculated temperatures using the thermometers mentioned
above at pressures obtained from the pair PNG85 and TT98 (or TNG10 for Cpx-free samples). Difference
between temperatures (∆T) calculated for the orthopyroxene (Opx)–garnet (Grt) and Grt–olivine (Ol)
pairs should be within the experimental error in case of an equilibrated assemblage of peridotite
minerals [14,50]. All studied KM xenoliths show equilibrium between minerals. Differences between
calculated temperatures is <95 ◦C and ten peridotites show ∆T < 60 ◦C (Table 1).

The samples exhibit a P–T path consistent with the cratonic geotherm with surface heat flux =

35 mW/m2, recently obtained for the lithospheric mantle beneath the KM pipe [65] using the FITPLOT
program [66] and for the nearby Novinka pipe [67] (Figure 7).

Oxygen fugacity was evaluated relative to the fayalite–magnetite–quartz buffer (∆logf O2 (FMQ))
using the Gtf O2 software by Miller et al. [12]. The approach proposed by Miller et al. [12]
incorporates four independent oxybarometers and yields optimum logf O2 estimated by the least
squares method. To calculate ∆logf O2, we chose to use a combination of PNG85 and TT98 (or TNG10 for
the clinopyroxene-free samples) because this pair was recommended as the most robust for mantle
peridotites [50]. Oxygen fugacity expressed relative to the fayalite–magnetite–quartz buffer (FMQ) as a
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∆logf O2 (FMQ) for KM samples ranging from 0.26 to −2.64. The uncertainty reported in calculating
the f O2 calculated with this method ranges from 0.6–0.9 log units (Figure 8).
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Figure 8. Plots of oxygen fugacity (f O2) (logarithmic units relative to the fayalite–magnetite–quartz
buffer (FMQ) buffer) vs. pressure/depth for garnet peridotite xenoliths from the KM pipe. Fields indicate
depleted peridotites and peridotites with the signatures of fluid or melt metasomatic alteration (based
on the systematics in Figures 5 and 6). Trend (1) represents the calculated depth–f O2 curve for the
pre-metasomatized subcontinental lithospheric mantle (SCLM) [8]. Lines (2) and (3) are f O2 trends
for depleted peridotites from the Udachnaya [19] and KM pipes (details are provided in Section 4.2.).
The diamond/graphite phase boundary is after [68]. Enstatite–magnesite–olivine–diamond/graphite
(EMOD/EMOG) buffer line refers to the reaction of diamond/graphite stability vs. an oxidized form of
carbon calculated for the KM mantle paleogeotherm using Equation (14) from Stagno and Frost [70].
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Additionally, the ∆logf O2 (FMQ) calculated using the combination of TONW79 and PNG85 are
summarized in Table 1. We have excluded the Fe3+ determined by Mössbauer spectroscopy from
the total Fe because TONW79 is sensitive to the presence of ferrous iron. We observed that for the low
Fe3+/ΣFe values (up to 0.07), temperature increases by up to 60 ◦C, while for the oxidized samples with
the higher Fe3+/ΣFe values, the discrepancy reaches 100–150 ◦C. Sample AKM 14 has the temperature
differences of 270 ◦C between TONW79 and TNG10. Nimis and Grütter [50], in their extensive review on
geothermobarometry, concluded that TONW79 may provide inaccurate estimates, especially for highly
oxidized samples (as AKM 14). The ∆logf O2 (FMQ) varies within ±0.1–0.6-log unit for all samples
comparing to the PNG85/TNG10/T98 pair, excluding AKM 14 due to the strong dependence of f O2 on the
pressure of garnet peridotites (Table 1).

4. Discussion

4.1. Mantle Metasomatism

The Siberian SCLM formed as a residue from a high-degree partial melting of fertile garnet
peridotites [71,72]. After the consolidation, the lithosphere of the Siberian craton experienced
multiple large-scale metasomatic events [63,73]. Two main types of mantle metasomatism have
been described [74–78]: (a) a modal metasomatism, implying the formation of new minerals
and (b) a cryptic metasomatism, suggesting changes in the composition of preexisting minerals
only [56]. The metasomatic enrichment includes numerous types of metasomatic agents: hydrous and
carbonatitic fluids, high-temperature silicate melts, Fe–Ti rich agents and kimberlite fluids [74–76,78–81].

REEN patterns and trace elements such as Y, Ti and Zr are powerful indicators of metasomatic
re-enrichment that occurred in the lithospheric mantle. The most depleted samples from the SCLM
are represented by mineral inclusions in diamonds [63]. Griffin and Ryan [63] defined garnets
from depleted peridotites as containing low abundances of TiO2 (<2000 ppm), Zr (<25 ppm) and
Y (<12 ppm), whereas metasomatically enriched garnets show higher contents of these elements
(Figure 6). The most depleted harzburgitic garnets from diamonds have strongly sinusoidal REEN

patterns, indicating re-enrichment only by the most incompatible elements [61]. Meanwhile almost
all SCLM peridotites experienced metasomatic overprint [74,75], except for preserved relicts with
the ultra-depleted features [82,83]. Peridotitic garnets with normal and humped REEN patterns may
represent strong metasomatic re-enrichment [13,14].

For the Udachnaya mantle peridotites, Yaxley et al. [19] found that depleted low-Ti garnets
have strongly sinusoidal REEN patterns, whereas enriched high-Ti garnets show normal and weakly
sinusoidal REEN patterns. The enriched samples were equilibrated at pressures of 4.5–6.6 GPa, whereas
pressures calculated for the depleted peridotites range wider from 2.6 to 7.1 GPa (Figure 9) [19,38].
This observation indicates that the SCLM beneath the Udachnaya pipe was mainly depleted and then
became heterogeneously enriched at the 130–180 km depth range [19,38]. The chemical composition
of clinopyroxene and garnet from the Udachnaya sheared peridotites came from the enriched layer,
indicating a metasomatic, rather than residual, origin [74,84]. Some of the garnets were affected by
silicate metasomatism and became lherzolitic in terms of major elements, but they retained sinusoidal
REEN patterns [74]. These patterns are similar to those of lherzolitic garnets found as inclusions in
diamonds [85]. Garnet with normal REEN patterns could have crystallized from silicate metasomatic
melts together with clinopyroxene [74].
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estimated for mantle xenoliths using PNG85. Pressures for garnet xenocrysts [38] were calculated from
the equation of mantle paleogeotherm beneath the Novinka pipe [67]. Data for Udachnaya mantle
peridotites are after Y12—Yaxley et al. [19] and I10—Ionov et al. [84]. Garnet xenocrysts are from
G99 [38]. The subdivision of samples into depleted and enriched is based on the systematics developed
in [63].

Two KM garnets (TKM 26/11 and AKM 52) with sinusoidal REEN patterns show depletion in
Ti (<70 ppm), Zr (<10 ppm) and Y (<4 ppm) (Figure 6a). Mineral modes (Cpx-free, low-Opx) and
compositions (e.g., high-Cr subcalcic garnets, sinusoidal REEN patterns) indicate that these xenoliths
may represent the depleted residual peridotites with insignificant metasomatic alterations [77]. Another
three samples contain garnets with weakly sinusoidal REEN patterns and a slight enrichment in Zr (up
to 58 ppm). These samples are clinopyroxene-free (AKM 5c has less than 1% Cpx) and according to
Y–Zr systematics (Figure 6) they were affected by low-temperature fluid metasomatism.

We also studied peridotites that contain garnets with humped REEN patterns and a high Zr content
(130–180 ppm). One of these peridotites (AKM 29l) comprises primary-textured phlogopite indicating
a low-temperature metasomatism. Notably, although the KM garnets with the humped REEN patterns
contain, in general, more Zr (130–180 ppm) than garnets from the Udachnaya peridotites (<140 ppm)
(Figure 9), rare garnet xenocrysts with Zr content > 100 ppm were described from the Udachnaya
kimberlites [38].

Phlogopite may be related to different types of metasomatic agents. Some researchers [86,87]
provided data on the crystallization of phlogopite together with clinopyroxene in the lithospheric
mantle in the presence of kimberlite-related melts: garnet + orthopyroxene + melt = phlogopite +

diopside [88,89]. The KM harzburgite xenoliths (AKM 36 and AKM 29l with G10 garnets) contain
primary-textured phlogopite, but no clinopyroxene. This may indicate that the KM harzburgites were
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metasomatized by a hydrous fluid enriched in mobile potassium and depleted in calcium rather than a
kimberlite-related melt. The low-temperature phlogopite metasomatism is accompanied by increasing
Zr content. Three out of thirteen KM peridotites have garnets with a Zr content much higher than that
reported for garnets from the Udachnaya peridotites (Figure 9) [19,84]. Thus, the SCLM beneath the
KM pipe at 130–170 km depth was reworked by the low-temperature phlogopite metasomatism more
significantly than the SCLM beneath the Udachnaya pipe.

The KM garnets with normal REEN patterns are enriched in Ti (>2200 ppm), Zr (>20 ppm) and Y
(>13 ppm). Four samples with such garnets also contain a lot of clinopyroxene (up to 10 vol%) and may
indicate interaction with the silicate melt or the MARID type of metasomatism as suggested by garnet
Y–Zr systematics [63]. On the one hand, Creighton et al. [13] described garnets with Y enrichment
and low Zr content and interpreted such geochemical signatures as fingerprints of a melt/fluid
metasomatism similar to the mica–amphibole–rutile–ilmenite–diopside (MARID) type. However,
silicate modal and cryptic metasomatisms initiated by asthenospheric melts with a composition
resembling a mix of ocean island basalts (OIB) and kimberlites have been established in mantle
peridotites from the Udachnaya pipe [74].

Ionov et al. [78] showed that the base of the Siberian lithosphere was affected by different
metasomatic agents. The sheared Siberian peridotites were subdivided into two groups based on the
modal amount of rock-forming minerals (clinopyroxene and garnet), their compositions and garnet
REEN patterns [78]. The first group of peridotites contain high amount of clinopyroxene and garnets
with normal REEN patterns; thus, they were strongly affected by metasomatic agents. The second
group is presented by Cpx-poor peridotites with garnets that have a sinusoidal REEN pattern; thus,
such peridotites were slightly metasomatized comparing to the first group. Some KM xenoliths
were also identified as sheared peridotites. They have different modal abundances of clinopyroxene
and garnet. The AKM56 sheared peridotite contains >6 vol% clinopyroxenes and >10 vol% garnets
with normal REEN patterns. The AKM54p is a sheared Cpx-poor peridotite containing garnet with
sinusoidal REEN patterns. Thus, metasomatic interaction at the base of the lithospheric mantle beneath
the KM pipe may have a localized nature and a different degree similar to the SCLM beneath the
Udachnaya pipe [78]. Agashev et al. [74] defined three different types of metasomatic enrichment
related to the Udachnaya sheared peridotite xenoliths: hydrous or carbonatitic fluid, silicate and an
Fe-rich metasomatic. Additional studies are required to describe the composition of the metasomatic
melts/fluids at the base of the SCLM beneath the KM pipe.

The KM xenoliths are represented only as peridotites derived from the depth range of 120–230 km
(4–7 GPa) and do not cover the entire SCLM column beneath the KM pipe. We described the
extensively developed fluid (phlogopite) metasomatism at 130–170 km depth caused by hydrous fluid
enriched in K and depleted in Ca. The melt metasomatism beneath the KM pipe was revealed at
a 170–220 km depth. Griffin et al. [38] reported geochemical data for the peridotite-derived garnet
xenocrysts from the Novinka pipe. The Novinka and KM pipes are situated in 50 m apart and may have
a single feeder dike [36] and, thus, could sample the same mantle column. The provided data confirm
that the SCLM beneath the Upper Muna field was predominantly affected by a melt metasomatism
at depths of 170 km and deeper, whereas the fluid metasomatism was prevalent at shallower depths
(Figure 10a). The distribution of fluid and melt-metasomatized garnet peridotites in the SCLM beneath
the Udachnaya pipe is more complex [38]. Several peaks indicating different metasomatic events at a
wide range of depths (100–210 km) have been revealed (Figure 10b).
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Figure 10. Pressure distribution of melt and fluid metasomatized (based on Zr–Y classification proposed
in [63]) garnet xenocrysts [38] from the (a) Novinka and (b) Udachnaya pipes. Pressures were calculated
using temperatures proposed for the xenocryst in combination with the mantle paleogeotherms for the
Novinka [67] and Udachnaya [65] pipes.

4.2. Oxidation State of SCLM Beneath the KM Pipe

Experimental studies propose the relatively incompatible behavior of Fe3+ in comparison with
Fe2+ during the partial melting of peridotitic mantle [5,90,91]. High degrees of partial melting
(20–40%), typical for cratonic peridotites, lead to a progressive decrease in f O2 for solid residue
(e.g., [17,90,91]). Metasomatisms can both oxidize and reduce mantle minerals, depending on the type
of metasomatic agent (e.g., CO2-rich melt vs. CH4 fluid) [7,8,92]. However, mantle peridotites showing
modal and cryptic metasomatic signatures, in general, have higher f O2 values in contrast to depleted
peridotites [13,19]. Thus, the lowest f O2 of pre-metasomatized SCLM can be potentially estimated from
xenoliths of depleted peridotites, which show evidence of a slight metasomatic alteration. Frost and
McCammon [8] calculated the depth–f O2 curve for the garnet peridotite (trend #1 in Figure 11a), which
is usually used as a reference trend for the pre-metasomatic SCLM [13,21].
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Figure 11. (a) ∆logf O2 (FMQ)M16 vs. pressure diagram for garnet peridotite xenoliths from the
KM and Udachnaya (solid black squares) pipes. Oxygen fugacity for the Udachnaya pipe (black
squares) was recalculated by means of the oxybarometer from [12] using original data from [19,21];
(b) variations in the oxygen fugacity calculated for different localities after Miller et al. [12]. Trends (1),
(2), (3), diamond/graphite and EMOD/EMOG transitions are similar to Figure 8. Blue thin dashed lines
(calculated Equation (14) from [70]) represent oxygen fugacity for carbonate-bearing melt (CO2 mole
fraction is indicated by values 0.01, 0.05 and 0.1) coexisting with diamond/graphite.

Yaxley et al. [19] showed that depleted garnet peridotites from the Udachnaya pipe form an
approximately linear trend where f O2 decreases with depth. This trend is almost identical to
curve of the “pre-metasomatic” SCLM from [8] (trend #2 Figure 11). This means that the depleted
samples from the Udachnaya pipe underwent only minor metasomatic oxidation and reenrichment.
Enriched garnet peridotites from the Udachnaya pipe show ∆logf O2 (FMQ) of 1–2 units higher than
the depleted samples. This difference indicates a clear link between metasomatism and oxidation [19]
(Figure 11). Oxygen fugacity estimates for the Udachnaya peridotites obtained by Goncharov et al. [21]
are consistent with the data published by Yaxley et al. [19].

The KM-depleted peridotites (trend #3 in Figure 11a) are generally more oxidized than the
depleted peridotites from the Udachnaya pipe (trend #2 in Figure 11a) [19] at depths of 120–220 km.
Moreover, KM harzburgites/dunites, representing the most depleted peridotites, are more oxidized
than some Udachnaya enriched lherzolites. The comparison point out that the SCLM beneath the
Daldyn field (Udachnaya pipe) consists of more heterogeneous material (−4.95–0.23 ∆logf O2 (FMQ))
than the SCLM beneath the Upper Muna field (KM pipe) (−2.6–0.3 ∆logf O2 (FMQ)). Although the
∆logf O2 (FMQ) estimations for the KM and Udachnaya peridotites overlap, it cannot be denied
that some peridotites from the Udachnaya pipe are more reduced (the difference can reach up to 2.5
∆logf O2 (FMQ)). This may indicate reduced domains of depleted peridotites in the SCLM beneath the
Udachnaya pipe.

The reduced depleted samples from the Udachnaya pipe give evidence of the absence of carbonate
or carbonated silicate melts at the depths of 170–220 km, but they are also in agreement with the
reduced CH4 + H2O asthenospheric fluids [19,21,93] or reduced silicate melts [94]. The KM samples
are too oxidized to be in equilibrium with highly reduced fluids. The depleted peridotites, from a
depth of 170–220 km, overlap with the stability field of the melt, which scan contain up to 0.05 moles
of CO2 (Figure 11).

Different types of metasomatic agents (low-T fluid and melt/MARID) could affect the f O2, as
suggested by the REEN patterns in garnets, and the Y–Zr–TiO2 systematics. Fluid-metasomatized
samples from the KM pipe do not show an apparent depth–f O2 trend, but, instead, span the
range from −1.5 to 0.3 ∆logf O2 (FMQ) between 135 and 165 km (Figure 11a). All samples,
including those with sinusoidal REEN patterns in garnets, are more oxidized than the oxidation
predicted by trend #1 (Figure 11a). This suggests that fluid-metasomatized agents may cause
extensive oxidation of the lithospheric mantle. The most oxidized KM samples cross the
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enstatite–magnesite–olivine–diamond/graphite (EMOG/D) reaction boundary [70] (Figure 11) and,
therefore, the carbon in these peridotites is able to exist in the form of carbonate phases.

The melt-metasomatized samples show a decrease in the ∆logf O2 (FMQ) from −1.5 at
~170 km to −2.6 at ~220 km (Figure 11b). The trend formed by these samples is close to the
enstatite–magnesite–olivine–diamond/graphite (EMOD/EMOG) buffer [70]. Peridotites containing
garnets with normal REEN patterns may intersect the buffer, taking the uncertainties into account.
The presence of a carbonate-bearing oxidized melt (e.g., carbonate or carbonated silicate) shifts the
diamond/graphite–carbonate equilibrium towards the lower f O2 and constricts the stability field of
diamond/graphite [6,70,95,96]. All studied KM samples are beyond the diamond stability field if the
melt contains 0.05 moles of CO2 (Figure 11). Thus, the interaction of the carbonatitic and/or carbonated
silicate melt with the peridotitic mantle beneath the KM pipe could produce a destructive environment
for diamonds.

In contrast to the Daldyn field, diamond deposits in the Upper Muna field are characterized by a
higher content of rounded diamonds. For instance, the KM and Novinka pipes have 33% and 17%
of rounded diamonds, respectively, vs. 12% of rounded diamonds in the Udachnaya pipe [97,98].
The rounded shape of diamonds is interpreted as a result of a dissolution into melts/fluids [99–101].
The dissolution of diamonds may occur in kimberlite magma during their transportation from the mantle
to the Earth’s surface or in situ in the mantle due to the metasomatic reaction of diamond-bearing rocks
with oxidizing melt/fluid [101–106]. The SCLM beneath the Udachnaya pipe is more heterogeneous
in terms of f O2 than the SCLM beneath the KM pipe (Figure 11). The amount of depleted material,
expressed as a percentage of depleted garnet xenocrysts (based on the data from [38]) beneath the
Udachnaya pipe (23%) is much higher than beneath the pipes within the Upper Muna field (5%).
A combination of these facts may explain the lower amounts of resorbed diamonds in the Udahcnaya
pipe in comparison with the KM and Novinka kimberlites. It is interesting to note that the Mir and
Internationalnaya pipes (Mirny field, Magan terrane) are characterized by the absence of rounded
diamonds [36,107,108]. This motivates us to continue our research on the oxidation state of the
Siberian SCLM.

A review of the redox state of the SCLM beneath different regions was published in a recent
study by Rielli et al. [109] who reported that the oxygen fugacity of kimberlite xenoliths ranges
from −4.9 to +1.5 ∆logf O2 (FMQ). However, Rielli et al. [109] did not indicate particular cratons.
Goncharov et al. [21] compared the SCLM of the Siberian, Slave and Kaapvaal cratons and showed
that the first two are more oxidized. We observe that, at a similar depth, the f O2 for garnet peridotites
from KM varies over a broader range, both with more reduced and more oxidized values than those
from the Kaapvaal craton [13,16,93,110] (Figure 11b). The ∆logf O2 (FMQ) of the Slave peridotites
varies from −4.11 to +0.95 log units using the oxybarometer by Stagno et al. [11] and from −3.85 to
+0.44 log units using Miller et al. [12] over a P–T range from 2.0 to 8.4 GPa [12,14,15]. Thus, the redox
conditions of the SCLM beneath the KM pipe, Kaapvaal and Slave cratons are comparable (Figure 11b).
In general, the Siberian craton is more heterogeneous and shows wider variations in f O2 (Figure 11b).

5. Conclusions

• The first Mössbauer-based oxygen fugacity estimations for 13 peridotite xenoliths from the KM
pipe (Upper Muna field) showed a relatively narrow range, from −2.6 to 0.3 ∆logf O2 (FMQ) at
depths of 120–220 km;

• The SCLM beneath the Upper Muna filed was affected by a melt metasomatism at depths of
170 km and deeper, whereas a fluid metasomatism was prevalent at shallower depths. In the
Udachnaya pipe (Daldyn field), fluid- and melt-metasomatized garnet xenoliths had a more
complex distribution in the lithospheric column;

• Garnets from three out of thirteen studied KM peridotite xenoliths show a much higher Zr content
(up to 180 ppm) than garnets from the Udachnaya peridotites (135 ppm). This indicates that
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the SCLM beneath the KM pipe at a 130–170-km depth was reworked by a low-temperature
phlogopite metasomatism more significantly than the SCLM beneath the Udachnaya pipe;

• The redox conditions recorded by the studied KM peridotites (−2.6 to 0.3 ∆logf O2 (FMQ)) are
comparable to the redox state of the SCLM beneath the Udachnaya pipe (−4.95 to 0.23 ∆logf O2

(FMQ)). However, the SCLM beneath the Udachnaya pipe may comprise more reduced mantle
domains. Thus, the established difference between the KM and Udachnaya peridotites may
indicate a lateral heterogeneity in the oxidation conditions of the Siberian SCLM.
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