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Abstract: Since polymetallic ores show higher anomalies in gravity exploration methods, we usually
obtain the position and range of ore bodies by density inversion of gravity data. The three-dimensional
(3D) gravity focusing density inversion is a common interpretation method in mineral exploration,
which can directly and quantitatively obtain the density distribution of subsurface targets. However,
in actual cases, it is computation inefficient. We proposed the preconditioned Jacobian-free
Newton-Krylov (JFNK) method to accomplish the focusing inversion. The JFNK method is an
efficient algorithm in solving large sparse systems of nonlinear equations, and we further accelerate
the inversion process by the preconditioned technique. In the actual area, the gravity anomalies are
distributed on the naturally undulating surface. Nowadays, the gravity inversion under undulating
terrain was mainly achieved by discretizing the ground into unstructured meshes, but it is complicated
and time-consuming. To improve the practicality, we presented an equivalent-dimensional method
that incorporates unstructured meshes with structured meshes in gravity inversion, and the horizontal
size is determined by the gradient of observed gravity and terrain data. The small size meshes
are adopted at the position where the terrain or gravity gradient is large. We used synthetic data
with undulating-terrain to test our new method. The results indicated that the recovered model
obtained by this method was similar to the inversion method of unstructured meshes, and the
new method computes faster. We also applied the method to field data in Huayangchuan, Shaanxi
Province. The survey area has complicated terrain conditions and contains multiple polymetallic
ores. Based on the high-density characteristics of polymetallic ore bodies in the area, we calculate the
field data into 3D density models of the subsurface by the preconditioned JFNK method and infer six
polymetallic ores.

Keywords: preconditioned jacobian-free Newton-Krylov (JFNK) method; undulating terrain; gravity
focusing density inversion; adaptive equivalent-dimension; polymetallic minerals; unstructured
mesh and structured mesh

1. Introduction

The gravity exploration method is used to detect polymetallic ores because of its higher density
feature, and they can use the density inversion method of gravity anomaly to obtain the approximate
horizontal position of the ores. The most commonly gravity inversion method is three-dimensional
gravity inversion, which can directly obtain the subsurface density distribution to interpret the
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three-dimensional area of ores [1–3]. The high-density borders of general gravity inversion are not
sharp enough to match the ores. Last and Kubic presented compact gravity inversion, which is the
precursor of gravity focusing inversion [4–6]. The focusing inversion uses the minimum support
functional to increase the high-density value with the iteration of solution, so the volume of high-density
results of inversion is minimal. In this way, the focusing inversion has a higher resolution and better
convergence speed than the standard smooth inversion. However, the gravity method is suitable
for the interpretation of mass data over a large area. Therefore, many geophysics make an effort to
improve the computational efficiency of gravity inversion [7,8].

The JFNK method is designed for solving the large implicit nonlinear equations, and it is the
combinations of Newton’s method and Krylov subspace methods. This method uses the differential
of vector instead of the jacobian matrix, so it does not need to form and store the elements of the
true jacobian matrix. The jacobian matrix consists of the first-order partial derivatives of objective
equation, which represents the optimal linear approximation of the equation to a given solution,
so memory is intensive in solving large sparse nonlinear equations. Therefore, the JFNK method
has a much faster convergence and smaller computation cost. This method has been successfully
applied in fluid computing and other fields [9,10]. The Krylov subspace method is a kind of common
iterative algorithm, and the conjugate gradient (CG) is a representative method of the Krylov subspace
method which is commonly used in gravity inversion. Vandecar and Snieder used the preconditioned
conjugate gradient method for solving the inversion problem of large data [11].

The study on the gravity inversion method considering the undulating terrain can be divided
into two categories. The first type is to reduce the curved surface into a horizontal plane to offset the
effects of undulating terrain, e.g., the equivalent source method, finite element method, boundary
element method, Taylor series method and iterative method [12–16]. Yao also used the data of field
and vertical gradient to reduce the curved surface into a horizontal plane to obtain more accurate
and stable results [17]. To improve the direct solution method, Liang used the gradient data and
boundary element method to obtain the potential field of the horizontal plane directly from the curved
surface data [18,19]. Unfortunately, this method assumes that there is no field source between the
undulating terrain and the converted horizontal plane. The data obtained by this way are only an
approximation of the actual data, which reduces the precision of inversion results. The second type is
to mesh the subsurface that corresponds to the undulating terrain. Currently, the common method
is unstructured mesh technology. This method can fit the surface by dividing the subsurface into
multiple triangles or tetrahedrons in two-dimensional (2D) or 3D inversions. Zhong used tetrahedrons
to fit the terrain to realize terrain correction [20]. Geophysicists obtained the mesh with undulating
terrain by using the triangulation technology to be applied on the inversion of the electrical prospecting
with the complicated terrain [21,22]. Zhang applied triangulation technology on forward modeling
and inversion of gravity and magnetic profiles [23]. In the gravity and magnetic inversion field,
the triangulation was mainly used to fit geological models to obtain more accurate forward results [24].
The unstructured mesh method is complex and computationally intensive, which is not suitable for
the inversion of gravity with a large amount of data. However, the common structured mesh method
cannot fit the undulating terrain. Therefore, it is necessary to combine the structured and unstructured
mesh methods in the gravity and magnetic inversion field.

In this paper, we presented the preconditioned JFNK gravity focusing density inversion method to
obtain the density feature of the ores with accuracy and efficiency. To solve the inversion meshing under
the undulating terrain, we also presented an adaptive equivalent-dimension method, which processed
the subsurface by combining triangulation unstructured and rectangular structure mesh. Considering
that the density variation and the terrain fitting are related to the anomaly and the change rate of the
terrain, the horizontal size of each grid unit depends on the gradient of anomaly or terrain. We used the
models with the undulating terrain and compared common unstructured meshing methods to gauge
the performance of the algorithm and test its accuracy and efficiency. Then, we applied this approach
to interpret gravity data collected in the Huayangchuan polymetallic mining area in Shaanxi Province.
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2. Methodology of Preconditioned JFNK Gravity Focusing Inversion

The gravity inversion involved discretizing the subsurface into a finite number of rectangular
units, and the discrete map is shown in Figure 1. There are n observation points and m rectangular
units, the forward expression of the gravity anomaly could be expressed as:

gn×1 = Gn×mρm×1, (1)

where gn×1 is the gravity anomaly, Gn×m is the contribution to the nth datum of a unit density in the
mth cell called kernel function matrix, and ρm×1 is the density matrix of rectangular units.
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The kernel function matrix is [25]:

G(n, m) = −γ
2∑

i=1

2∑
j=1

2∑
k=1

µi jk

[
xi ln

(
y j + ri jk

)
+ y j ln

(
xi + ri jk

)
− zkarctan

( xiy j

zkri jk

)]
, (2)

xi = x− ξi; y j = y− η j; zk = z− ζk; ri jk =
√

x2
i + y2

j + z2
k ;µi jk = (−1)i(−1) j(−1)k.

In the expression, γ is the gravitational constant, (x, y, z) are the coordinates of the observation
points, and (ξ1, η1, ζ1) and (ξ2, η2, ζ2) are the coordinates of the minimum and maximum corner points
of the cells.

Performing gravity inversion requires solving Equation (1) for ρm×1. Since the number of
underground cells was greater than the data, the Equation (1) was underdetermined.

We solved this underdetermined equation in the following manner [26]:

φ = φg + uφρ = (gobs −GW−1
z Wzρ)

T
(gobs −GW−1

z Wρ) + uρTWT
e WT

z WzWeρ→ min (3)

We = (ρ2 + e2)
−1/2

, (4)

where φg is the square norm of the difference between the observed anomaly(gobs) and the calculated
anomaly(Gρ), and it represents the fitting functional of the data. In the expression, φρ is the stabilizing
functional that constrained the inversion results to the real conditions. u is a regularization parameter.
The value of the regularization parameter is usually 10n, and the n is determined by a “trial and error”
method. Wz is the depth-weighting function which was used to counteract the inherent decay of the
kernel function [27]. Wzρ is the weighted solution variable, we replaced it with ρw. The Equation (4) is
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the minimum support function [4]. In general, the e is 0.1, which is a focusing parameter to determine
the sharpness of the inversion results.

The derivative formula of Equation (3) is:

∂φ

∂ρ
= [W−2

e (GW−1
z )

T
(GW−1

z ) + uI] × ρw −W−2
e (GW−1

z )
T

gobs, (5)

We can substitute the solution of Equation (3) with the minimization of Equation (5). Finally,
we used the JFNK method to obtain the ρw of Equation (5), and the results ρ can be obtained by
removing the depth-weighting function.

The JFNK method was introduced as follows. The f (x) = 0 can be processed as:

f (x) ≈ f (xk) + f ′(xk)(x− xk) = 0, (6)

f ′(xk)(x− xk) = − f (xk), k = 0, 1, . . . , (7)

The Krylov subspace method was created to solve the Equation (7), and we used the CG method
which is a common solution technique with the Krylov subspace [26]. The matrix-vector product
required by CG method was approximated by forward finite difference schemes:

f ′(x)v ≈
f (x + εv) − f (x)

ε
, ε , 0, (8)

where v is a vector of the Krylov subspace. The process of the preconditioned CG method used to
solve Equation (7) is:

A = f ′(x); m = (x− xk); b = − f (x),
k = 0; m0 = initial solution estimate; r0 = AT(b−Am0),
while rk , 0

zk = Sr
k = k + 1
if k = 1
p1 = z0,
else
βk = rT

k−1zk−1/rT
k−2zk−2

pk = zk−1 + βkpk−1
end
qk = Apk
αk = rT

k−1zk−1/qT
k qk

mk = mk−1 + αkpk
rk = rk−1 − αkATqk

end

(9)

where k is the number of iterations, and as the number of iteration increased, the residual r was
minimized by moving a distance α in search direction p. The S is a preconditioner of the search direction,
and we could obtain the new search direction. The optimum preconditioning is (ATA)-1. It produced
the least-squares solution to Equation (7) in a single iteration. Since we were unable to obtain the
optimum preconditioning directly, we substituted the optimum preconditioning with a depth-weighting
function [10]. All the other parameters were intermediate variables with no significance.

Under the condition of the natural surface, the structured mesh method was not applicable,
and the unstructured mesh method w triangulation (shown in Figure 2a). The structured method is
computationally intensive. We proposed the adaptive equivalent-dimensional mesh method which
combines the unstructured and structure mesh to achieve gravity inversion with the undulating terrain.
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Only the surface layer (the yellow area in Figure 2b) was discretized by the triangular unstructured
mesh method, and the other subsurface was discretized into structure rectangular mesh. The three
blue cells in Figure 2b have the same height, and it is shown that the structure rectangular mesh was
the n dimension in each horizontal position. Therefore, many judgment processes were avoided in the
calculation, and the calculation efficiency was improved; the memory was not increased in the case of
fitting the surface as far as possible. This method could efficiently and accurately obtain the 3D density
models, so it was more applicable to the gravity inversion with a large amount of data.
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Figure 2. Mesh with triangulation and equivalent dimension in undulating terrain. (a)Triangulation;
(b) equivalent dimension.

As the adaptive equivalent-dimensional mesh method, we derived the equations to determine
intervals (dx, dy) of the mesh according to the terrain and anomaly:

dxi =
X

2nx
+

2−

ny∑
j=1

THDg(i, j)

max[
ny∑
j=1

THDg(:, j)]
−

ny∑
j=1

THDh(i, j)

max[
ny∑
j=1

THDh(:, j)]

nx∑
i=1

[2−

ny∑
j=1

THDg(i, j)

max[
ny∑
j=1

THDg(:, j)]
−

ny∑
j=1

THDh(i, j)

max[
ny∑
j=1

THDh(:, j)]
]

×
X
2

, (10)

dy j =
Y

2ny
+

2−

nx∑
i=1

THDg(i, j)

max[
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i=1

THDg(i,:)]
−

nx∑
i=1

THDh(i, j)

max[
nx∑
i=1

THDh(i,:)]

ny∑
j
[2−

nx∑
i=1

THDg(i, j)

max[
nx∑
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THDg(i,:)]
−

nx∑
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THDh(i, j)
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i=1

THDh(i,:)]
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×
Y
2

, (11)

THD f =

√
(
∂ f (x, y)
∂x

)
2

+ (
∂ f (x, y)
∂y

)
2

. (12)

In the expression, X and Y represent the total length of the measuring area along x and y directions.
THDg and THDh represent the total horizontal derivative (THD) of gravity anomaly g and elevation of
measure points h, respectively. Its equation is shown in Equation (12). In this way, the dx and dy of the
cells would be 0.5~1.5 times the average length. Therefore, the intervals of mesh were close in the area
where the gravity anomaly or terrain varied greatly.

3. Gravity Model Tests

We tested our method in the inversion consisting of typical models of 150 × 150 × 100 m with
undulating terrain, and the results are shown in Figure 3. The buried depth of the center of models
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was 100 m from the surface, and the central coordinates of two models were (225, 250) m and (725, 250)
m. As we can see in Figure 3b, the extreme value position of the gravity effect was asymmetric because
of the asymmetry of the undulating terrain. Therefore, the x-coordinates of the two extreme value
positions of the gravity anomaly were 200 and 800 m, respectively. There was deviation from the
x-coordinates of 225 and 725 m of the two actual models. When the terrain fitting accuracy was
consistent, the terrain grid size was positively correlated with the fineness of the subsurface mesh.
Figure 3c shows the run time of programs in different terrain grid sizes with twenty-five obverse points.
It is shown in Figure 3c that the run time of programs with equivalent-dimensional mesh was obvious
shorter than with triangulation mesh.
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Figure 3. Gravity inversion by the preconditioned JFNK method. (a) Surface topography; (b) gravity
anomalies under undulating terrain; (c) comparison of mesh computing time; (d) slice at y = 250 m of
inversion result with equivalent-dimensional meshes; (e) slice at y = 250 m of inversion result with
triangulation mesh.

The 3D gravity inversion in Figure 3d was performed based on equivalent-dimensional mesh.
Figure 3d shows the slice of the inversion result at y = 250 m, and the red curve is consistent with the
undulating terrain and represents the top of the subsurface, and the black rectangles represent real
positions of typical models. It can be seen in Figure 3d that the high-density units in the inversion
result were similar to the actual range of models. Therefore, this method could obtain the information
of models directly by the inversion with equivalent-dimensional mesh. Figure 3e shows the 3D gravity
inversion with triangulation mesh, and the result of the inversion with equivalent-dimensional mesh
was similar to the inversion with triangulation mesh, comparing Figure 3d,e. Therefore, the new
meshing method proposed by us can obtain gravity inversion results consistent with the traditional
method in the regions with undulating terrain efficiently.

Figure 4a shows the gravity anomaly of Figure 3a with noise, and the anomaly showed some
distortion after the addition of 30 signal noise ratio noise. Figure 4b is the slice of the inversion result,
and Figure 4c is the 3D view of slices. In Figure 4d, blue lines represent the edge of the models, and the
yellow and blue blocks represent densities greater than 0.28 and 0.16 g/cm3 in the inversion results,
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respectively. The inversion results shown in Figure 4b–d are close to the result in Figure 3c. Therefore,
the method was stabilized and could obtain an accurate range of models after adding noise.
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show of inversion results; (d) 3D view of inversion results.

We processed a gravity anomaly with complex terrain to verify the method of equivalent-
dimensional mesh. There were two peaks and one valley—shown in Figure 5b. In the 100 m depth
from the surface, there were three prisms of 100 × 100 × 100 m; the central coordinates of which
were (250, 250), (250, 750), and (750, 500) m, respectively. Figure 5a is the gravity anomaly of models,
and the gravity containing 30 SNR noise is shown in Figure 5c. Because of the complex terrain’s
effect, the coordinates of the extreme value points shown in Figure 5a were (250, 200), (250, 800),
and (750, 550) m, and the coordinates were not consistent with the models’ coordinates. We achieved
the density inversion based on the mesh with the equivalent dimension and obtained the slice diagram
of the inversion results shown in Figure 5e–h by cutting along the white dashed lines numbered 1 and
2 shown in Figure 5a–c. Figure 5d shows the high-density blocks of a density greater than 0.3 g/cm3,
and the blue lines represent the edge of the models.

Although the extreme values’ coordinates of the gravity anomaly deviated from the model
positions at lines 1 and 2, the central position of the inversion results obtained by the gravity inversion
based on equivalent-dimensional mesh were still consistent with the model position. The results
shown in Figure 5d–h indicate that this method is applicable and stabilized in complex terrain.
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4. Actual Data Processing

In order to validate the applicability of the adaptive equivalent-dimensional mesh method in the
field data, we processed the gravity data of polymetallic mining areas in Shaanxi province of China.
The area is located in Huayangchuan in Shaanxi province. Its tectonic location belongs to Xiaoqinling
intracontinental orogenic belt in the southern margin of north China landmass. The main outcrops are
the Neoarchean erathem Taihua group (deep metamorphic crystalline complex), the Mesoproterozoic
erathem Xionger group (volcanic–sedimentary), Gaoshanhe formation (clasolite), and the Luonan
group (carbonatite); some areas have the Sinian series and the Cambrian system clasolite. Paleogene,
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Neogene, and Quaternary are deposited in Cenozoic basins, and the Ordovician, Silurian, and Paleozoic
to Mesozoic stratums are missing [28,29]. The geological condition of the survey area is shown in
Figure 6a.
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Figure 6b shows the Bouguer gravity anomaly of the survey area. The center area obviously
had a high-value gravity anomaly in Figure 6b, so there was a high-density body in the subsurface.
There were polymetallic mines in the vicinity of this area, and the geophysical characteristics of the
metal minerals were high values of density. Therefore, we inferred that the high-value gravity in
this area was a polymetallic deposit. Metallic minerals were produced by magma intruding into the
shallow strata of the subsurface through the faults, so the location of faults had great value for us to
infer the range of minerals.

The total horizontal derivative, of which the maximum value indicates the location of the faults,
is commonly used to detect faults in gravity interpretation [30]. Therefore, by comprehensively
analyzing the geological map and the gravity data of this region, we finally divided the faults of this
region into the total horizontal derivative and local gravity field map shown in Figure 7a.
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The Bouguer gravity anomaly is the comprehensive response of the density at all depths. The 3D
density inversion depth range was an altitude of −1500 m from the surface, so we needed to perform
separation of the potential field by using the matched filter method. The expression of the matched
filter is [31,32]:

LnE(ω) = 2LnB− 2Hω, (13)

where LnE(ω) is the average logarithmic power of the potential field, H is the depth of the layer
corresponding to the anomaly, ω is the wave number, and B is a constant related to the deep or shallow
source anomaly.

In this way, we removed the regional field anomaly corresponding to the density below −1500 m
and extracted the shallow response of the gravity anomaly, namely the local field. The result is shown
in Figure 7b, indicating that the local anomalies in this area were separated by faults; this is consistent
with the geological characteristics of the ores distributed around the faults, which shows the accuracy
of the matched filter method. The terrain in this region was complex with an average altitude of 1480 m
and a maximum height difference of 509 m, as shown in Figure 8a. Considering the regional terrain
relief, our adaptive equivalent-dimensional mesh method was suitable for this real case.
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Figure 8. 3D inversion results of actual area. (a) Elevation of the terrain; (b) field of local gravity
anomaly; (c) 3D view of inversion results greater than 0.12 g/cm3; (d) slices of inversion results.

The depth of −1500 m extending to surface of this region was meshed by the proposed method in
this paper, and 3D gravity inversion was performed to obtain the density in the subsurface, as shown
in Figure 8c,d. Figure 8b is the local field of gravity, in which the white dotted lines represent the
horizontal position of the slices, and Figure 8d shows the slices of the 3D density model obtained
from the gravity inversion results shown in Figure 8c. The density model in each section show the
high-density units, which represent the position of the explained minerals.

Through the recognition of high-density units in the 3D density inversion model, the range of
metallic ore bodies in this region was interpreted in Figure 9 by a red range. The ore bodies distributed
near the faults that conform to the principle of the metal minerals were generated in the magma which
intruded along the faults. There were six ore bodies explained in this area, and the number shown in
Figure 9 around the red range is the height above sea level of these ore bodies.Minerals 2020, 10, x FOR PEER REVIEW 12 of 14 
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5. Conclusions

We proposed the preconditioned JFNK method to perform the intensive inversion computation;
therefore, the 3D focusing inversion algorithm became more efficient. In addition, we combined
unstructured and structured meshes to achieve gravity inversion with undulating terrain. Therefore,
the computational complexity is less than that of the unstructured mesh method in the forward
operation of the kernel function. In order to maintain the efficiency, we improved the terrain fitting
and fineness of meshes by the adaptive equivalent-dimensional method. The fineness of meshes is
positively correlated with the gradient of gravity and terrain. Synthetic tests showed that our method
was suitable for gravity inversion under undulating terrain, and the algorithm was fast with accurate
inversion results. Finally, we applied it to the field data processing in Huayangchuan, Shaanxi Province,
and the distribution range and depth of the ore bodies were inferred from recovered density models,
which further verified the stability and practicability of the new method.
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